Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase

Regulation of its transcript by interferons in vivo

Mineko TERAO,* Giovanni CAZZANIGA,* Pietro GHEZZI,† Marina BIANCHI,† Francesco FALCIANI,* Paolo PERANI* and Enrico GARATTINI*‡

* Molecular Biology Unit, Centro Daniela e Catullo Borgomainerio, and † Laboratory of Neuroimmunology, Istituto di Ricerche Farmacologiche 'Mario Negri', Via Eritrea 62, 20157 Milano, Italy

The cDNA coding for xanthine dehydrogenase (XD) is isolated from mouse liver mRNA by cross-hybridization with a DNA fragment of the *Drosophila melanogaster* homologue. Two λ bacteriophage overlapping clones represent the copy of a 4538-nucleotide-residue-long transcript with an open reading frame of 4005 nucleotide residues, coding for a putative polypeptide of 1335 amino acid residues. Comparison of the deduced amino acid sequence of the mouse XD with those of the *Drosophila* and the rat homologues shows a high conservation of this protein (55% identity between mouse and *Drosophila*, and 94% identity between mouse and rat). RNA blotting analysis demonstrates that interferon- α (IFN- α) and its inducers, i.e. poly(I)·poly(C), bacterial lipopolysaccharide (LPS) and tilorone {2,7-bis-[2-(diethylamino)ethoxy]fluoren-9-one}, increase the expression of XD mRNA in liver. Poly(I)·poly(C) also induces XD mRNA in several other tissues *in vivo*. Protein synthesis *de novo* is not required for the elevation of XD mRNA after IFN- α treatment, since cycloheximide does not block the induction. The elevation of XD mRNA concentration is relatively fast and precedes the induction of both XD and xanthine oxidase (XO) enzymic activities.

INTRODUCTION

Xanthine oxidoreductase is the enzyme system that catalyses the oxidation of hypoxanthine to xanthine and subsequently to uric acid (Dixon & Webb, 1964). The enzyme is a single-gene product and it exists in two separate but interconvertible forms, xanthine dehydrogenase (EC 1.1.1.204; XD) and xanthine oxidase (EC 1.1.3.22, formerly EC 1.2.3.2; XO). The former uses NAD⁺ as the acceptor of reducing equivalents whereas the latter transfers them to molecular O2. XD and XO enzymic activities are contemporaneously detected in a variety of tissues, even though the conversion of XD into XO makes the latter the most readily extractable form (Gilbert & Bergel, 1964; Krenitsky et al., 1986; Carpani et al., 1990). In fact, XD is converted into XO in various experimental conditions in vitro (Della Corte & Stirpe, 1968, 1972). The conversion of XD into XO induced by oxidation is reversible after treatment with reducing agents, and partial proteolytic cleavage irreversibly transforms XD into XO (Granger et al., 1981; Engerson et al., 1987; Oda et al., 1989). In vivo, it is known that XO is produced from XD in various pathological conditions, where it has been proposed to play an important pathogenetic role (Granger et al., 1981; Engerson et al., 1987; Reiners et al., 1987; Elsayed & Tierney, 1989). In particular, this enzyme seems to be primarily responsible for the vascular injury associated with intestinal (Parks & Granger, 1983), cardiac (McCord, 1985; Terada et al., 1991) and hepatic ischaemia (de Groot & Littauer, 1988; Brass et al., 1991). The involvement of XO in tissue damage is probably related to the ability of this enzyme to produce highly reactive O_2^{-} anions (Fridovich, 1970).

XO seems to mediate some of the toxic effects produced by interferons (IFNs) and their inducers in the mouse (Renton *et al.*, 1984; Ghezzi *et al.*, 1984, 1985; Deloria *et al.*, 1985). In fact, recombinant IFNs as well as bacterial lipopolysaccharide (LPS) and $poly(I) \cdot poly(C)$ induce XO enzymic activity and depress cytochrome *P*-450 concentrations in mouse liver. This toxic effect is prevented by pretreatment of the animals with allopurinol and *N*-acetylcysteine, a specific inhibitor of XO and a scavenger of oxygen radicals respectively (Taylor *et al.*, 1980; Roy & McCord, 1982; Ghezzi *et al.*, 1985; Bindoli *et al.*, 1988).

To study the molecular mechanisms underlying the elevation of XO enzymic activity by IFNs and their inducers, the cDNA coding for XD was isolated from mouse liver mRNA. With the use of this cDNA clone as a probe, the elevation of XO/XD activity by IFN- α and its inducers is demonstrated to be mostly due to an increased accumulation of XD mRNA.

MATERIALS AND METHODS

Animal treatments

CD-1 mice obtained from Charles River Italia (Calco, Como, Italy) weighing approx. 30 g were intraperitoneally treated with poly(I) poly(C) (Sigma Chemical Co., St. Louis, MO, U.S.A.) (10 mg/kg body wt.), recombinant IFN- α (A/D) (IFN- α ; 10⁷ units/mg of protein) (Roche, Nutley, NJ, U.S.A.) (1.5 × 10⁵ units/kg body wt.), LPS (Sigma Chemical Co.) (2 mg/kg body wt.), recombinant human interleukin-1 β (10⁷ units/mg of protein) (Sclavo, Siena, Italy) (30 μ g/kg body wt.) or recombinant human tumour necrosis factor- α (10⁷ units/mg of protein) (Cetus Corp., Emeryville, CA, U.S.A.) (30 μ g/kg body wt.). IFN- α (A/D) is a human hybrid IFN- α type that crosses the species barrier and acts on the IFN- α/β receptor (Rehberg *et al.*, 1982; Jung *et al.*, 1988). In one experiment, cycloheximide (Sigma Chemical Co.) (150 mg/kg)

Abbreviations used: the gene and the transcript coding for xanthine dehydrogenase (XD) and xanthine oxidase (XO) are referred to as the XD gene and XD transcript throughout the paper; IFN, interferon; LPS, lipopolysaccharide.

[‡] To whom correspondence and requests for reprints should be addressed.

The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number X62932.

was administered to the animals 2 h before the treatment with IFN or saline alone to study the effect of inhibition of protein synthesis on the induction of liver XD mRNA by IFN- α itself. Tilorone {2,7-bis-[2-(diethylamino)ethoxy]fluoren-9-one} (Merrel Dow Pharmaceutical, Cincinnati, OH, U.S.A.) (75 mg/kg body wt.) was administered orally. The effect of LPS on the induction of liver XD mRNA was also tested in two different mouse strains, C3H/HeJ (a strain resistant to the effect of LPS) and C3H/HeN (a strain with the same genetic background as C3H/HeJ, but sensitive to LPS) (Charles River) (O'Brien *et al.*, 1982).

Isolation of mouse liver XD cDNAs

In order to obtain molecular probes that could be used for the isolation of mouse XD cDNA, two stretches of the *Drosophila* melanogaster XD gene (Keith et al., 1987; Lee et al., 1987), between nucleotide residues 1496–2018 and 3014–3643 respectively, were amplified according to the instructions of the manufacturer (Cetus Perkin–Elmer, Norwalk, CT, U.S.A.). Amplified fragments were subcloned in pBluescript SK (Stratagene) with standard techniques (Maniatis et al., 1982) and their identity was verified by seqencing.

The amplified oligo(dT)-primed mouse liver cDNA library in λ gt10 was purchased from Clontech Laboratories (Palo Alto, CA, U.S.A.). The oligo(dT) and the randomly primed cDNA libraries inserted in the *Eco*RI site of λ ZAP II vector (Stratagene) were constructed with the use of liver polyadenylated RNA obtained from mice treated with 10 mg of $poly(I) \cdot poly(C)/$ kg body wt. according to standard protocols (Huynh et al., 1985). In all, 7×10^5 plaques from the commercial cDNA library were screened with the ³²P-labelled Drosophila XD gene probes. The filters were hybridized at 53 °C in a solution containing $5 \times SSC$, $5 \times Denhardt's$ and 100 µg of salmon sperm DNA/ml (Maniatis et al., 1982) for 20 h. (1 × SSC is 0.15 м-NaCl/15 mмsodium citrate buffer, pH 7; $1 \times$ Denhardt's solution is 0.02%Ficoll/0.02% polyvinylpyrrolidone/0.02% BSA.) The filters were subsequently washed in $2 \times SSC/0.1 \%$ SDS at room temperature twice for 20 min, and in $0.5 \times SSC/0.1\%$ SDS at 53 °C twice for 20 min. One positive clone hybridizing only with the most 5' Drosophila XD gene fragment was isolated and the insert was subcloned in the EcoRI site of pBluescript SK (XDgt1).

To obtain the 3'-end of mouse XD cDNA, 50000 primary recombinant plaques derived from the oligo(dT)-primed poly(I) \cdot poly(C)-induced liver cDNA library constructed in λ zap II vector were screened with ³²P-labelled XDgt1 insert as a probe, in standard conditions (Maniatis *et al.*, 1982). Positive clones were isolated and the DNA inserts were recovered as subclones in pBluescript KS according to the instructions of the manufacturer (Stratagene). Only one clone (XDzap12), containing the longer insert, was further characterized.

To obtain part of the 5'-end of XD cDNA, two anti-sense strand oligonucleotides (positions 1630–1654 and 1594–1623 in Fig. 2) were synthesized. The former was used to prepare a cDNA library in the *Eco*RI site of the plasmid pUC18 (Pharmacia, Uppsala, Sweden) by primer extension of polyadenylated RNA obtained from the liver of poly(I)·poly(C)-treated mice (Huynh *et al.*, 1985). Approx. 2000 bacterial colonies were screened with the latter oligonucleotide under the conditions described by Wood *et al.* (1985). Four positive clones (XDpuca1– 4) were isolated and sequenced.

The rest of the 5' portion of the XD cDNA was isolated from a λ ZAP II randomly primed liver cDNA library (80000 primary recombinant plaques) with the use of ³²P-labelled XDpuca2 as a probe. Seventy positive clones were isolated, and the one containing the longest insert was recovered in pBluescript KS and further characterized (XDzap64).

Sequence analysis

Nucleotide sequence on double-stranded DNA templates was performed according to the dideoxy chain-termination method (Sanger et al., 1977) with the use of Sequenase (United States Biochemical Corporation, Cleveland, OH, U.S.A.) or T7 DNA polymerase (Pharmacia) according to the instructions of the manufacturers. The sequences of XDzap64, XDzap12 and the respective subclones derived from them were determined on both strands. The primers used for the sequencing reactions were either vector primers or specific oligonucleotides (17-22 nucleotide residues long) synthesized based on the information obtained from former sequence analysis. Oligonucleotides were synthesized on a Beckman Sys-200 oligonucleotide synthesizer (Beckman Instruments, Palo Alto, CA). Computer analysis of the DNA sequences was performed with the Microgenie sequence analysis system (Beckman) and the McMolly Soft Gene Berlin software (Apple Computer, Cupertino, CA, U.S.A.).

RNA blotting analysis

Total RNA and polyadenylated RNA were prepared from various tissues according to standard procedures (Maniatis *et al.*, 1982).

For RNA blotting analysis, total RNA (20 μ g) or polyadenylated RNA (5 μ g) was fractionated on a 1.2% agarose gel containing 6% formaldehyde and blotted onto synthetic nylon membranes (Gene Screen Plus; New England Nuclear, Boston, MA, U.S.A.). These membranes were hybridized to the 1.8 kb EcoRI fragment of XDgt1, or to the mouse actin cDNA (Minty et al., 1981). The probes were labelled to a specific radioactivity of $1 \times 10^9 - 2 \times 10^{-9}$ c.p.m./µg by using hexanucleotide primers and [32P]dCTP (Feinberg & Vogelstein, 1983). Hybridization was performed at 60 °C for 20 h in a solution containing 1 M-NaCl, 1% (w/v) SDS, 10% (w/v) dextran sulphate (Sigma Chemical Co.), 100 µg of salmon sperm DNA (Boehringer)/ml and 1×10^{6} -2 × 10⁶ c.p.m./ml of ³²P-labelled probe. The membranes were washed twice with $2 \times SSC/1 \% SDS$ for 30 min at 65 °C and then with $0.1 \times SSC$ for 30 min at room temperature. The membranes were dried and exposed to Kodak X-Omat X-ray films (Eastman Kodak Co., Rochester, NY, U.S.A.) with two intensifying screens (Dupont Cronex; Dupont de Nemours and Co., Wilmington, DE, U.S.A.) at -70 °C.

XD/XO assay

At 12 h after intraperitoneal administration of poly(I) · poly(C) or saline as a control, animals were killed by cervical dislocation. Liver was excised, washed in saline, blotted dry and homogenized in 10 vol. of 100 mM potassium phosphate buffer, pH 7.8, containing 1 mM-EDTA and 3 mM-phenylmethanesulphonyl fluoride. Solid $(NH_4)_2SO_4$ was added to the homogenate to a final concentration of 20 % (w/v), and the mixture was centrifuged at 12000 g. XO activity in the supernatant was recovered by addition of solid $(NH_4)_2SO_4$ to a final concentration of 40 % (w/v). After centrifugation, the pellet was resuspended in 1 ml of 100 mM-potassium phosphate buffer, pH 7.8, containing 1 mM-EDTA and 1 mM-phenylmethanesulphonyl fluoride and dialysed overnight against 100 vol. of the same buffer.

The enzyme assay was performed in a Beckman DU-65 spectrophotometer at 25 °C (Stirpe & Della Corte, 1969). For the measurement of XD + XO activities, the assay mixture contained 100 mM-sodium pyrophosphate buffer, pH 8.5, 0.2 mM-EDTA, 0.1 mM-xanthine, 0.4 mM-NAD⁺ and 50 μ l of enzyme sample in a final volume of 1 ml. XO activity was determined in the absence of NAD⁺, in the same incubation mixture as above. XD was determined by subtracting XO from XD+XO. The enzyme assays were performed in conditions of linearity in respect to

Fig. 1. Structural organization and physical map of mouse liver XD cDNA

The thick line represents the physical map of mouse liver XD cDNA from its 5'-end to the 3'-end (left to right). Sites for relevant restriction endonucleases are indicated. The black box and the white box indicate the protein coding region and the 3' untranslated region respectively. Thin lines shown at the bottom of the Figure represent inserts of recombinant λ phages (XDgt1, XDzap12, XDzap64) or recombinant plasmid (XDpuca2). The clones XDzap64 and XDzap12 were sequenced completely in both directions, whereas XDgt1 and XDpuca2 were sequenced only in one direction.

protein and time. One unit of enzyme activity is defined as 1 nmol of uric acid produced/min (Suleiman & Stevens, 1985). The data were normalized for the content of proteins determined by the Bio-Rad kit (Bio-Rad Laboratories, Richmond, CA) with BSA as a standard (Sigma Chemical Co.) (Bradford, 1976).

RESULTS AND DISCUSSION

Cloning and structure of the cDNA coding for mouse liver XD

When the molecular cloning of the cDNA coding for mouse XD was started, no data on the primary structure of this enzyme in higher eukaryotes were available, except for that of *Drosophila melanogaster*, which was identified and isolated by genetic complementation of the Rosy locus (Bender *et al.*, 1983; Keith *et al.*, 1987; Lee *et al.*, 1987). XDgt1 was thus isolated by cross-hybridization with the *Drosophila melanogaster XD* gene. Isolation of the other overlapping clones was as detailed in the Materials and methods section. The restriction map of the mouse XD cDNA as defined by the isolated overlapping clones is shown in Fig. 1.

The total length of the mouse XD cDNA is 4538 nucleotide residues (Fig. 2). The longest open reading frame deduced from the DNA sequence is 4005 nucleotide residues long, coding for a putative polypeptide of 1335 amino acid residues. This is consistent with the fact that the protein product of this gene has an approximate molecular mass of 150 kDa (Carpani et al., 1990). The assignment of the first ATG codon is presumptive, owing to the lack of N-terminal sequence data of the protein. The contention, however, is supported by the protein and cDNA sequences of the rat (Amaya et al., 1990) and the Drosophila (Keith et al., 1987; Lee et al., 1987) XD. In these two animal species, the first methionine codon appears at a position similar to that of the mouse cDNA, and the three genes share great similarity in this region of the protein, as described below. The open reading frame of the mouse XD cDNA is followed by a 531-nucleotide-residue-long 3' untranslated region containing a polyadenylation signal, AATAAA (nucleotide residues 4518-4523 in Fig. 2) (Wickens & Stephenson, 1984; Birnstiel et al., 1985) that is located 10 nucleotide residues upstream of the poly(A) tail. The XD transcript is devoid of a nucleotide sequence coding for a hydrophobic signal peptide. This feature is consistent with the cytoplasmic localization of the XD protein.

Comparison of mouse XD protein with its rat and Drosophila homologues

DNA sequence analysis of the mouse XD cDNA in its coding

region demonstrates a high level of similarity with the *Drosophila* (57 %) (Keith *et al.*, 1987) and the rat homologue (91 %) (Amaya *et al.*, 1990), resulting in a high degree of similarity in their protein products.

The comparison between the deduced primary structure of mouse XD protein and its rat and Drosophila homologues is presented in Fig. 3. The overall similarity between mouse and Drosophila XD is 55 %, whereas it is 94 % between the mouse and the rat proteins. The similarity is even higher in their secondary structure, since the hydrophobicity plot is almost superimposable throughout the three animal species (results not shown). The mouse XD polypeptide is composed of 1335 amino acid residues and it has the same length as the Drosophila XD, but it is 16 amino acid residues longer than the rat counterpart. A stretch of the mouse sequence coding for 12 amino acid residues (amino acid residues 485-496 in Fig. 3) is found both in mouse and in Drosophila XD, but not in rat XD. This could represent a bona fide difference relative to the rat, especially in consideration of the fact that it was found in at least two independent clones (XDzap64 and XDpuca2). However, it is also possible that more than one mature XD mRNA transcripts are present both in the rat and in the mouse. A striking similarity among the three XD proteins is found at their N-terminal and Cterminal regions. The N-terminal sequence of the mouse XD is, however, 3 amino acid residues longer than the rat homologue, owing to the presence of a Thr-Arg-Thr tripeptide after the putative translation initiation codon for methionine. One serine residue at position 1291 of the mouse and Drosophila XD sequence is lacking in the rat protein.

There are 37 cysteine residues in the mouse XD protein. The positions of all the cysteine residues are perfectly conserved between mouse and rat except for one cysteine residue at position 489, which is located within the stretch of 12 amino acid residues (amino acid residues 485–496) missing in the rat XD. On the other hand, the positions of only 19 cysteine residues of the mouse protein are common to the *Drosophila* counterpart. There is a highly conserved cysteine-rich region at the *N*-terminal portion of the three XD homologues, where 12 out of 14 cysteine residues are common to the three proteins. Some of these cysteine residues might serve as the 2Fe/2S oxidation centres, as already suggested by Amaya *et al.* (1990).

The putative NAD⁺-binding site of the mouse XD (amino acid residues 390–403) is very similar to the corresponding site in the rat sequence (Nishino & Nishino, 1989; Amaya *et al.*, 1990), showing 12 out of 14 identical residues. This sequence, however, is not conserved relative to the *Drosophila* counterpart. The

1 1		et Thr TG ACG	Arg Th NGG AC	t The	r Val 5 GTR	Amp G1 GAT GI	u Leu G TTG	Val GTC	Phe I TTC	Phe Va TTT GI	i An	n Gly 7 GOC	Lys MA	Lys	70 210	2 G] 6 CI	In Asp NG GAT	Ala GCT	Ile ATA	Lys Ang	Asn i AAC i	un s un t	er Phi CC TT	Tyr TRT	Gly GOC	P10 CCC	G1 10 1 GAG (Val I GTA J	LYS I Maa a	ie Gi TC Gi	IU LY:	I Gly N GGA
18 54	Val Val Gle GTG GTG GN	LYS AS	IN ALE	Asp GAC	Pro (CCT (Slu the SAA ACJ	Thr ACA	Leu CTT	Leu V CTG G	al Ty TC TW	r Lev C CTT	Arg AGA	Arq Aga	Lys	72 216	L AI 3 GI	NT CTC	Lye MG	Lys Mà	Gly BCC	Phe : TTT :	Ser G PCT G	lu Ala AA QC	h Anp r GhC	Aan NAT	Val GTT	Val GTC	Ser (TCA (SLY C	lu La Ar ti	ни ту: Га та	t lle T ATT
37 111	Leu Gly Le TTG GGG CT	Cys 61 790 60	y Thr	Lys NNG	Leu (CIT (ily Cyr	Gly GGA	Glu GAA	G1y C OCT_C	ay cy ac to	e Gly 7 000	Ala GCA	Cys TGC	The ACC	74 222		ly Gly	Gin CAG	61 u GNG	HLa CNC	Pho f	lyr L Fat C	en 610 76 GN	the ACC	Ni.s CAC	Cya TOC	the ACC	lle J Att (Nie V BOC G	al Pr TG C	to Ly	B Gly A GGC
56 168	Val Het Il GTG ATG AT	Ser Ly	S TYP	Asp GAC	Arg I COC C	IN GL	Ann AC	Lys NG	Ile V ATC G	11 CA	e Pho 1 111	Ser TCC	Val GTC	Aan AAT	75 227		lu Ala Ng BC I	61y	Giu Ghe	Høt Atg	Glu GNG	Leu P CTC T	he Va TC GT	i Ser G AGC	The ACA	Gìa ChG	Aan AAC	The I ACC	NGC 1	79 T	hr G) DC CA	n Sez G AQC
75 225	Ala Cys Len GCC TGC TT	The Pr	C ATC	Cya TGC	Ser 1 TCC 1	IN RL	HL.	Val GTT	Ala V GCT G	al Th TG AC	r Thr A ACT	Val GTT	Glu GAA	Gly	77 233	1 H	he Ile IT ATI	Ala GCA	Lys NG	Net ATG	Leu TTG	Giy V GGT G	al 92 17 00	o Amp N GNC	Ann Anc	Arq Aga	Lle ATT	Val (GTA (Val J GTC (kg Vi Xa G	al Ly Tg Añ	s Arg A AGA
94 282	Ile Gly Am	Thr Ly ACC AN	S LYS	Leu CTG	Ris B CAT C	TO Val	Gln CAG	Glu GAC	Arg I NGA N	le Al. TT GC	a Lys C NAA	Ser ACC	HIS CAT	Gly GCT	79 231	7 M	et Gly	Gly GGA	61 y 6000	Phe TTT	Gly GGA	GIY L	ys Gl Ag Ga	G ACC	Arg CQ6	Ser AQC	The ACT	Leu CTG	lle i Ata 1	ier Ti ICC A	hr Al Ca go	a Val A GTG
113 3 39	Ser Gin Cyr TCC CAG TG	GLY Ph GGC TT	e Cys C TGT	The l	Pro G CCT G	ily Ile GT ATT	Val GTC	Het ATG	Ser H AGT A	et Ty TG TN	r Thr	Leu CTG	Leu CTC	Arg CGA	81 244	6 A		ALa OCT	ALa GCA	TYI TRC	Lyne NNG	The G	ily Ar	g Pro C CCT	Val GTA	Arg Cet	Cys TOC	Het ATG	Leu / CTG 1	Lap A: DAC C	rg An GA GI	ap Glu ic GAG
1 32 396	Asn Lys Pro AAC AAG CCT	Glu Pr GAG CC	o Thr T ACT	Val (GTC (Glu G GAG G	LU ILE	Glu GAG	Asn AAT	Ala F GCC T	No GI	n Gly A GGA	Asn AAC	Leu CTC	Cys TGC	83 250	5 A 5 G	AC AT	i Leu S CTC	110 ATA	Thr ACT	Gly GGT	61y J 660 J	itg Hi GA CA	S Pro	Phe TTC	Leu CTG	Ala GCT	Lys AAA	Tyr I TAC	NG G	al GI TG GC	y Phe C TTC
151 453	Arg Cys The CGC TGT AC	Gly Ty GOC TA	r Arg T AGA	Pro CCC	Ile L ATC C	AN GLA	Gly GGA	Phe TTC	Arg T CGG A	hr Ph CC TT	e Ala T GCC	Lys AAG	Asp GAT	Gly	85 254	4 M 7 X	nt Ly Tg am	I THE	GLy GCG	The	Ile ATA	Val / GTG (La La XA CI	4 61.4 G GAG	val GYG	Ala GCT	H15 CAC	Phe TTC	Ser i MGC	Nan G NAT G	-17 G1 10C GX	IY ABN IG AAC
170 510	Gly Cys Cys GGG TGC TGT	GIY GI CCA CC	y Ser A Agt	Gly I GGA I	Nan A NAC A	an Peo	Ant	Cys TGC	Cys H TGC A	nt Se TG AG	r Glm C CAA	ACA	Lys AAG	Asp GAC	87 261	3 5 9 A	er Gli GT GN	a And G Gat	t CTC	Ser TCT	Arq CQG	Ser 1 NGT 1	ILE ME	t 61. 6 GN	Ary Aga	Ala GCT	Val GTA	Phe TTC	Nis (CAC	HOL A ATG G	isto As IAC Al	In Ala
189 567	Gin The Ile CAG ACG AT	ALS Pr GCT CC	o Ser C TCA	Ser : TCT	Ser L TCT T	AU Phe	Ann Anc	Pro CCG	Glu A GAG C	SP Phi AT TT	e Lys C AAA	Pro	Leu TTA	Amp GAT	81 267	2 T 6 T	YI LY: NI AM	I Ile S ATC	Pro CCC	Aan AAC	Ile ATT	Arg (CGC (ily Th Rec Ac	r 61) C 900	Arg Agg	Ile ATT	Cys TGT	Lys MG	Thr ACT	NSA L NAT C	Au Pi TG Ci	ro Ser IC TCT
208 624	Pro Thr Gir CCC ACC CA	Glu Pr GNG CC	o Ile C ATC	Phe I TTT (PE0 P	TO GLU	Leu TTG	Leu CTG	Arg L AGG C	tg AN	a Asp A GAC	The ACT	Pro CCC	Arg CGG	91 273	1 A 3 A	an Thi ac aci	r Ala N GOC	TTC	Arq NGA	61y 600	Phe (ily Gl Kag Ga	y Pro 17 001	Gln CAG	Gly GOC	Het ATG	Leu CTA	Ile ATC	Ale G GCA G	ilu Ty Ar Ti	/r Trp NC TGG
227 601	Lys Thr Len AAG ACG TTO	Arg Ph CGT TT	e Glu T GAA	61y (GIU A GAA C	urg Val IST GTG	The ACC	Trp TGG	Ile G ATC C	in Il AG AT	Ser T TCA	Thr	Net ATG	Glu GAG	91 279	0 H	nt Sei 16 MG	r Glu F GNG	Vel GTC	Ala OCT	Val GTC	The C	iya Gi Kat Gi	y Law G CTG	Pro CCT	Ala QCA	Glu GAG	Glu GNG	Val (GTA (Arg A CGG A	ig Lj Gg N	/S Asn VA AAC
246 738	GIN Leu Leu GAA CTG CTI	Asp Le GAC CT	U LYS C AAA	Ala (GCC)	Gin H CNG C	AC OCT	Asp GAT	Ala GCC	Lys L NAG C	en Va TG GT	I Val G GTG	Gly GGA	Asn AAC	Thr ACA	94 284	9 M 7 A	DE TY	E LYS	GL U GAA	G1y GCC	Asp GAC	Leu 1 CTG J	he Hi CT CA	s Phe C TTC	Asn AAC	Gln CAG	Lys Ang	Leu CTG	Glu (GAG (Sly P BGG T	he Tr TC AC	ir Leu IC TTG
265 795	Glu Ile Gly GAG ATA GGO	Ile GI ATT GA	u Het A ATG	Lys : AAA	Pha 1 TTT J	AN ANT	Met	Leu CTA	Phe P TTT C	TO LA	U Ile G ATC	Ile ATC	Cys TGC	Pro CCA	96 290	6 P	TO AN	Cya TOC	Trp TOG	Aap Gat	Glu GNG	Cys 1 TQC J	TA GO	a Ser G NGC	Ser TCC	Gln CAG	Tyr Tat	Gln CAG	Ala I GCT (lag L COC A	ys Me Ag at	IC GLU
284 852	Ala Trp Ile SCC TGG ATC	Leu Gl CTT GA	u Leu A CTG	Thr ACC	Ser V TCA G	Al Ala	HIS CAT	Gly GGG	Pro G CCT G	Lu Gl AG OG	y lle A ATC	Ser TCC	Phe TTT	GLy GGA	96 296	7 V. 1 G	al Glu TG GAG	Lys And	Phe TTC	Asn AAC	Arg AGG	GIU A GAG A	SIN CY AC TG	s Trp T TGG	Lys	Lys Mg	Arg AGA	GLY GGG	Leu (CTG 1	YS I NGT A	le Il TA AT	e Pro C CCG
303 904	Ala Ala Cys GCC GCT TOX	Pro La	T AGC	Leu TTG	Val (GTG (ilu Sec SAA AGT	Val GTC	Leu CTG	Ala A GCG G	SP AL	a Ile G ATT	Ala GCT	Thr ACA	Leu CTT	100 301	6 TI 8 Ai	T AN	Phe TTT	CLY CLY	Ile ATA	Ser AGC	Phe T FTC A	hr Le CA CT	a Ser T TCT	Phe TTT	Leu CTG	Asn AAC	Gln (CNG (G1y (GGG (ily Al St G	la Le CC TT	u Val G GTC
322 966	Pro Glu Gli CCA GAG CA	Arg Th AGG AC	ar Glu Ca Gag	Val GTG	Phe / TTC /	NGA GGC	Val GTG	Het ATG	GIU G GAG C	In Le AG CT	u Arg G CGC	Trp TGG	Phe TTT	Ala GCT	102 307	5 H	is Val AC GTE	Tyr TAC	The ACG	Asp GAT	G1y GGG	Ser V FCG G	al Le TG CT	a Leu G CTG	Thr ACA	HIS CAT	Gly GGA	GIY GGT	The G	ilu Mi Ing At	PL G1 TG GG	y Gln T CAA
341 1023	GIY LYS GI	Val Ly GTC A	Ser G TCC	Val GTG	Ala S GCG 1	Her Ile NCC ATT	GOC	000 01 A	Ann I Anc A	le Il TC AT	e The	Ale GCG	Set AGC	Pro	104 313	4 G. 2 G	IY LAN	CHC	The	Lye MG	Het ATG	Val G	in Va AG GT	Ala G QCC	Sez AGC	Arg AGA	Ala GCT	Leu I CTG I	LYS I NAN A	10 P	IO TH	r Ser T TCC
360 1080	Ile Ser Am	Leu M	IN Pro	Val GTG	Leu I CTC J	NEC ALS	Sez MGT	Arg CGA	Ala L GCC A	YS LO AG CT	u Thr G ACC	CTC	Ala GCA	Ser TCT	106 318	3 L 9 A	NG ATC	His Cat	Ile ATA	Th: ACG	GNG I	Thr 3 NCA A	er Th GC AC	r Ann F Anc	The ACT	Val GTC	Pro . CCT .	Asn 1 AAC I	Thr S NCC 1	er Pi CT CC	IO TH	r Ala G GCT
79ء 1137	Arg Gly Th AGA GGT AC	Lys Ar	g Thr A ACG	Val GTC	Trp I TGG J	NOT AND NTG GAO	H18 CAT	Thr ACC	Phe P TTC 1	he Pr TC CC	o Gly T GGC	Tyr TAT	ATQ AGA	Arg	108 324	6 GI	CC TCT	Ala GCC	Ser AGC	ALE OCT	Asp 1 GAC (Leu A	an Gl	Gla CAG	Ala GCC	II+ ATT	TYT TAT	Glu / GAA (Ala C CC T	ys Gl GT Cl	in Th NG AC	r Ile C ATA
398 1194	Thr Leu Le ACT CTG CT	Ser Pr NGT CO	O GLU A GAG	Glu GMG	Ile I ATA 1	Leu Val FTG GTG	Ser TCC	114 ATT	Val 1 GTG A	1e Pr TC CC	O TYI C TAC	Ser AGC	Arg AGG	Lys	110 330	1 L 3 C	TG NU	Arg	CTG	Glu GAG	Pro I	Phe L TTC A	YS LY NG AN	ANG	ASN AAT	Pro	Ser (GLY S	Ser T FCC T	rp Gl GG GJ	lu Se NG AG	r Trp C TGG
417 1251	GIY GIU Ph GGT GAG TT	TTC TC	Ala A GCC	Phe TTC	Lys (Ang (Gin Ala CAG GCC	Ser TCC	Arg Agg	Arg (AGA (lu An AA GA	p Anp 7 GAC	ATT	Ala GCC	Lys AAG	112 336	0 VI 0 G1	TC ATC		Ala CCC	Tyr TAC	thr : ACT /	ier A Mat G	la Vai Cà GT	Ser ACC	Leu TTG	Ser TCT	Als GCT	The C ACT C	ily P Ga t	he Ty TT TJ	T AN	E Thi G ACA
436 1308	Val Thr Sei GTG ACC AG	GLY ME	IL AIG NG AGA	Val GTC	Leu I CTG 1	the Lys FTC ANG	Pro CCA	61y 666	The T ACC A	he Gli CT GA	N VAL A GTG	Gln CAG	GÌ U GAA	Leu CTG	113 341	9 P1 7 C	CC ANC	CTT	GLY OCT	Tyr TNC	Ser i NGC 1	the G	lu Thu NG ACI	Ann AAC	Sez TCT	GLA	Alen I AAC	Pro E	Phe H	15 Ty AC TA	IT Pha C TT	e Ser C AGT
455 1365	Ser Leu Cys TCC CTT TG	TTT 00	y Gly A GGG	Het ATG	Ala J GCT (lap Arg SAC AGA	The ACT	Vel GTC	Ser A TCA G	la Le CC CT	Lys C AAG	The	Thr ACT	Pro CCG	115 347	• 1)	VI GLY	Val GTG	Ala OCT	Cys TGC	Ser (TCA (ilu V BAA G	ni gli Fa gni	ATT	Asp GAC	Cys TGC	Leu TTA	Thr G ACA G	GG G	SP HI AC CA	S Ly	s Asn 3 AAT
474 1422	Lys Gln Le ANG CNG CT	Ser Ly	S Ser	Trp TGG	Aan (AAT (ilu Glu Mg Gag	Leu TTG	Leu CTG	Gln A CAG G	SP VE	L CYS TGT	Ala GCT	61 y 66C	Leu TTG	117 353	7 LA 1 Ci	rc CGI	Thr ACA	Aap GAT	Ile ATC	Val) GTC /	NE A	IP VAL	GLY	Ser TCC	Ser I NGC	TTG J	Asn F AAT C	TO A	18 11 CC AT	.e Asj It gat	> 11e 7 ATC
493 1479	Ale Glu Gli GCA GAG GA	i Leu Hi CTG CI	s Leu C CTG	Ala GCC	Pro J CCC (Lap Ala SAC GCC	Pro CCT	G1y GGT	Giy N GGG A	et Val TG GT	Glu GNA	Phe TTC	Ax g CGG	Arg CGC	119 350	6 G1 6	iy Gin GA CAG	Val GTA	Glu GAA	61 y 666	Ala I GCA 1	the Vi	ni gin NC CAG	61y	Leu CTT	GLY I GET	Leu I	Phe 1 FTC A	nr H	et Gl TG GA	G GAG	: Leu ; CTG
512 1536	The Leu The ACC CTC AC	Leu Se CTC AG	C TTC	Phe TTC	Phe I TTC J	Lys Phe UNG TTC	Tyr TAC	Leu CTG	Thr V ACA G	al Le	Gln CAG	Lys	Leu CTG	Giy GCC	121 364	5 NI 5 CJ	NC TAC	Ser TCT	Pro CCC	61 U 646	Gly S GGG J	ier 14 IGC C	NU MII NG CING	The NCT	Arg CGT	G1y GGC (Pro S	Ser T NGT A	hr T CC T	YT LY AC AA	5 110 G ATC	Pro
531 1593	Arg Ale As Aga GCG GN	Leu GI	G GGT	Not ATG	Cys (TGT (GT ANA	Leu CTG	Asp GAC	Pro T CCC A	he Phi CC TT	Ala P GCC	Ser AGC	Ala GCC	The ACC	123 370	1 A) 2 (X	La Phe CA TIT	Gly GGC	Ser NGC	Ile ATC	Pro 1 CCC J	TT C	Lu Phi NG TTO	Arg AGA	Vel GTA	Ser I TCC	CTC C	Al A	CC G	SP Cy NC TG	S Pro	Asn AAC
550 1650	Leu Leu Ph CTG CTC TT	GIN Ly	IS ASP	Pro CCT	Pro J CCA (La Ann CT ANC	Vel GTC	Gl n CAG	Leu P CTT T	he Gli TC CA	n Glu N GAG	Val GTG	Pro CCC	Lys Ang	125 375	, r , v	rs Arg	Ala GCC	Ile ATC	TYE . TAT	Ala S GCA 1	HER LA	18 A14 16 GC1	Val GTC	61 y 6900	Glu i GAG (PTO I CCA (CT C	AU P	NO LO TC CT	N A14 16 GC1	i Ser I TCT
>49 1 197	Gly Gln Se GGT CAG TC	Giu Gi GAG GI	u Asp G GAC	NOC ATG	Val (GTG (ily Arg GC AGG	Pro	Het Atg	PEO H	15 Lei AC CT	a Ala G QCA	Ala GCA	Asp GAC	Net ATG	127 301	2 54 5 TC	CG ATC	Phe TTC	Phe 111	Ala GCC	IIe I ATC J	.ys A Aa G	IP ALA	Ile ATC	Arg CGC	Ala / GCA (Ala J GCT (Arg A CGA G	LIA G	in Hi Ag CA	.s G1) IC GGI	Asp GAC
588 1764	Gin Ala Se CAG GCA TO	61y 61 666 64	u Ala G GCT	Val GTG	TYP C	CYS ASS ICT GAT	Aap GAC	Ile ATT	Pro A COC C	rg Ty GC TA	r Glu r GAG	Aan AAT	Gl u GNG	Leu CTG	129 307	Se M	T AN	Ala 900	Lys Ana	Gln C NG	Leu I CTC 1	the G	LA LAN	Anp GNC	Sez AGC	Pro 1 CCC (ALA 1 SCC /	Thr P NCT C	70 G	lu Ly Ag Añ	S Ile	Arg CGA
607 :471	Ser Leu Ar	Leu Va CTG G	the ACC	Ser AGC	The J ACG (trg Ala	N18 CAT	Ala GCT	Lys 1 AAA A	Ie He TC AT	s Ser G TCC	Ile ATC	Aop GAC	The ACT	1310) A4	en Ala NC GCT	Cys TGT	Val GTG	GAT :	Gln I CAG 1	TC A	The The	Leu CTG	Cys TGT	Ala 1 GCC /	The C NCT G	GA A	hr P CA C	70 G1 CA GA	u Asr A AAC	Cys TGT
4.26 . 4.18	Ser Glu Al TCA GAA GO	LYS LY MAG AN	S Val G GTG	Pro CCA	G1y 1 GGG 1	TT GTT	Cys TGT	Phe TTC	Leu T CTC A	he Sei	r Glu A GAG	Asp GAT	Vel GTC	Pro CCT	1 32 390	ג א גע	A TCC	Ťтр TGG	Ser (Val A GTG A	ING A	• 121 10 TG	, Waa	AGOCT		NGTAT	GGTT	TTAT	стас	NGCCC	TGATI	CCTC
645 1935	Gly Ser As GGT AGT AA	TIN TT	T GGC	11e ATT	Phe J TTC J	Ann Ann At Gat	Glu GAA	Th: ACT	VAL P GTC T	he Ala	Lys Ang	GAT	Gi u GAG	Val GTT	405 413	, 8 , 1	AATON	CAAGT NATTG	TGAT	CCGT	AGTA	ICCAG		ACACA AAACC	TCCCJ AATAJ CATAJ	ATCCC	GACT ACOG	CAGCI	GGAT	BOCAT DGCCC	TITCA AAGTG	AGAA GCAG
664 1942	Thi Cys Va ACT TGT GT	L G1Y Ni F G95 CV	AC ATC	11e ATT	Giy J GGT (Ala Val SCT GTG	Val GTC	A1.a GCT	Asp T GAC A	hr Pro	GIU GAA	H18 CAT	Ala GCA	N15 CAC	421 429 436	129	COCTA	CTCOC	CACA		TGTG	ATCT	ACATT	CTCAC	ACAC	CCGT	CACO	TAACO	ACCA	CGTT CTGCA	CACTO	AGAT
680 .7749	Arg Ala Al AGA GCC GC	n Arg Gi T AGA ⊴g	IV VAL SG GTG	Lys AAA	Ile 1 ATC /	The Typ ACC TAT	GJ u GAA	Asp GAC	Leu P CTT C	zo Ala CA GCI	Ile ATT	ile ATC	Thr ACA	Ile ATC	444 451		ACTACING CARCATART SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA															

Fig. 2. Nucleotide sequence and deduced amino acid sequence of mouse liver XD

The nucleotide sequence of mouse XD cDNA (lower line) was obtained from the two overlapped cDNA clones XDzap64 (nucleotide residues 1-2000) and XDzap12 (nucleotide residues 1524-4538), and is presented with its deduced amino acid sequence (upper line). Amino acid residues are numbered from the N-terminus to the C-terminus starting from the putative first methionine residue, whereas nucleotide residues are numbered in the 5' to 3' direction. A putative NAD⁺-binding site (Nishino & Nishino, 1989; Amaya *et al.*, 1990) is boxed, and two consensus sequences coding for Gly-Xaa-Gly-Xaa-Gly, essential for NAD⁺ and FAD binding (Guest & Rice, 1984; Williams *et al.*, 1984; Wierenga *et al.*, 1985), are underlined. The polyadenylation signal, AATAAA (Wickens & Stephenson, 1984; Birnstiel et al., 1985), is doubly underlined.

	. 1	HTRTTVDELVFFVNGKKVVEKNADPETTLLVYLARKLGLÖGTKLGÖGEGAGTANISKYDRLONKIVHFSVNAGLTPIGSLHHVAVTTVEGIGNTKK-	90
ľ	- 1	H, A	96
đ	1	HSHSVT.VSP	97
	100	LAPVOERIAKSHGSGEGEGEGEGENNSNYTLLRNKPEPTVEEIENAFOGNLENETGYRPILOGFRTFAKDGGEGGGGGGGHNPNECH-SQTKDQ-TIAPSSS-	196
r	97	······································	193
d	98	LAAAAEQ.SMRDL.VE.YKT.EFALF.MEK	192
	197	LFNPEDFKPLDPTOEPIFPFELLRLKDTPRKT-LRFEGERVTWIQIST-MEELLOLKAQHPDAKLVVGNTEIGIEMKFKNNLFP-LIIPPAWILELTSVA	293
r	194		290
d	193	ERSE.QSQS.AFDSQS.I.SSDWRP-, NLQKAV.V.VHF.Y.HNTQVKLEYK	289
	294	ICPECISFCANCE LSLVESVLADAIATLE CORTEVFRGVMEQLRMFAGKQVKSVASIGGNIITASPISDLNPVLMASRAKLTLASRGTKRTVM	387
r	291	R	384
d	290	ENQDY	387
æ	388	DET-FFPGYRRTLLSPERILVSIVIPYSRKGEFFSAFKQASRREDDIAKVTSCMRVLFKPGTTEVQELSLEFGGMADRTVSALKTTPKQLSKSWNEEL	484
r	385		481
d	388	G-LG.TNVIEAR.V.LG.NFRKTTPDQYIVR.DI.NAAIN.R.EEKSNI.A.I.MAPTL.PR.SNVGQE.SHQ.	484
	485	LODURA-GLAEELHLAPDAPGCNVEFRRTLTLSFFFKFYLTV-LOKLGRADLEGNCEKLDPTFAS-A-TLLFOKDPPANVOLFOEVPKGOSEEDNVGRPM	580
r	482		565
đ	485	VER 25. GT P AS IAY A. VV.L A AIS SKSGITSSDA P. EER.G.E. FHTPVLKS ER. GSD. P G. PI K	579
m	581	PHLAADNOASGEAVYODDIPRYENELSLSHVTSTRAHAKIMSIDTSEAKKVPGFVO-FLTSEDVPGS-NITGI-FNDETVFAKDEVTOVGHIIGAVVADT	677
r	566	N	662
d	580	V.A.LK.T.I.TNDG.VY.AF.L.KPRTKL.A.LALDHQ.FOKK.LTERE.EV.PV.H.HAG.H.K.Q.V.IA.N	678
m	678	PEHAHRAARGVKIT-YEDLPAIITI-QDAIKNNS-FYGPE-VKIEKGDLKKGFSEADNVVSGELYIGGQEHFYLETHGTIAVPKGEAGEMELFVSTON	771
r	663	····Q·································	756
đ	679	KAL.QLVEYE.LS.V.VEELK.Y.PDRF.TNVEEAL.QHTFE.TOPM	773
m	772	THKTOSFIAKHLGVPDHRIVVRVKAHGGFGGKETRSTLISTAVALAAYKTGRVKENLDRDEDHLITGGRHPFLAKYKVGFHKTGTIVALFVAHFSN	869
r	757	······VAI	854
d	774	PSEV. KLV. NVTAL. AR. V. B. A L	871
	870	GGNSEDLSRSIMERAVFHNDNAYKIPNIRGTGRICKTNLPSNTAFRGFGGPOGMLIA-EYWMSEVAVTGGLPAEEVRRKN-MYKEGDLTHFNQKLEGFTL	967
r	855	· · · T · · · · · L · · · · · · · · · ·	952
d	872	A.W.NF.VLH. FE.Q.RV.VG.W	969
	968	PICH-DECLASSOYGARKNEVEKENRENCHKKRGLELIPTKEGISETLSELNOGGALVHVYTDGSVLLTHGGTENGOGLHTKHVOVASRALKIPTSKT	1064
r	953	······································	1049
đ	970	E. J.E J.KQ. R. DE QD-YARR.R MAVVY A. GVMHA.S. INI.GSV.INI. G. AG. SEL.	1066
	1065	RITETSTWTVPNTSPTAASASADLNGGAIYEADTILKRLEPFKKKNPSGSM-ESWVMDAYTSAVSLSATGFYKTPNLGYSFETNSGNPFHYFSYGV	1160
r	1050		1145
d	1067		1163
	1161		1260
r	1146		1245
d	1164	CVTVU.G.ADG.NLTGAPV.S	1263
	1261	AVGEPPLFLASSIFFAIKDAIRAARAGHGDSNAKOLFOLDSPATPEKIRNAGVDOFTTIGATGTPENGKSWSVRI	1335
r	1246	Q	1319
đ	1264	IGA EA EDQ. L.GD P.EA. S.SAR I. D.KE. LEIPE.GSFTP.NIVP	1335

Fig. 3. Amino acid sequence comparison with rat and Drosophila melanogaster XD

The deduced amino acid sequences of mouse (m), rat (r) and *Drosophila melanogaster* (d) XD are aligned. The rat sequence is derived from Amaya *et al.* (1990) and the *Drosophila melanogaster* sequence is from Keith *et al.* (1987) and Lee *et al.* (1987). The amino acid residues are indicated by the one-letter code. Numbering starts from the first methionine residue. Identical amino acid residues in the rat and *Drosophila* sequences are indicated as dots except for the first methionine residue, and gaps introduced in the sequence to obtain the best alignment are indicated as bars. Cysteine residues are boxed. Consensus sequences, Gly-Xaa-Gly-Xaa-Caly (where Xaa stands for any amino acid residue) for the binding sites of nucleotide cofactors, NAD⁺ or FAD, are doubly overlined. The region corresponding to the binding site of NAD⁺, as determined by comparison of the 5'-p-fluorosulphonylbenzoyladenosine-labelled peptide sequence of chicken XD (Nishino & Nishino, 1989), is boxed by a dotted line.

difference in the environment at the NAD⁺-binding site may reflect the fact that, unlike in mammals, XD cannot be converted into XO in this insect. Two consensus amino acid sequences (Gly-Xaa-Gly-Xaa-Gly; positions 45–50 and 798–803 in Figs. 2 and 3) that provide the conformation essential for NAD⁺ or FAD binding (Guest & Rice, 1984; Williams *et al.*, 1984; Wierenga et al., 1985) are well conserved in the three animal species, suggesting their functional relevance.

Expression of mouse XD gene in vivo

The expression of XD gene *in vivo* was studied by RNA blotting analysis with XDgt1 as a probe. Polyadenylated RNA

Fig. 4. Induction of mouse liver XD mRNA by IFN- α and poly(I) · poly(C)

Polyadenylated RNA (5 μ g/each lane) was extracted from the liver of two mice treated with saline (C), 1.5×10^5 units of IFN- α (IFN)/kg body wt. or 10 mg of poly(I)·poly(C)/kg body wt. The RNA samples were electrophoresed on an agarose/formaldehyde gel and transferred to a nylon membrane for RNA blotting analysis. The positions of the size markers (28 S and 18 S rRNAs) are indicated.

was extracted from mouse liver before and after treatment with IFN- α or poly(I)·poly(C). As shown in Fig. 4, the XD transcript is barely detectable before the treatment, whereas after induction with either IFN- α or poly(I)·poly(C) a strong signal, which migrates slightly faster than the 28 S rRNA, is observed.

The kinetics of induction of XD mRNA in the mouse liver after treatment with $poly(I) \cdot poly(C)$ is relatively fast, since the accumulation of the transcript is already visible at 2 h and it attains its maximum level at 12 h (Fig. 5a). At 24 h, the level of XD mRNA decreases towards the basal level. To study whether XD mRNA correlates with its translation into catalitically active XO and XD, the sum of the two enzyme activities (XO+XD)was measured. The induction of XD mRNA precedes the elevation of XO + XD enzyme activities (at 2 h, XO + XD activity is not significantly different from the basal level; Fig. 5b). At 24 h, XD mRNA decreases dramatically whereas XO+XD activities are still at their plateau. At 48 h, XO+XD activities decrease to the same levels observed at 2 h (results not shown). Considering that XO and XD have very similar K_m and V_{max} values for xanthine (Bindoli et al., 1985) and that the XD/XO ratio is not significantly changed after administration of $poly(I) \cdot poly(C)$ (for instance, the mean \pm s.e.m. is 1.2 ± 0.1 in control conditions compared with 1.1 ± 0.2 after 24 h of $poly(I) \cdot poly(C)$ treatment, confirming the results reported by Ghezzi et al., 1984), the reported increase in XO activity after treatment with poly(I) · poly(C) (Ghezzi et al., 1984, 1985) is thus primarily the result of a dramatic increase in the steady-state concentrations of XD transcript. However, a remarkable difference between the maximal induction level of XD transcript (about 30-fold) and that of XO + XD enzyme activities (3-10fold, according to the experiment) is always observed. It is thus possible that not all the transcribed XD mRNA is translated into protein.

To investigate whether other known inducers of IFN- α are

Fig. 5. Time course of the induction of XD mRNA and XO+XD activity in the liver of mice treated with poly(I) poly(C)

(a) Total RNA (20 μ g per lane) was extracted from two mice treated with poly(I) · poly(C) (10 mg/kg body wt.) for the indicated amount of time, and used for RNA blotting analysis. The same filter was hybridized sequentially with XD and actin cDNAs. \Box , XD mRNA; •, actin mRNA. The quantitative representation of the results shown on the left was obtained after longer exposure of the autoradiogram shown on the right, so as to make the XD band at 0 h detectable. (b) The time course of the induction of total XO + XD enzyme activities in the mouse liver is presented. XO + XD activity was measured in tissue extracts obtained from animals treated with poly(I) · poly(C) (10 mg/kg body wt.) for the indicated amount of time. Data are presented as means \pm S.E.M. of the values obtained with three separate animals. *Statistically significant relative to the value at time zero (P < 0.01; Dunnett's test).

also effective in inducing XD mRNA, bacterial LPS and tilorone were administered *in vivo*, and the elevation of the XD transcript was compared with that obtained by IFN- α and by poly(I)·poly(C). As shown in Fig. 6(*a*) poly(I)·poly(C), LPS and tilorone are all capable of inducing XD gene expression, albeit with different potencies. Furthermore, cycloheximide (a known inhibitor of protein synthesis) does not affect the concentration of XD transcript induced by IFN- α , demonstrating that protein synthesis *de novo* is not required for this induction.

Since LPS is known to stimulate many other cytokines besides IFN- α in vivo, the specificity of the elevation of XD message by IFN- α was examined. Animals were treated with two cytokines known to be induced by LPS in vivo, i.e. tumour necrosis factor and interleukin-1. Fig. 6(b) demonstrates that neither interleukin-1 nor tumour necrosis factor is capable of inducing XD mRNA in conditions where poly(I)-poly(C) is effective. Furthermore, the induction by LPS is effective only in the LPS-sensitive mouse strain (C3H/HeN), whereas poly(I)-poly(C) induces XD mRNA accumulation regardless of the sensitivity of the mouse strain to LPS (Fig. 6c).

The transcriptional activation of the XD gene by poly(I) \cdot poly(C) was tested in various tissues. As shown in Fig. 7, in basal conditions the concentration of XD mRNA is very low in all the tissues studied (the XD mRNA band is visible in liver and intestine only after longer exposures of the autoradiograms). The induction of XD transcript is observed not only in liver but in all other tissues tested so far. Except for spleen and brain, high

Mouse xanthine dehydrogenase mRNA: regulation by interferons

(a) The induction of XD mRNA by IFN and its inducers was tested after 12 h of treatment in vivo. Total RNA (20 µg per lane) was extracted from livers of two mice treated with saline (C), IFN- α (IFN, 1.5×10^5 units/kg body wt.), poly(I) · poly(C) (10 mg/kg body wt.), LPS (2 mg/kg body wt.) or Tilorone (75 mg/kg body wt.) as indicated. In the case of IFN- α , the effect of cycloheximide pretreatment (CHX, 150 mg/kg body wt. administered 30 min before IFN- α or saline) on XD mRNA induction was also tested. Each lane represents the result from a single animal. Filters were sequentially hybridized to XD and actin cDNAs. (b) The effects of tumour necrosis factor (TNF, 30 µg/kg body wt.) and interleukin-1 (IL-1, 30 μ g/kg body wt.) on XD mRNA concentrations were tested after 12 h of treatment in vivo. Poly(I) · poly(C) (10 mg/kg body wt.) was included as a positive control for XD mRNA induction. Total RNA (20 μ g per lane) was extracted from mouse liver of control (C) or treated animals as indicated. The filter was sequentially hybridized to XD and actin cDNAs. Each lane represents the result obtained from a single animal. (c) The effect of LPS was tested in endotoxin-sensitive (C3H/HeN) and -insensitive (C3H/HeJ) mice. Poly(I) · poly(C) was included as a positive control for XD mRNA induction. Total RNA was extracted 12 h after the treatment of the animals with saline (Control), LPS (2 mg/kg body wt.) or poly(I) poly(C) (10 mg/kg body wt.). The filters were sequentially hybridized with XD and actin cDNAs.

Fig. 7. Induction of XD mRNA by poly(I) · poly(C) in various mouse tissues

levels of accumulation of the XD mRNA after $poly(I) \cdot poly(C)$ treatment are detected in all the other tissues.

This specific induction places XD among a few genes whose products have a known enzymic and functional activity that are responsive to IFN treatment in vivo (Staheli, 1990). The kinetics of induction as well as the fact that protein synthesis de novo is not required for the induction is consistent with the hypothesis that this gene is a primary target of the programmed response of the mammalian cells to IFNs. It is yet to be established, however, whether increased XD gene expression is the result of a transcriptional phenomenon and whether the gene itself contains the consensus sequence known to be generally present in the genes that are responsive to treatment with IFNs (Levy et al., 1988). The results presented in this study were obtained with type 1 recombinant IFN- α , but induction of XD mRNA is also achieved by type II IFN (M. Terao, G. Cazzaniga, P. Ghezzi, M. Bianchi, F. Falciani, P. Perani & E. Garattini, unpublished work). Since type I and type II IFNs act through different receptors, it would be interesting to know whether induction of XD mRNA by the two types of IFNs requires the same or different intracellular signals.

The induction of XD transcript is not limited to the liver but is observed in all the tissues so far tested, suggesting that the induction of XD mRNA is independent of the cell context on which IFN is acting. However, the cell population(s) involved in XD mRNA induction in the various tissues is still unknown.

As to the role of the XD/XO system in the pathophysiological events triggered by treatments of the animals with IFNs in vivo, the involvement of XO in some of the toxic effects mediated by this cytokine are suggested by a series of reports (Ghezzi et al., 1984, 1985; Mannering et al., 1988). IFN-α depresses cytochrome P-450 and induces XO in the liver. The depression of cytochrome P-450 is inhibited by pretreatment of the animals with allopurinol (a specific inhibitor of XO and XD) and by oxygen-radical scavengers such as N-acetylcysteine (Ghezzi et al., 1985). These data suggest XO and O₂⁻ anions derived from its activity as the mediators of this toxic effect. A key question is represented by the role of the XD/XO system in other biological effects produced by IFNs. It is possible that the increased concentration of XD mRNA is a secondary and incidental event resulting from an alteration in the intracellular purine pool, caused by IFNs. However, it is also possible that the increased production of superoxides derived from the XO system might be related to the antiproliferative or antiviral activity of IFNs. Cloning of the mouse XD cDNA along with the development of a suitable cellculture system should be extremely helpful in answering these questions.

We are grateful to Mr. Flavio Passerini for the synthesis of oligonucleotides and to Dr. Mario Salmona for critical reading of the manuscript. This work was supported partly by grants from the Consiglio Nazionale delle Ricerche 'Progetto Finalizzato Chimica Fine' and 'Progetto Finalizzato Ingegneria Genetica' Contract no. 91.00060.PF99, and by Mrs. Gigina Necchi Campiglio and Ms. Nedda Necchi.

REFERENCES

- Amaya, Y., Yamazaki, K., Sato, M., Noda, K., Nishino, T. & Nishino, T. (1990) J. Biol. Chem. 265, 14170–14175
- Bender, W., Spierer, P. & Hogness, D. S. (1983) J. Mol. Biol. 168, 17-33
- Bindoli, A., Valente, M. & Cavallini, L. (1985) Pharm. Res. Commun. 17, 831-839
- Bindoli, A., Cavallini, L., Rigobello, M. P., Coassim, M. & Lisa, F. D. (1988) Free Radical Biol. Med. 4, 163–167
- Birnstiel, M. L., Busslinger, M. & Strub, K. (1985) Cell 41, 349-359
- Bradford, M. M. (1976) Anal. Biochem. 72, 248-254
- Brass, C. A., Narciso, J. & Gollan, J, L. (1991) J. Clin. Invest. 87, 424-431
- Carpani, G., Racchi, M., Ghezzi, P., Terao, M. & Garattini, E. (1990) Arch. Biochem. Biophys. 279, 237-241
- de Groot, H. & Littauer, A. (1988) Biochem. Biophys. Res. Commun. 155, 278-282
- Della Corte, E. & Stirpe, F. (1968) Biochem. J. 108, 349-351
- Della Corte, E. & Stirpe, F. (1972) Biochem. J. 126, 739-745
- Deloria, L., Abbott, V., Gooderham, N. & Mannering, G. J. (1985) Biochem. Biophys. Res. Commun. 131, 109-114
- Dixon, M. & Webb, E. C. (1964) Enzymes, 2nd edn., pp. 203-204, Academic Press, New York
- Elsayed, N. M. & Tierney, D. F. (1989) Arch. Biochem. Biophys. 273, 281-286
- Engerson, T. D., McKelvey, T. G., Rhyne, D. B., Boggio, E. B., Snyder, S. J. & Jones, H. P. (1987) J. Clin. Invest. 79, 1564–1570
- Feinberg, A. P. & Vogelstein, B. (1983) Anal. Biochem. 132, 6-13
- Fridovich, I. (1970) J. Biol. Chem. 245, 4053-4057
- Ghezzi, P., Bianchi, M., Mantovani, A., Spreafico, F. & Salmona, M. (1984) Biochem. Biophys. Res. Commun. 119, 144-149
- Ghezzi, P., Bianchi, M., Gianera, L., Landolfo, S. & Salmona, M. (1985) Cancer Res. 45, 3444-3447
- Gilbert, D. A. & Bergel, F. (1964) Biochem. J. 90, 350-353
- Granger, D. N., Rutili, G. & McCord, J. M. (1981) Gastroenterology 81, 22-29
- Guest, J. R. & Rice, D. W. (1984) in Flavins and Flavoproteins (Bray, R. C., Engel, P. C. & Mayhew, S. G., eds.), pp. 111-124, Walter de Gruyter, Berlin

Received 12 June 1991/16 September 1991; accepted 1 October 1991

- Huynh, T. V., Young, R. A. & Davis, R. W. (1985) in DNA Cloning: A Practical Approach (Glover, D. M., ed.), vol. 1, pp. 49–78, IRL Press, Oxford
- Jung, V., Jones, C., Rashidbaigi, A., Geyer, D. D., Morse, H. G., Wright, R. B. & Pestka, S. (1988) Somat. Cell. Mol. Genet. 14, 583-592
- Jung, V., Jones, C., Kumar, C. S., Stefanos, S., O'Connel, S. & Pestka, S. (1990) J. Biol. Chem. 265, 1827–1830
- Keith, T. P., Riley, M. A., Kreitman, M., Lewontin, R. C., Curtis, D. & Chovnick, A. (1987) Genetics 116, 67–73
- Krenitsky, T. A., Spector, T. & Hall, W. W. (1986) Arch. Biochem. Biophys. 247, 108-119
- Lee, C. S., Curtis, D., McCarron, M., Love, C., Gray, M., Bender, W. & Chambers, G. (1987) Genetics 116, 55-66
- Levy, D. E., Kessler, D. S., Pine, R., Reich, N. & Darnell, J. E., Jr. (1988) Genes Dev. 2, 383-393
- Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor
- Mannering, G. J., Deloria, L. B. & Abbott, V. (1988) Cancer Res. 48, 2107-2112
- McCord, J. M. (1985) N. Engl. J. Med. 312, 159-163
- Minty, A. J., Caravatti, M., Robert, B., Cohen, A., Daubas, P., Weydert, A., Gros, F. & Buckingham, M. E. (1981) J. Biol. Chem. 256, 1008-1014
- Nishino, T. & Nishino, T. (1989) J. Biol. Chem. 264, 5468-5473
- O'Brien, A. D., Metcalf, E. S. & Rosenstreich, D. L. (1982) Cell Immunol. 67, 325-333
- Oda, T., Hamamoto, T., Suzuki, F., Hirano, T. & Maeda, H. (1989) Science 244, 974–976
- Parks, D. A. & Granger, D. N. (1983) Am. J. Physiol. 245, G285-G289
- Rehberg, E., Kelder, B., Hoal, E. G. & Pestka, S. (1982) J. Biol. Chem.
- 257, 11497-11502 Reiners, J. J., Pence, B. C., Barcus, M. C. S. & Cantu, A. R. (1987) Cancer Res. 47, 1775-1779
- Renton, K. W., Singh, G. & Stebbing, N. (1984) Biochem. Pharmacol. 33, 3899-3902
- Roy, R. S. & McCord, J. M. (1982) Can. J. Physiol. Pharmacol. 60, 1346-1352
- Sanger, F., Nicklen, S. & Coulsen, A. R. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467
- Staheli, P. (1990) Adv. Virus Res. 38, 146-200

•

- Stirpe, F. & Della Corte, E. (1969) J. Biol. Chem. 244, 3855-3863
- Suleiman, S. A. & Stevens, J. B. (1985) Arch. Biochem. Biophys. 258, 219-225
- Taylor, M. D., Mellert, T. K., Parmentier, J. L. & Eddy, L. J. (1980) Brain Res. 347, 268-273
- Terada, L. S., Rubinstein, J. D., Lesnefsky, E. J., Horwitz, L. D., Leff, J. A. & Repine, J. E. (1991) Am. J. Physiol. 260, H805–H810
- Wickens, M. & Stephenson, P. (1984) Science 226, 1045-1051
- Wierenga, R. K., De Maeyer, M. C. H. & Hol, W. G. J. (1985) Biochemistry 24, 1346–1357
- Williams, C. H., Jr., Arscott, L. D. & Swenson, R. P. (1984) in Flavins and Flavoproteins (Bray, R. C., Engel, P. C. & Mayhew, S. G., eds.), pp. 95–109, Walter de Gruyter, Berlin
- Wood, W. I., Critschier, U., Lasky, L. A. & Lawn, R. M. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1585–1588