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Abstract
Aims: Schizophrenia is characterized by alterations in resting- state spontaneous brain 
activity; however, it remains uncertain whether variations at diverse spatial scales are 
capable	of	effectively	distinguishing	patients	from	healthy	controls.	Additionally,	the	
genetic underpinnings of these alterations remain poorly elucidated. We aimed to ad-
dress these questions in this study to gain better understanding of brain alterations 
and their underlying genetic factors in schizophrenia.
Methods: A	cohort	of	103	individuals	with	diagnosed	schizophrenia	and	110	healthy	
controls underwent resting- state functional MRI scans. Spontaneous brain activity 
was	 assessed	 using	 the	 regional	 homogeneity	 (ReHo)	metric	 at	 four	 spatial	 scales:	
voxel-	level	(Scale	1)	and	regional-	level	(Scales	2–4:	272,	53,	17	regions,	respectively).	
For each spatial scale, multivariate pattern analysis was performed to classify schizo-
phrenia patients from healthy controls, and a transcriptome- neuroimaging association 
analysis was performed to establish connections between gene expression data and 
ReHo alterations in schizophrenia.
Results: The ReHo metrics at all spatial scales effectively discriminated schizophrenia 
from	healthy	controls.	Scale	2	showed	the	highest	classification	accuracy	at	84.6%,	
followed	by	Scale	1	(83.1%)	and	Scale	3	(78.5%),	while	Scale	4	exhibited	the	lowest	
accuracy	(74.2%).	Furthermore,	the	transcriptome-	neuroimaging	association	analysis	
showed that there were not only shared but also unique enriched biological processes 
across the four spatial scales. These related biological processes were mainly linked 
to immune responses, inflammation, synaptic signaling, ion channels, cellular develop-
ment, myelination, and transporter activity.
Conclusions: This study highlights the potential of multi- scale ReHo as a valuable neu-
roimaging biomarker in the diagnosis of schizophrenia. By elucidating the complex 
molecular basis underlying the ReHo alterations of this disorder, this study not only 
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1  |  INTRODUC TION

Schizophrenia is a chronic, heterogeneous, devastating mental dis-
order characterized by symptoms such as delusions, hallucinations, 
reduced emotional expression, diminished motivation, and cognitive 
impairments.1,2	It	affects	approximately	1%	of	the	global	population	
and places a significant burden on healthcare systems worldwide.3 
Moreover, individuals with schizophrenia experience a decreased 
life expectancy, with reports indicating that the average lifespan 
of	 some	 individuals	 with	 schizophrenia	 is	 approximately	 15 years	
shorter than that of the general population.4 Currently, the diagnosis 
of schizophrenia relies solely on clinical evaluation which can be in-
fluenced by subjective judgment and thus results in lower diagnostic 
reliability.5 Hence, the discovery of distinct biomarkers for precise 
schizophrenia diagnosis is crucial.

Over the last decade, resting- state functional magnetic reso-
nance	imaging	(fMRI)	has	emerged	as	a	promising	avenue	to	inves-
tigate the neurobiological underpinnings of schizophrenia. Regional 
homogeneity	 (ReHo),	 a	 metric	 reflecting	 local	 synchronization	 of	
spontaneous neural activity,6 is widely recognized as a robust bio-
marker for psychosis,7 providing invaluable insights into regional 
temporal synchronization within the brain.8 Reduced ReHo in 
resting- state studies indicates a disruption in local synchrony within 
spontaneous neuronal activity, emphasizing its role as a fundamen-
tal neuropathological hallmark of schizophrenia.9- 12 Current studies 
on ReHo in schizophrenia primarily concentrate on voxel- level spa-
tial scales, representing a fine- grained, local view.9- 12 This approach, 
while informative, introduces higher levels of signal noise, poten-
tially adversely impacting classification accuracy.13 Concurrently, a 
few studies have also attempted to investigate the classification ac-
curacy of schizophrenia at the region level using ReHo with different 
brain parcellation schemes.14,15	As	spatial	scales	expand,	larger	vox-
els	can	enhance	the	signal	noise	ratio	(SNR)	while	potentially	losing	
some information. Various spatial scales contain varying amounts 
of information, influenced by the trade- off between information 
loss and SNR improvement. Consequently, an important and often 
overlooked question remains: at what spatial scales do neural activ-
ity patterns in individuals with schizophrenia diverge from those in 
healthy subjects? Does discriminability vary across these different 
spatial scales, and which specific scale offers the highest efficacy for 
classifying schizophrenia?

Schizophrenia exhibits an estimated heritability of approx-
imately	 80%,	 highlighting	 the	 substantial	 genetic	 influence	on	 the	
disorder.16-	18 Extensive research has uncovered numerous genetic 

risk factors associated with schizophrenia, although the exact mech-
anisms behind the disease remain intricate and multifaceted, em-
phasizing the significant role of genetic factors in schizophrenia.19,20 
Nonetheless, the genetic mechanisms behind ReHo differences in 
schizophrenia remain largely unclear, and conventional genome- 
wide association studies cannot identify the associated genetic vari-
ants.	With	the	advancement	of	the	Allen	Human	Brain	Atlas	(AHBA,	
http:// human. brain -  map. org),21,22 transcriptome- neuroimaging 
association analysis has the potential to reveal the molecular basis 
of neuroimaging changes.23-	25 However, to date, no transcriptome- 
neuroimaging association study has been conducted to identify 
genes associated with ReHo alterations in schizophrenia, let alone 
across different spatial scales. Conducting such research is crucial, 
as it significantly enhances our comprehension of the molecular 
foundations of schizophrenia.

Building on prior research, the primary objectives of our pres-
ent study can be summarized in two aspects. First, our aim was to 
distinguish individuals with schizophrenia from healthy subjects 
by utilizing the ReHo metric across various spatial scales, including 
voxel- level and three region- level scales. Second, a transcriptome- 
neuroimaging association analysis was conducted to link transcrip-
tome	data	from	the	AHBA	database	with	the	observed	case–control	
ReHo changes in schizophrenia.

2  |  MATERIAL S AND METHODS

2.1  |  Participants

The study received approval from the Ethics Committee of Tianjin 
Medical University General Hospital, and all subjects provided 
written	 informed	 consent	 before	 participating.	 A	 total	 of	 103	
patients with schizophrenia were recruited from Tianjin Medical 
University General Hospital. The diagnosis of schizophrenia was 
established through the consensus of two psychiatrists employing 
the	 Structured	 Clinical	 Interview	 for	 the	DSM-	IV	 (SCID,	 patient	
edition).	To	assess	the	severity	of	clinical	symptoms,	the	Positive	
and	Negative	Symptom	Scale	(PANSS)	was	utilized.	Exclusion	crite-
ria involved the following: the presence of MRI contraindications, 
an inability to undergo MRI examinations, systemic medical condi-
tions	(such	as	cardiovascular	disease,	diabetes	mellitus,	cognitive	
impairment,	 cerebral	 stroke,	 hemorrhage,	 epilepsy,	 and	 tumors),	
congenital cerebral structural abnormalities, a history of head 
trauma,	 central	 nervous	 system	 (CNS)	 disorders,	 or	 substance	
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enhances our understanding of its pathophysiology, but also pave the way for future 
advancements in genetic diagnosis and treatment of schizophrenia.
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abuse. In addition, a group of 110 age-  and gender- matched 
healthy	 controls	 (HCs)	 was	 recruited	 from	 nearby	 communities	
and assessed using the SCID non- patient version to ensure an ab-
sence of any psychiatric disorder history. None of these healthy 
control participants had a history of psychotic episodes in their 
first- degree relatives.

2.2  |  Methodology overview

The framework, as shown in Figure 1, consists of two main compo-
nents:	(1)	classification	analysis	and	(2)	transcriptome-	neuroimaging	
association analysis. In the first part, a multivariate pattern analysis 
(MVPA)26 was conducted to distinguish individuals with schizophre-
nia from HCs using the ReHo metric at various spatial scales, includ-
ing	voxel-	level,	272	regions,	53	regions,	and	17	regions.	In	the	second	
part, ReHo difference maps between individuals with schizophrenia 
and HCs at each spatial scale were generated through two- sample t- 
tests.	Subsequently,	gene	expression	data	from	the	AHBA	database	
were obtained, and a weighted gene co- expression network analysis 
(WGCNA)	was	performed	to	investigate	the	relationships	between	
ReHo difference maps and gene expression data. Finally, Toppogene 
(https:// toppg ene. cchmc. org/ )	was	 utilized	 to	 conduct	 enrichment	
analysis for genes correlated with ReHo difference maps in schizo-
phrenia at each spatial scale.

2.3  |  Imaging data acquisition and preprocessing

A	3.0-	T	MR	system	(Discovery	MR750,	General	Electric,	Milwaukee,	
WI,	USA)	was	used	for	acquiring	high-	resolution	3D	T1-	weighted	and	
resting- state fMRI data. Foam padding was employed to minimize 
head movement, and earplugs were utilized to reduce the noise gen-
erated by the scanner. Throughout the data acquisition, participants 
were instructed to maintain stillness and avoid any motion. Sagittal 
3D	 T1-	weighted	 images	 were	 acquired	 using	 a	 BRAVO	 sequence	
with	 the	 following	 parameters:	 repetition	 time	 (TR) = 8.2 ms,	 echo	
time	(TE) = 3.2 ms,	inversion	time	(TI) = 450 ms,	flip	angle	(FA) = 12°,	
field	of	view	(FOV) = 256 mm × 256 mm,	matrix	size = 256 × 256,	slice	
thickness = 1 mm	with	no	gap,	and	188	sagittal	slices.	Resting-	state	
fMRI data were obtained through a gradient- echo single- shot echo 
planar	 imaging	(GRE-	SS-	EPI)	sequence	with	the	parameters	below:	
TR = 2000 ms,	TE = 45 ms,	FOV = 220 mm × 220 mm,	FA = 90°,	matrix	
size = 64 × 64,	 slice	 thickness = 4 mm	 with	 a	 0.5 mm	 gap,	 32	 inter-
leaved	transverse	slices,	and	a	total	of	180	volumes.

The resting- state fMRI data were preprocessed using the Data 
Processing	 Assistant	 for	 Resting-	State	 fMRI	 (DPARSF)	 toolbox,27 
which	 relies	on	Statistical	Parametric	Mapping	12	 (SPM12,	http:// 
www. fil. ion. ucl. ac. uk/ spm12 ).	 Initially,	 the	 first	 10	 volumes	 from	
each participant were excluded to ensure signal equilibrium. The 
remaining volumes underwent correction for time differences be-
tween slices and head motion, with participants exceeding a maxi-
mum	displacement	of	2.0 mm	or	a	maximum	rotation	of	2.0	degrees	

being excluded from subsequent analyses. Nuisance covariates, in-
cluding linear drift, Friston- 24 head motion parameters, global brain 
signal, white matter signal, cerebrospinal fluid signal, and volumes 
affected	 by	 movement	 (defined	 as	 framewise	 displacement	 [FD]	
exceeding	 0.5 mm28),	 were	 regressed	 out.	 To	 normalize	 the	 func-
tional images, each participant's individual structural image was 
co- registered with the mean functional image. The transformed 
structural images were then segmented into gray matter, white mat-
ter, and cerebrospinal fluid. Using these segmented images, the nor-
malization parameters from individual native space to the Montreal 
Neurological	 Institute	 (MNI)	 space	 were	 estimated,	 based	 on	 the	
Diffeomorphic	Anatomical	Registration	Through	Exponentiated	Lie	
algebra	 (DARTEL)	 algorithm.29	 Afterwards,	 the	 motion-	corrected	
functional imaging data were normalized to MNI space based on 
these parameters and resampled to 3- mm cubic voxels. Finally, a 
temporal	bandpass	 filter	 (0.01–0.08 Hz)	was	applied	 to	 reduce	 the	
impact of low- frequency drift and high- frequency noise.

The ReHo metric was computed following prior studies6,30: 
Kendall's	coefficient	of	concordance	(KCC)	was	employed	to	calcu-
late ReHo for a given voxel using the time series of that voxel and its 
26 nearest neighbors. The resulting KCC value was then assigned to 
the original voxel, and this procedure was repeated for all other vox-
els, generating individual ReHo maps. For the purpose of standard-
ization, the ReHo value for each voxel was z- score standardized by 
subtracting the global mean and dividing by the standard deviation 
of all ReHo values.

To investigate the impact of global mean signal on the results, we 
also compared the results between with and without global mean 
signal regression.

2.4  |  Spatial scale definition

In the present study, a hierarchical approach was employed to de-
fine four distinct brain parcellation scales using brain atlases based 
on anatomical features of the brain. First, Scale 1 was defined at 
the	voxel	level,	encompassing	a	total	of	67,541	voxels	(Gray	mat-
ter	voxels).	Afterwards,	the	entire	brain	was	partitioned	into	246	
cerebral	regions	using	the	Human	Brainnetome	Atlas	(http:// atlas. 
brain netome. org),31 in addition to 26 cerebellum regions based on 
the	anatomical	automatic	 labeling	(AAL)	atlas.32 This partitioning 
was	designated	as	Scale	2,	encompassing	a	 total	of	272	 regions.	
Building upon Scale 2, smaller regions were merged into larger 
ones based on their anatomical associations, resulting in the crea-
tion	of	Scale	3	(consisting	of	53	regions)	and	Scale	4	(comprising	17	
regions).	For	 instance,	within	Scale	2,	seven	separate	subregions	
existed within the left superior frontal gyrus. When merging Scale 
2 into Scale 3 and further into Scale 4, for the Human Brainnetome 
Atlas	template,	the	merging	principle	is	based	on	the	original	sub-
divisions	of	 the	Human	Brainnetome	Atlas.31 For example, these 
subregions were merged into a single region named the ‘left supe-
rior frontal gyrus’ in Scale 3, and this ‘left superior frontal gyrus’ 
region was further combined with the other six regions in the left 
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F I G U R E  1 The	flowchart	of	the	spatial-	scale	analysis	to	acquire	the	information	of	classifying	schizophrenia	from	HCs	and	to	characterize	
the involved gene expression profiles correlated with ReHo difference in schizophrenia at each spatial scale.
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frontal lobe to form a unified region known as the ‘left frontal 
lobe’ in Scale 4. For the 26 cerebellum regions merging method, 
the merging principle is based on the original subdivisions of the 
cerebellum	of	AAL	template.	For	a	detailed	explanation	of	Scales	3	
and 4, please refer to Table S1.

2.5  |  Classification analysis

To	 distinguish	 between	 schizophrenia	 patients	 and	 HCs,	 MVPA	
analysis was conducted, a technique capable of uncovering subtle 
spatial discriminative patterns and effectively exploring complex, 
high- dimensional neuroimaging data.26,33,34 Utilizing these four 
spatial scales, ReHo metrics were obtained at both the voxel level 
and	 region	 level	 (i.e.,	mean	ReHo	value	within	each	 region).	The	
ReHo metric at each scale was employed as classification features. 
To enhance computational efficiency and classification perfor-
mance by reducing the number of features, the F- score method 
was applied for feature selection. The F- score of a feature was de-
rived from an F test performed between the patients and the HCs 
of the training data and thus quantified its discriminative power 
between the two groups.26,35 The features were ranked from high 
to low according to their F scores and then the features with top 
F- scores were selected using a series of thresholds. Specifically, 
10	sets	of	 features	 (ranging	 from	1%	 to	100%	of	 the	 total	num-
ber	of	 features,	with	 the	 step	 size	of	1%)	were	 selected	 to	 train	
the SVMs, resulting in 10 trained models. Subsequently, we tested 
these 10 models using the test set and the results of the model 
with the best performance were reported. During training, the 
SVM kernel parameters was optimized using a cross- validation 
framework	 and	 was	 independent	 of	 the	 test	 data.	 Additionally,	
nu-	SVC	and	C-	SVC,	with	various	kernel	functions	(including	linear,	
polynomial,	and	radial	basis	function)	were	trained	and	tested	as	
the	classifier,	 and	 the	kernel	parameters	 (the	penalty	coefficient	
C	or	 nu)	were	optimized	using	 a	 grid	 search	based	on	 the	 train-
ing dataset: the penalty coefficient C varied from 1 to 100 with a 
step	size	of	5,	and	the	parameter	nu	varied	from	0.2	to	0.7	with	a	
step	size	of	0.1.	Therefore,	 two	types	of	penalty	parameters	 (20	
values	for	parameter	C	and	six	values	for	parameter	nu)	and	three	
types of kernels were searched during the grid search procedure. 
Our assessment of the classifier's performance involved a 10- fold 
cross- validation approach,36,37 where the dataset was divided into 
10 subsets according to the subjects' ID. In each iteration, nine 
of these subsets were selected for training, while the remaining 
subset was used for testing. This process was repeated 10 times, 
with each subset taking a turn as the test set in separate itera-
tions. Classification accuracy served as the measure of the clas-
sifier's performance. Subsequently, the statistical significance of 
classification accuracies was assessed using a nonparametric per-
mutation test, wherein patient and control labels were randomly 
reassigned, and the same feature selection and classification pro-
cedures mentioned above were applied to generate chance- level 
classification	 accuracy.	 This	 entire	 process	 was	 repeated	 5000	

times to establish a null distribution based on these chance- level 
classification	 accuracies.	 A	 classification	 result	 was	 considered	
significant if the actual accuracy, without permutations, was ex-
ceeded	by	fewer	than	5%	of	all	permutations,	 indicating	that	the	
classification accuracy was unlikely to occur by chance. The entire 
MVPA	analysis	was	implemented	using	the	MVPANI	package.26

We further identified the features contributing to the classi-
fications at Scale 1 and Scale 2 according to feature weights: the 
features	with	top	20%	absolute	weight	values	among	the	features	
selected across all 10 cross- validation steps were considered to 
make important contributions to the classifications. Note that, this 
analysis was only performed for Scale 1 and Scale 2 because the 
support vector machines with non- linear kernels were used for Scale 
3 and Scale 4 and thus feature weights indicating contributions to 
classifications could not be derived for Scale 3 and Scale 4. The cor-
relations between the ReHo values of these identified important 
features	and	each	of	the	PANSS	scores	(total,	positive,	negative,	and	
general	scores)	were	explored	using	the	Pearson's	correlation	analy-
sis	(false	discovery	rate	[FDR]-	corrected	p < 0.05).

2.6  |  Transcriptome- neuroimaging association 
analysis

Publicly available, normalized microarray expression data from the 
AHBA	database	were	acquired.38	Among	the	six	donors,	only	two	
had expression data available for both hemispheres, while the re-
maining four donors had data for the left hemisphere. Therefore, 
our analysis focused exclusively on the left hemisphere of these 
six	 donors.	 A	 processing	 pipeline,	 whose	 code	 is	 available	 on	
GitHub	 (https://	github.	com/	BMHLab/	AHBAp	roces	sing)	 with	 de-
tailed parameter configurations listed in Table S2, was employed 
to link whole- brain gene expression profiles to neuroimaging 
data.24 Initially, probes were reassigned to genes using the latest 
National	Center	 for	Biotechnology	 Information	 (NCBI)	database.	
Then, probes with expression intensities below the background 
signal	 in	 over	 50%	 of	 samples	 were	 excluded.	 Afterwards,	 the	
genes	 that	 have	 no	 corresponding	 RNA-	seq	 measures	 were	 re-
moved. Following this, the probes that had low correlations with 
RNA-	seq	data	(Spearman	rho	<0.2)	were	excluded.	Finally,	a	rep-
resentative probe for a gene based on the highest correlation to 
RNA-	seq	gene	expression	data	in	corresponding	samples	was	se-
lected.	Differential	stability	(DS),	a	correlation-	based	metric,	was	
applied to assess the reliability of expression patterns in differ-
entially expressed genes across brain structures in the six donor 
brains.39 Genes were ranked based on their DS values, and the top 
half of high- DS genes were selected for correlation analysis with 
neuroimaging data. With this pipeline, a gene expression matrix 
for	Scale	1	was	obtained,	with	dimensions	of	5093	genes × 1782	
samples. When performing the transcriptome- neuroimaging asso-
ciation	analysis	 in	region-	level	Scales	2–4,	the	allocation	of	sam-
ples to specific regions within the respective parcellation schemes 
was determined based on the closest Euclidean distance, and the 

https://github.com/BMHLab/AHBAprocessing
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expression values of all samples within each region were averaged, 
providing the expression levels for each brain region. The dimen-
sions of expression matrices for Scale 2, Scale 3, and Scale 4 were 
5093	 genes × 138	 regions,	 5093	 genes × 27	 regions,	 and	 5093	
genes × 9	regions,	respectively.

WGCNA,	a	powerful	bioinformatics	method	extensively	used	
in genomics and systems biology, was utilized to categorize genes 
into network modules and reveal biologically significant insights.40 
At	each	chosen	spatial	scale,	a	signed	network	is	established	using	
the	gene × sample/region	expression	matrix,	wherein	the	strength	
of co- expression relationships is determined through a soft 
thresholding technique. Next, hierarchical clustering is employed 
to identify modules consisting of co- expressed genes. The expres-
sion	pattern	for	each	module,	represented	as	a	matrix	(number	of	
samples × number	 of	 genes	 within	 the	 module),	 is	 subsequently	
condensed into its first principal component, known as the mod-
ule	 eigengene	 (ME).	 This	ME	 is	 represented	 as	 a	 vector	with	di-
mensions	of	number	of	 samples × 1,	 providing	 a	 summary	of	 the	
module's overall expression profile.

ReHo difference maps were generated by comparing schizophre-
nia	patients	with	HCs	at	both	the	voxel	level	(Scale	1)	and	regional	
level	 (Scales	2–4)	using	 two-	sample	 t- tests or non- parametric test 
according to whether the corresponding ReHo data were normally 
distributed, while controlling for age and gender as nuisance covari-
ates.	Kolmogorov–Smirnov	tests	were	employed	to	test	the	normal-
ity	of	ReHo	values	at	regional	level	(Scales	2–4).	For	the	comparisons	
of	ReHo	values	at	voxel	level	(Scale	1),	the	standard	procedure	using	
the two- sample t- tests was performed using the software package 
SPM12.41- 43 Furthermore, a transcriptome- neuroimaging associa-
tion analysis was carried out to explore the relationship between 
transcriptional profiles and ReHo differences. Specifically, at Scale 1, 
a sample- level spatial correlation analysis was performed, where the 
mean t-	value	within	a	6 mm	sphere	centered	on	each	tissue	sample	
was	extracted	from	the	uncorrected	case–control	ReHo	difference	
map	 and	 correlated	with	 each	ME.	At	 Scales	 2–3,	 a	 regional	 level	
spatial correlation analysis was performed, involving the calculation 
of the mean t- value within each region from the ReHo difference 
map and its correlation with each ME. Notably, the spatial correla-
tion analysis was separately conducted for subcortical and cortical 
samples due to significant differences in gene expression profiles 
between these regions.38	At	Scale	4,	a	total	of	nine	sampling	points	
were extracted from the left hemisphere to construct expression 
matrices, which was insufficient to meet the sample size recom-
mended	by	 the	WGCNA	website	 (at	 least	15	 samples).	 Therefore,	
WGCNA	analysis	was	not	conducted	at	Scale	4	to	ensure	the	reliabil-
ity of the study findings.

2.7  |  Enrichment analysis

The genes within significant modules were aggregated at each 
scale,	 and	 enrichment	 analysis	 related	 to	 gene	ontology	 (GO)	was	
performed	on	these	genes	using	the	Toppogene	(https:// toppg ene. 

cchmc. org/ )	 to	 identify	significant	enrichments.	 In	 this	analysis,	all	
enrichment analyses were corrected by BH- FDR p < 0.05.

3  |  RESULTS

3.1  |  Demographic and clinical characteristics of 
participants

The demographics and clinical characteristics of the patients with 
schizophrenia are presented in Table 1.	A	total	of	213	right-	handed	
participants were recruited for this study, which included 103 pa-
tients with schizophrenia. The mean age for the patients with schizo-
phrenia	was	33.9 years	(±9.6),	and	the	group	consisted	of	49	females	
and	54	males.	Additionally,	 110	healthy	 controls	were	 included	 in	
the	study,	with	a	mean	age	of	33.7 years	(±11.0),	and	the	group	com-
prised	65	 females	 and	45	males.	 There	were	no	 significant	differ-
ences in age and gender distribution between the two groups, and 
no participants were excluded from the study due to excessive head 
motion.

3.2  |  Classification analysis utilizing ReHo metric 
across four spatial scales

The classification accuracies of the ReHo metric for distinguishing 
schizophrenia from HCs across four spatial scales are presented in 
Figure S1. Our findings revealed that the accuracy of ReHo classifi-
cation	increased	from	83.1%	at	Scale	1%–84.6%	at	Scale	2.	However,	
this	 accuracy	 gradually	 decreased	 from	78.5%	 at	 Scale	 3%–74.2%	
at Scale 4, as the spatial scale expanded. Importantly, all of these 
results	 significantly	 exceed	 chance	 levels	 (p < 0.001),	 highlighting	
the stability of ReHo as a neuroimaging biomarker for schizophre-
nia classification. Detailed information on the optimal parameters 

TA B L E  1 Demographic	and	clinical	characteristics	of	
participants.

Schizophrenia HCs p Value

Sample size 103 110

Illness duration 
(months)

116.6 ± 95.9 –

Age	(years) 33.9 ± 9.6 33.7 ± 11.0 0.856a

Gender	(M/F) 54/49 45/65 0.092b

Handedness	(R/L/B) 103/0/0 110/0/0

PANSS	total	score 71.1 ± 22.3 –

PANSS	positive	score 16.8 ± 7.7 –

PANSS	negative	score 20.0 ± 8.9 –

PANSS	general	score 34.3 ± 10.5 –

Abbreviations:	HCs,	healthy	controls;	PANSS,	Positive	and	Negative	
Syndrome Scale.
aTwo- sample t- test.
bChi- square test.

https://toppgene.cchmc.org/
https://toppgene.cchmc.org/


    |  7 of 14PENG et al.

obtained through grid search for achieving the highest classification 
accuracy in the four scales is shown in Table S3. The features with 
consistently	high	weights	(top	20%	absolute	weight	values)	for	Scale	
1 and Scale 2 are shown in Figure S2. The overlapping regions be-
tween Scale 1 and Scale 2 were indicated in red in Figure S2C. These 
indicated	 that	 there	were	some	consistent	 features	 (brain	 regions)	
in both Scale 1 and Scale 2, furthermore, all the consistent features 
(brain	regions)	can	be	observed	in	Scale	2.	The	detailed	information	
of brain regions were shown in Table S4.

Among	the	brain	regions	with	high	weight	(Table S4),	the	ReHo	
values	of	FuG_R_2	was	positively	correlated	with	PANSS	negative	
score	 (correlation	 coefficient = 0.32;	 p = 0.001;	 Figure S3A);	 ReHo	
values	 of	 Hipp_L_2	 was	 negatively	 correlated	 with	 PANSS	 gen-
eral	 scores	 (correlation	 coefficient = −0.29,	 p = 0.003;	 Figure S3B)	
and	 PANSS	 total	 score	 (correlation	 coefficient = −0.31,	 p = 0.002;	
Figure S3C).	No	other	significant	correlations	were	found	between	
ReHo	values	and	PANSS	scores.

The results obtained without global signal regression showed 
that the performance of the classification model was decreased 
compared with those obtained with the global signal regression 
(Tables S3	and	S5).	This	decrease	in	performance	might	be	attributed	
to the presence of global noise and non- neuronal fluctuations within 
the global mean signal, which would obscure the true neural activity 
patterns and reduce the signal- to- noise ratio.

3.3  |  Case–control difference in ReHo metric 
across four spatial scales

After	 controlling	 for	 age	 and	 sex,	 ReHo	 values	 at	 regional	 level	
(Scales	2–4)	for	HCs	and	patients	with	schizophrenia	were	normality	
distributed,	confirmed	by	Kolmogorov–Smirnov	tests	(Table S6),	and	
thus two- sample t- tests were employed to identify differences in 
ReHo between patients and HCs for each scale. The results showed 
that, compared with HCs, the patients with schizophrenia showed 
altered	 ReHo	 in	 multiple	 brain	 regions	 at	 each	 scale	 (Figure S4; 
Scale 1: p < 0.05,	FWE	corrected;	Scale	2:	p < 0.05/272 = 1.83 × 10−4; 
Scale 3: p < 0.05/54 = 9.3 × 10−4; Scale 4: p < 0.05/17 = ×0.0029; all 
Bonferroni-	corrected).

3.4  |  Transcriptome- neuroimaging association 
analysis

The expression pattern for each module was shown in Table 2.	At	
Scale	 1	 (voxel-	level),	WGCNA	 analysis	 identified	 17	 distinct	mod-
ules. Subsequent spatial correlation analysis at the sample level dem-
onstrated significant associations with 14 of these modules in both 
cortical	and	subcortical	regions	(Figure 2A).	When	examining	Scale	
2	(272	regions),	we	found	a	total	of	eight	modules.	Among	them,	five	
were significantly associated with cortical regions, while three mod-
ules	showed	significance	in	subcortical	regions	(Figure 2B).	At	Scale	
3	 (53	 regions),	 we	 identified	 seven	modules.	 Of	 these,	 four	 were	

significant in cortical regions, while none exhibited significance in 
subcortical	regions	(Figure 2C).

3.5  |  Enrichment analysis

GO enrichment analysis was performed for the genes associated 
with ReHo differences. Detailed results, including enriched biologi-
cal processes, molecular functions, and cellular components, can be 
found in Table S7.

In terms of biological processes, in Scale 1, genes were enriched 
for pathways related to innate immune response, inflammatory re-
sponse, synapse pruning, chemical synaptic transmission, inorganic 
cation transmembrane transport, cell adhesion, blood vessel devel-
opment,	gliogenesis,	neurogenesis,	and	axonogenesis	(Figure 3A).	In	
Scale 2, in addition to the pathways identified in Scale 1, genes were 
also enriched for pathways related to ion transmembrane trans-
port, cell activation/migration, and the G protein- coupled receptor 
signaling	pathway	(Figure S5B).	In	Scale	3,	genes	were	enriched	for	
pathways related to myelination, axon ensheathment/regenera-
tion,	 cell–cell	 signaling,	 neuron	 development,	 and	 signal	 release	
(Figure S6B).

For molecular functions, in Scale 1, genes in these significant 
modules were enriched for pathways related to immune receptor ac-
tivity, G protein- coupled receptor activity, voltage- gated cation chan-
nel activity, glutamate receptor binding, metal ion transmembrane 

TA B L E  2 The	number	of	genes	in	each	module.

Module
Number of 
genes Module

Number of 
genes

Scale 1

Black 153 Midnightblue 44

Blue 1163 Pink 125

Brown 427 Purple 99

Cyan 45 Red 190

Green 261 Salmon 45

Greenyellow 77 Tan 75

Gray 708 Turquoise 1202

Lightcyan 41 Yellow 330

Magenta 108 All 5093

Scale 2

Black 38 Gray 328

Blue 1251 Red 149

Brown 744 Turquoise 1877

Green 324 Yellow 382

All 5093

Scale 3

Blue 1039 Red 74

Brown 254 Turquoise 2124

Green 135 Yellow 183

Gray 1284 All 5093
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transporter activity, GTPase- activating protein binding, and tran-
scription	 regulator	 activity	 (Figure 3B).	 In	 Scale	 2,	 apart	 from	 the	
pathways identified in Scale 1, genes were also enriched for path-
ways	related	to	GABA	receptor	activity,	amino	acid	transmembrane	
transporter	activity,	and	molecular	transducer	activity	(Figure S5A).	
In Scale 3, genes were enriched for pathways related to transporter 
activity, transmembrane transporter activity, calcium ion transmem-
brane	 transporter,	 and	 estrogen	 receptor	 activity	 (Figure S6A).	 In	
terms of cellular components, in Scale 1, genes were enriched for 
pathways related to synapse, dendrite, neuron spine/projection, 
GABAergic	 synapse,	 somatodendritic	 compartment,	 and	 glutama-
tergic	synapse	 (Figure 3C).	 In	Scale	2,	 in	addition	 to	 the	pathways	
identified in Scale 1, genes were also enriched for pathways related 
to	dopaminergic	synapse,	cholinergic	synapse,	and	GABA	receptor	
complex	(Figure S5C).	In	Scale	3,	genes	were	enriched	for	pathways	
related to axon, synaptic vesicle, cell body, hippocampal mossy fiber 
to	CA3	synapse,	and	myelin	sheath	(Figure S6C).

4  |  DISCUSSION

To our knowledge, this study represents the first attempt to explore 
the diagnostic potential of multi- scale ReHo and its molecular foun-
dations in schizophrenia. Specifically, a comprehensive examination 
spanning various spatial scales, encompassing fine- grained voxel- 
level and broader region- level parcellations, is provided, thereby 
highlighting the robustness of ReHo as a reliable neuroimaging bio-
marker	 for	 schizophrenia	 classification.	 Additionally,	 an	 extensive	
transcriptome- neuroimaging association analysis is included, unveil-
ing compelling connections between multi- scale ReHo differences 
and genes associated with immune responses, receptor activities, 
and synaptic components.

A	 significant	 classification	 accuracy	 for	 schizophrenia	 was	
achieved at both fine- grained voxel- level and coarser region- level 
scales.	Scale	2,	composed	of	272	regions,	achieved	the	highest	clas-
sification	 accuracy	 at	 84.6%,	 while	 Scale	 1	 (voxel-	level)	 exhibited	
an	accuracy	of	83.1%.	Conversely,	Scale	4,	 comprising	17	 regions,	
demonstrated	the	lowest	accuracy	at	74.2%.	The	differences	in	clas-
sification accuracy among different spatial scales could be due to the 
trade-	off	between	 information	 loss	and	signal-	to-	noise	ratio	 (SNR)	
improvement. The Scale 2 exhibited the highest classification accu-
racy compared to the other scales, likely due to an optimal trade- off: 
a relatively small information loss and a considerable gain of SNR 
compared	 to	 the	 Scale	 1.	 As	 the	 spatial	 scale	 expands	 from	 272	
regions	 to	17	 regions,	 classification	 accuracy	 gradually	 decreased,	
suggesting an increasing information loss. This emphasizes that, 
with	an	increase	of	spatial	scale	(i.e.,	a	decrease	in	region	number),	

the impact of information loss becomes more prominent than the 
SNR improvement, resulting in a decreased classification accuracy. 
At	Scale	2,	brain	regions	such	as	the	bilaterally	cerebellum,	inferior	
frontal gyrus, superior temporal gyrus, inferior temporal gyrus, fu-
siform gyrus, postcentral gyrus, thalamus, and insular gyrus were 
found	 to	contribute	significantly	 to	 the	classification	 (i.e.,	 showing	
high	 weights).	 The	 structural	 or	 functional	 abnormalities	 in	 these	
brain regions have been reported in schizophrenia.44- 46 The ranges 
of classification accuracy in previous studies using ReHo were from 
72.49%	 to	90.14%.9,30,47,48 The important features contributing to 
the classifications were consistent with those of our findings.9,30 
Furthermore, our results showed that the ReHo metrics could suc-
cessfully classify the patients with schizophrenia from HCs at each 
Scale, indicating that ReHo has the potential to serve as a diagnostic 
tool in clinical settings. Considering that current schizophrenia di-
agnosis mainly relies on subjective evaluation, such objective neu-
roimaging biomarkers could complement the traditional subjective 
method and enhance the diagnosis precision.

In the transcriptome- neuroimaging association analysis, we 
found that the number of gene modules decreased with the increase 
of	the	spatial	scale:	 the	 largest	number	of	gene	modules	 (17	mod-
ules)	was	 identified	for	Scale	1	and	the	 least	 (eight	modules)	were	
identified for Scale 3. One possible reason is the information loss 
caused by merging voxels/smaller regions into larger regions from 
Scale 1 to Scale 3, and thus less biological pathways/functions could 
be identified through the transcriptome- neuroimaging association 
analysis. Similarly, Scale 1 exhibited the highest number of biologi-
cal pathways. Therefore, our findings suggest that Scale 1, with the 
highest number of biological pathways and relatively high classifica-
tion accuracy, provides the richest information. Scale 2, with gene 
modules similar to Scale 1, exhibits slightly higher classification ac-
curacy. On the other hand, Scale 3 has fewer biological pathways 
and lower classification accuracy, may be associated with its spe-
cific gene modules. Besides the number of biological pathways, the 
unique GOs in Scale 1 included the ribonucleoprotein complex, glu-
tamatergic	postsynaptic	density,	GABA-	ergic	synapse,	postsynaptic	
density membrane, parallel fiber to Purkinje cell synapse, voltage- 
gated potassium channel complex, and adherens junction, etc. The 
unique GOs in Scale 2 included dopaminergic synapse, cholinergic 
synaps,	and	GABA	receptor	complex,	and	the	unique	GOs	in	Scale	
3	included	hippocampal	mossy	fiber	to	CA3	synapse,	hippocampal	
mossy fiber, myelin sheath, and synaptic vesicle. These unique GOs 
in each scale have been reported to be involved in the etiologies 
of schizophrenia and might also cause the different classification 
accuracy.49-	57 Moreover, shared biological pathways were identi-
fied	within	Scales	1–3,	as	well	as	between	any	two	of	these	scales.	
Notably, the number of shared gene profiles between Scales 1 and 

F I G U R E  2 Pearson's	correlation	between	MEs	of	gene	modules	and	t-	statistics	values	of	case–control	ReHo	differences	in	cortical	
and	subcortical	regions	of	schizophrenia	at	Scales	1–3.	(A–C)	Showed	the	correlation	coefficients	between	MEs	of	gene	modules	and	
ReHo	differences	in	Scale	1	(voxel	level),	Scale	2	(272	cerebral	regions),	and	Scale	3	(53	regions),	respectively.	The	color	bar	represents	the	
correlation	coefficients.	At	Scale	4	(17	regions),	the	limited	number	of	cerebral	regions	prevented	the	implementation	of	WGCNA	analysis,	
leading to underpowered analysis and inaccurate network modules.



10 of 14  |     PENG et al.

F I G U R E  3 Gene	enrichment	of	
genes significantly correlated with ReHo 
alterations in schizophrenia in Scale 1. 
(A)	Significant	GO	items	of	biological	
processes;	(B)	Significant	gene	ontology	
(GO)	items	of	molecular	function;	
(C)	Significant	GO	items	of	cellular	
components. The x- axis represented the 
p value of enrichment for each GO item 
(y-	axis).	The	size	of	each	sphere	indicated	
the number of genes overlapped with 
each GO item, and the color of each 
sphere indicated the significance level of 
enrichment, as shown in the color bar.
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2 significantly exceeded that between Scales 1 and 3. These results 
offer a potential explanation for the subtle variation in classification 
accuracy between Scales 1 and 2 in the context of schizophrenia, 
while revealing a more pronounced difference in classification ac-
curacy between Scales 1 and 3. Furthermore, distinct biological 
pathways were evident within each individual scale, serving as an in-
dication that different scales hold unique information, alongside the 
shared elements. The presence of shared and specific gene modules 
across different scales highlights the complex nature of the molecu-
lar basis of schizophrenia.

Our enrichment analysis revealed that genes associated with 
ReHo alterations in schizophrenia were significantly enriched in 
pathways related to the innate immune response, inflammatory 
response, and microglial cell activation. These findings align with 
previous research indicating that immune dysregulation and in-
flammation play crucial roles in the pathophysiology of schizo-
phrenia.58,59 For instance, increased levels of pro- inflammatory 
cytokines have been observed in patients with schizophrenia, sug-
gesting that inflammation may contribute to neural abnormalities 
and cognitive impairments seen in this disorder.60	Additionally,	we	
found significant enrichment in pathways involved in synaptic sig-
naling, chemical synaptic transmission, and neurotransmitter reg-
ulation,	 including	 glutamatergic	 and	 GABAergic	 signaling.	 These	
pathways are critical for maintaining normal synaptic function and 
neural communication. Dysregulation in these signaling pathways 
has been implicated in schizophrenia, contributing to the synaptic 
deficits and cognitive dysfunctions characteristic of the disorder.61 
For example, alterations in glutamate signaling have been associ-
ated with both positive and negative symptoms of schizophrenia.62 
Furthermore, pathways related to ion transmembrane transport, 
voltage- gated ion channel activity, and neurodevelopmental pro-
cesses such as axonogenesis and gliogenesis were also significantly 
enriched.	 Abnormal	 ion	 channel	 functioning	 can	 affect	 neuronal	
excitability and synaptic transmission, leading to the neurophysi-
ological abnormalities observed in schizophrenia.63 Furthermore, 
disruptions in neurodevelopmental processes during critical periods 
of brain development may underlie the structural and functional 
brain	abnormalities	seen	 in	patients.	A	 recent	study	by	Ji	and	col-
leagues also found these biological processes in connection with 
alterations in gray matter volume in schizophrenia.43 These findings 
imply a relationship between these biological processes and changes 
in neuroimaging phenotypes, including alterations in cerebral func-
tional activity and structural characteristics, among individuals with 
schizophrenia. Moreover, several biological pathways were common 
among	Scales	1–3,	encompassing	synaptic	processes	such	as	synap-
tic signaling, chemical synaptic transmission, glutamatergic synapse, 
pre-  and post- synapse functions, as well as signal release, neuron 
projection, dendrite, cell surface, and ion transmembrane trans-
port activity, suggesting that potential fundamental mechanisms 
for schizophrenia could involve neuronal dysfunction and develop-
mental irregularities.64 Furthermore, biological pathways related to 
cellular	components	(e.g.,	glutamatergic	synapse,	synapse,	pre-		and	
post-	synapse,	dendrite,	neuron	projection),	and	molecular	functions	

(e.g.,	voltage-	gated	cation	and	ion	channel	activity)	have	also	been	
previously linked to the onset of schizophrenia.65

The shared biological pathways between Scales 1 and 2 com-
prise a range of critical processes, including microglial cell activation, 
glial cell development and migration, innate and adaptive immune 
responses, inflammatory reactions, G protein- coupled receptor 
signaling pathways, retinoid metabolic processes, and blood vessel 
development and morphogenesis. Disruption in genes responsible 
for functions such as cell adhesion, migration, proliferation, synaptic 
transmission, signal transduction, and glial development has been 
shown to have implications for brain development and can contrib-
ute to the onset of schizophrenia.43,65 In accordance with this, prior 
studies suggest that genetics, transcriptomics, post- mortem analy-
sis, epidemiology, peripheral biomarkers, and therapeutic interven-
tions for schizophrenia collectively indicate dysregulation in both 
adaptive and innate immune systems, actively influencing the condi-
tion's symptoms.66,67 Microglial cells, being central immune cells of 
the central nervous system, play a pivotal role in inflammatory re-
sponses, neuronal remodeling, and synaptic pruning.68	Additionally,	
we observed correlations between the ReHo biomarker and gene 
modules enriched for blood vessel development and morphogene-
sis, which may be attributed to the ReHo's foundation in the neuro-
vascular	coupling	theory	of	blood	oxygen	 level	dependent	 (BOLD)	
signals, where brain vessels are integral components of the neuro-
vascular unit.69 These findings align with previous studies, such as 
the work of Xue et al.,64 reinforcing our hypotheses. Furthermore, 
our study identified correlations between ReHo and gene modules 
enriched for the retinoid metabolic process, which is intrinsically 
linked to neural development, connectivity, plasticity, and the patho-
physiology of schizophrenia, particularly in patients with severe 
cognitive impairment.70 The retinoid pathway has been implicated in 
synaptic plasticity, thereby influencing brain function and behavior. 
Collectively, these results emphasize the pivotal role these pathways 
play in brain function and the development of schizophrenia.

In Scale 3, a significant correlation was found between the ReHo and 
the expression profiles of gene modules enriched for myelination pro-
cesses, with a particular focus on central nervous system myelination 
and axon ensheathment in the central nervous system. Myelination 
plays a pivotal role in shaping neural circuit plasticity, a fundamental 
aspect of brain function that governs precise timing and overall brain 
performance.71 It is essential to recognize that myelination represents 
an evolutionary advancement critical for sensory, motor, and higher- 
order cognitive functions. Myelin, a complex multilayered structure de-
rived from the oligodendrocyte plasma membrane, functions to wrap 
axons, enabling efficient electrical conduction.72 Disruptions in glial 
function, glial structure, or glial- neuronal interactions have been linked 
to myelin deficits in various psychiatric disorders, underlining the im-
portance of these findings in understanding neurological conditions.73 
All	these	insights	gained	from	the	transcriptome-	neuroimaging	associ-
ation analysis not only provide a deeper understanding of the molecu-
lar underpinnings of the ReHo alterations in schizophrenia but also lay 
the foundation for more accurate diagnosis and effective individualized 
treatment of schizophrenia based on one's genetic profile.
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Our study has several limitations. First, in our transcription- 
neuroimaging association analysis, we did not integrate gene ex-
pression	and	neuroimaging	data	 from	the	same	 individuals.	As	a	
result, our analysis focused solely on genes that showed consis-
tent expression patterns across various brain regions in different 
subjects. Second, the sample size for individuals with schizophre-
nia was relatively small and the patients were medicated chronic 
patients with various symptom severity. These factors might 
have affected the observed ReHo changes, and thus future stud-
ies with a larger group of first- episode, drug- free schizophrenia 
patients are needed to validate our results. Third, an anatomical 
atlas was used to generate different spatial scales of brain par-
cellations in the present study; however, functional parcellations 
(e.g.,	 Schaefer's	 parcellation)	 might	 be	more	 appropriate	 for	 in-
vestigating	the	alterations	of	brain	functional	metrics	(e.g.,	ReHo),	
which will be tested in future studies. Fourth, in this study, we 
only tested F- scores for feature selection, and other approaches 
such	as	Lasso	regularization	or	PCA	might	perform	better	and	will	
be tested in future studies. Finally, the gene expression data used 
in	 this	 study	 are	 not	 specific	 to	East	Asian	populations,	 as	 they	
originate	from	the	AHBA,	which	 is	currently	 the	only	source	for	
high- resolution gene expression data. Since there is no available 
East	 Asian	 gene	 expression	 dataset	 at	 present,	 future	 research	
aiming to replicate our findings should consider using gene ex-
pression	profiles	from	Asian	brains.

5  |  CONCLUSION

In summary, the multi- scale ReHo analysis has demonstrated its abil-
ity as a neuroimaging biomarker for distinguishing individuals with 
schizophrenia	from	HCs.	Notably,	Scale	2,	which	comprises	272	re-
gions, has shown the highest classification accuracy. Our exploration 
of the relationship between ReHo alterations and genes associated 
with immune responses, synaptic functions, and receptor activities, 
through transcriptome- neuroimaging analysis, has revealed signifi-
cant connections. The examination of diverse spatial scales has un-
covered both shared and unique biological pathways contributing to 
ReHo changes in schizophrenia, emphasizing the intricate nature of 
the disorder. Overall, this study not only improves diagnostic accu-
racy but also provides valuable insights into the molecular underpin-
nings of the condition, paving the way for future advancements in 
diagnosis and personalized medicine.
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