Skip to main content
. 2024 Jul 26;14:1425837. doi: 10.3389/fonc.2024.1425837

Table 3.

Each evaluation index of Cli_Pat_Rad_PETCT model in five machine learning algorithms.

Model name AUC 95% CI Accuracy Sensitivity Specificity PPV NPV
SVM 0.923 0.8704–0.9762 0.894 1.000 0.787 0.825 1.000 Train
SVM 0.857 0.7473–0.9664 0.896 1.000 0.826 0.828 1.000 Test
KNN 0.905 0.8504–0.9603 0.830 0.894 0.766 0.792 0.878 Train
KNN 0.724 0.6762–0.8723 0.792 1.000 0.636 0.706 0.878 Test
LR 0.828 0.7442–0.9131 0.787 0.830 0.745 0.765 0.814 Train
LR 0.807 0.6711–0.9420 0.833 0.958 0.708 0.767 0.944 Test
LightGBM 0.875 0.8062–0.9443 0.819 0.830 0.809 0.812 0.826 Train
LightGBM 0.801 0.6673–0.9354 0.833 0.833 0.870 0.833 0.833 Test
NaiveBayes 0.807 0.7223–0.8934 0.766 0.809 0.723 0.745 0.826 Train
NaiveBayes 0.776 0.6312–0.9213 0.833 0.792 0.875 0.864 0.833 Test

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; SVM, support vector machine; KNN, K-nearest neighbors; LR logistic regression; LightGBM, light gradient boosting machine.