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Abstract
Aims: Schizophrenia is characterized by alterations in resting-state spontaneous brain 
activity; however, it remains uncertain whether variations at diverse spatial scales are 
capable of effectively distinguishing patients from healthy controls. Additionally, the 
genetic underpinnings of these alterations remain poorly elucidated. We aimed to ad-
dress these questions in this study to gain better understanding of brain alterations 
and their underlying genetic factors in schizophrenia.
Methods: A cohort of 103 individuals with diagnosed schizophrenia and 110 healthy 
controls underwent resting-state functional MRI scans. Spontaneous brain activity 
was assessed using the regional homogeneity (ReHo) metric at four spatial scales: 
voxel-level (Scale 1) and regional-level (Scales 2–4: 272, 53, 17 regions, respectively). 
For each spatial scale, multivariate pattern analysis was performed to classify schizo-
phrenia patients from healthy controls, and a transcriptome-neuroimaging association 
analysis was performed to establish connections between gene expression data and 
ReHo alterations in schizophrenia.
Results: The ReHo metrics at all spatial scales effectively discriminated schizophrenia 
from healthy controls. Scale 2 showed the highest classification accuracy at 84.6%, 
followed by Scale 1 (83.1%) and Scale 3 (78.5%), while Scale 4 exhibited the lowest 
accuracy (74.2%). Furthermore, the transcriptome-neuroimaging association analysis 
showed that there were not only shared but also unique enriched biological processes 
across the four spatial scales. These related biological processes were mainly linked 
to immune responses, inflammation, synaptic signaling, ion channels, cellular develop-
ment, myelination, and transporter activity.
Conclusions: This study highlights the potential of multi-scale ReHo as a valuable neu-
roimaging biomarker in the diagnosis of schizophrenia. By elucidating the complex 
molecular basis underlying the ReHo alterations of this disorder, this study not only 
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1  |  INTRODUC TION

Schizophrenia is a chronic, heterogeneous, devastating mental dis-
order characterized by symptoms such as delusions, hallucinations, 
reduced emotional expression, diminished motivation, and cognitive 
impairments.1,2 It affects approximately 1% of the global population 
and places a significant burden on healthcare systems worldwide.3 
Moreover, individuals with schizophrenia experience a decreased 
life expectancy, with reports indicating that the average lifespan 
of some individuals with schizophrenia is approximately 15 years 
shorter than that of the general population.4 Currently, the diagnosis 
of schizophrenia relies solely on clinical evaluation which can be in-
fluenced by subjective judgment and thus results in lower diagnostic 
reliability.5 Hence, the discovery of distinct biomarkers for precise 
schizophrenia diagnosis is crucial.

Over the last decade, resting-state functional magnetic reso-
nance imaging (fMRI) has emerged as a promising avenue to inves-
tigate the neurobiological underpinnings of schizophrenia. Regional 
homogeneity (ReHo), a metric reflecting local synchronization of 
spontaneous neural activity,6 is widely recognized as a robust bio-
marker for psychosis,7 providing invaluable insights into regional 
temporal synchronization within the brain.8 Reduced ReHo in 
resting-state studies indicates a disruption in local synchrony within 
spontaneous neuronal activity, emphasizing its role as a fundamen-
tal neuropathological hallmark of schizophrenia.9-12 Current studies 
on ReHo in schizophrenia primarily concentrate on voxel-level spa-
tial scales, representing a fine-grained, local view.9-12 This approach, 
while informative, introduces higher levels of signal noise, poten-
tially adversely impacting classification accuracy.13 Concurrently, a 
few studies have also attempted to investigate the classification ac-
curacy of schizophrenia at the region level using ReHo with different 
brain parcellation schemes.14,15 As spatial scales expand, larger vox-
els can enhance the signal noise ratio (SNR) while potentially losing 
some information. Various spatial scales contain varying amounts 
of information, influenced by the trade-off between information 
loss and SNR improvement. Consequently, an important and often 
overlooked question remains: at what spatial scales do neural activ-
ity patterns in individuals with schizophrenia diverge from those in 
healthy subjects? Does discriminability vary across these different 
spatial scales, and which specific scale offers the highest efficacy for 
classifying schizophrenia?

Schizophrenia exhibits an estimated heritability of approx-
imately 80%, highlighting the substantial genetic influence on the 
disorder.16-18 Extensive research has uncovered numerous genetic 

risk factors associated with schizophrenia, although the exact mech-
anisms behind the disease remain intricate and multifaceted, em-
phasizing the significant role of genetic factors in schizophrenia.19,20 
Nonetheless, the genetic mechanisms behind ReHo differences in 
schizophrenia remain largely unclear, and conventional genome-
wide association studies cannot identify the associated genetic vari-
ants. With the advancement of the Allen Human Brain Atlas (AHBA, 
http://​human.​brain​-​map.​org),21,22 transcriptome-neuroimaging 
association analysis has the potential to reveal the molecular basis 
of neuroimaging changes.23-25 However, to date, no transcriptome-
neuroimaging association study has been conducted to identify 
genes associated with ReHo alterations in schizophrenia, let alone 
across different spatial scales. Conducting such research is crucial, 
as it significantly enhances our comprehension of the molecular 
foundations of schizophrenia.

Building on prior research, the primary objectives of our pres-
ent study can be summarized in two aspects. First, our aim was to 
distinguish individuals with schizophrenia from healthy subjects 
by utilizing the ReHo metric across various spatial scales, including 
voxel-level and three region-level scales. Second, a transcriptome-
neuroimaging association analysis was conducted to link transcrip-
tome data from the AHBA database with the observed case–control 
ReHo changes in schizophrenia.

2  |  MATERIAL S AND METHODS

2.1  |  Participants

The study received approval from the Ethics Committee of Tianjin 
Medical University General Hospital, and all subjects provided 
written informed consent before participating. A total of 103 
patients with schizophrenia were recruited from Tianjin Medical 
University General Hospital. The diagnosis of schizophrenia was 
established through the consensus of two psychiatrists employing 
the Structured Clinical Interview for the DSM-IV (SCID, patient 
edition). To assess the severity of clinical symptoms, the Positive 
and Negative Symptom Scale (PANSS) was utilized. Exclusion crite-
ria involved the following: the presence of MRI contraindications, 
an inability to undergo MRI examinations, systemic medical condi-
tions (such as cardiovascular disease, diabetes mellitus, cognitive 
impairment, cerebral stroke, hemorrhage, epilepsy, and tumors), 
congenital cerebral structural abnormalities, a history of head 
trauma, central nervous system (CNS) disorders, or substance 
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abuse. In addition, a group of 110 age- and gender-matched 
healthy controls (HCs) was recruited from nearby communities 
and assessed using the SCID non-patient version to ensure an ab-
sence of any psychiatric disorder history. None of these healthy 
control participants had a history of psychotic episodes in their 
first-degree relatives.

2.2  |  Methodology overview

The framework, as shown in Figure 1, consists of two main compo-
nents: (1) classification analysis and (2) transcriptome-neuroimaging 
association analysis. In the first part, a multivariate pattern analysis 
(MVPA)26 was conducted to distinguish individuals with schizophre-
nia from HCs using the ReHo metric at various spatial scales, includ-
ing voxel-level, 272 regions, 53 regions, and 17 regions. In the second 
part, ReHo difference maps between individuals with schizophrenia 
and HCs at each spatial scale were generated through two-sample t-
tests. Subsequently, gene expression data from the AHBA database 
were obtained, and a weighted gene co-expression network analysis 
(WGCNA) was performed to investigate the relationships between 
ReHo difference maps and gene expression data. Finally, Toppogene 
(https://​toppg​ene.​cchmc.​org/​) was utilized to conduct enrichment 
analysis for genes correlated with ReHo difference maps in schizo-
phrenia at each spatial scale.

2.3  |  Imaging data acquisition and preprocessing

A 3.0-T MR system (Discovery MR750, General Electric, Milwaukee, 
WI, USA) was used for acquiring high-resolution 3D T1-weighted and 
resting-state fMRI data. Foam padding was employed to minimize 
head movement, and earplugs were utilized to reduce the noise gen-
erated by the scanner. Throughout the data acquisition, participants 
were instructed to maintain stillness and avoid any motion. Sagittal 
3D T1-weighted images were acquired using a BRAVO sequence 
with the following parameters: repetition time (TR) = 8.2 ms, echo 
time (TE) = 3.2 ms, inversion time (TI) = 450 ms, flip angle (FA) = 12°, 
field of view (FOV) = 256 mm × 256 mm, matrix size = 256 × 256, slice 
thickness = 1 mm with no gap, and 188 sagittal slices. Resting-state 
fMRI data were obtained through a gradient-echo single-shot echo 
planar imaging (GRE-SS-EPI) sequence with the parameters below: 
TR = 2000 ms, TE = 45 ms, FOV = 220 mm × 220 mm, FA = 90°, matrix 
size = 64 × 64, slice thickness = 4 mm with a 0.5 mm gap, 32 inter-
leaved transverse slices, and a total of 180 volumes.

The resting-state fMRI data were preprocessed using the Data 
Processing Assistant for Resting-State fMRI (DPARSF) toolbox,27 
which relies on Statistical Parametric Mapping 12 (SPM12, http://​
www.​fil.​ion.​ucl.​ac.​uk/​spm12​). Initially, the first 10 volumes from 
each participant were excluded to ensure signal equilibrium. The 
remaining volumes underwent correction for time differences be-
tween slices and head motion, with participants exceeding a maxi-
mum displacement of 2.0 mm or a maximum rotation of 2.0 degrees 

being excluded from subsequent analyses. Nuisance covariates, in-
cluding linear drift, Friston-24 head motion parameters, global brain 
signal, white matter signal, cerebrospinal fluid signal, and volumes 
affected by movement (defined as framewise displacement [FD] 
exceeding 0.5 mm28), were regressed out. To normalize the func-
tional images, each participant's individual structural image was 
co-registered with the mean functional image. The transformed 
structural images were then segmented into gray matter, white mat-
ter, and cerebrospinal fluid. Using these segmented images, the nor-
malization parameters from individual native space to the Montreal 
Neurological Institute (MNI) space were estimated, based on the 
Diffeomorphic Anatomical Registration Through Exponentiated Lie 
algebra (DARTEL) algorithm.29 Afterwards, the motion-corrected 
functional imaging data were normalized to MNI space based on 
these parameters and resampled to 3-mm cubic voxels. Finally, a 
temporal bandpass filter (0.01–0.08 Hz) was applied to reduce the 
impact of low-frequency drift and high-frequency noise.

The ReHo metric was computed following prior studies6,30: 
Kendall's coefficient of concordance (KCC) was employed to calcu-
late ReHo for a given voxel using the time series of that voxel and its 
26 nearest neighbors. The resulting KCC value was then assigned to 
the original voxel, and this procedure was repeated for all other vox-
els, generating individual ReHo maps. For the purpose of standard-
ization, the ReHo value for each voxel was z-score standardized by 
subtracting the global mean and dividing by the standard deviation 
of all ReHo values.

To investigate the impact of global mean signal on the results, we 
also compared the results between with and without global mean 
signal regression.

2.4  |  Spatial scale definition

In the present study, a hierarchical approach was employed to de-
fine four distinct brain parcellation scales using brain atlases based 
on anatomical features of the brain. First, Scale 1 was defined at 
the voxel level, encompassing a total of 67,541 voxels (Gray mat-
ter voxels). Afterwards, the entire brain was partitioned into 246 
cerebral regions using the Human Brainnetome Atlas (http://​atlas.​
brain​netome.​org),31 in addition to 26 cerebellum regions based on 
the anatomical automatic labeling (AAL) atlas.32 This partitioning 
was designated as Scale 2, encompassing a total of 272 regions. 
Building upon Scale 2, smaller regions were merged into larger 
ones based on their anatomical associations, resulting in the crea-
tion of Scale 3 (consisting of 53 regions) and Scale 4 (comprising 17 
regions). For instance, within Scale 2, seven separate subregions 
existed within the left superior frontal gyrus. When merging Scale 
2 into Scale 3 and further into Scale 4, for the Human Brainnetome 
Atlas template, the merging principle is based on the original sub-
divisions of the Human Brainnetome Atlas.31 For example, these 
subregions were merged into a single region named the ‘left supe-
rior frontal gyrus’ in Scale 3, and this ‘left superior frontal gyrus’ 
region was further combined with the other six regions in the left 
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F I G U R E  1 The flowchart of the spatial-scale analysis to acquire the information of classifying schizophrenia from HCs and to characterize 
the involved gene expression profiles correlated with ReHo difference in schizophrenia at each spatial scale.
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frontal lobe to form a unified region known as the ‘left frontal 
lobe’ in Scale 4. For the 26 cerebellum regions merging method, 
the merging principle is based on the original subdivisions of the 
cerebellum of AAL template. For a detailed explanation of Scales 3 
and 4, please refer to Table S1.

2.5  |  Classification analysis

To distinguish between schizophrenia patients and HCs, MVPA 
analysis was conducted, a technique capable of uncovering subtle 
spatial discriminative patterns and effectively exploring complex, 
high-dimensional neuroimaging data.26,33,34 Utilizing these four 
spatial scales, ReHo metrics were obtained at both the voxel level 
and region level (i.e., mean ReHo value within each region). The 
ReHo metric at each scale was employed as classification features. 
To enhance computational efficiency and classification perfor-
mance by reducing the number of features, the F-score method 
was applied for feature selection. The F-score of a feature was de-
rived from an F test performed between the patients and the HCs 
of the training data and thus quantified its discriminative power 
between the two groups.26,35 The features were ranked from high 
to low according to their F scores and then the features with top 
F-scores were selected using a series of thresholds. Specifically, 
10 sets of features (ranging from 1% to 100% of the total num-
ber of features, with the step size of 1%) were selected to train 
the SVMs, resulting in 10 trained models. Subsequently, we tested 
these 10 models using the test set and the results of the model 
with the best performance were reported. During training, the 
SVM kernel parameters was optimized using a cross-validation 
framework and was independent of the test data. Additionally, 
nu-SVC and C-SVC, with various kernel functions (including linear, 
polynomial, and radial basis function) were trained and tested as 
the classifier, and the kernel parameters (the penalty coefficient 
C or nu) were optimized using a grid search based on the train-
ing dataset: the penalty coefficient C varied from 1 to 100 with a 
step size of 5, and the parameter nu varied from 0.2 to 0.7 with a 
step size of 0.1. Therefore, two types of penalty parameters (20 
values for parameter C and six values for parameter nu) and three 
types of kernels were searched during the grid search procedure. 
Our assessment of the classifier's performance involved a 10-fold 
cross-validation approach,36,37 where the dataset was divided into 
10 subsets according to the subjects' ID. In each iteration, nine 
of these subsets were selected for training, while the remaining 
subset was used for testing. This process was repeated 10 times, 
with each subset taking a turn as the test set in separate itera-
tions. Classification accuracy served as the measure of the clas-
sifier's performance. Subsequently, the statistical significance of 
classification accuracies was assessed using a nonparametric per-
mutation test, wherein patient and control labels were randomly 
reassigned, and the same feature selection and classification pro-
cedures mentioned above were applied to generate chance-level 
classification accuracy. This entire process was repeated 5000 

times to establish a null distribution based on these chance-level 
classification accuracies. A classification result was considered 
significant if the actual accuracy, without permutations, was ex-
ceeded by fewer than 5% of all permutations, indicating that the 
classification accuracy was unlikely to occur by chance. The entire 
MVPA analysis was implemented using the MVPANI package.26

We further identified the features contributing to the classi-
fications at Scale 1 and Scale 2 according to feature weights: the 
features with top 20% absolute weight values among the features 
selected across all 10 cross-validation steps were considered to 
make important contributions to the classifications. Note that, this 
analysis was only performed for Scale 1 and Scale 2 because the 
support vector machines with non-linear kernels were used for Scale 
3 and Scale 4 and thus feature weights indicating contributions to 
classifications could not be derived for Scale 3 and Scale 4. The cor-
relations between the ReHo values of these identified important 
features and each of the PANSS scores (total, positive, negative, and 
general scores) were explored using the Pearson's correlation analy-
sis (false discovery rate [FDR]-corrected p < 0.05).

2.6  |  Transcriptome-neuroimaging association 
analysis

Publicly available, normalized microarray expression data from the 
AHBA database were acquired.38 Among the six donors, only two 
had expression data available for both hemispheres, while the re-
maining four donors had data for the left hemisphere. Therefore, 
our analysis focused exclusively on the left hemisphere of these 
six donors. A processing pipeline, whose code is available on 
GitHub (https://​github.​com/​BMHLab/​AHBAp​roces​sing) with de-
tailed parameter configurations listed in Table S2, was employed 
to link whole-brain gene expression profiles to neuroimaging 
data.24 Initially, probes were reassigned to genes using the latest 
National Center for Biotechnology Information (NCBI) database. 
Then, probes with expression intensities below the background 
signal in over 50% of samples were excluded. Afterwards, the 
genes that have no corresponding RNA-seq measures were re-
moved. Following this, the probes that had low correlations with 
RNA-seq data (Spearman rho <0.2) were excluded. Finally, a rep-
resentative probe for a gene based on the highest correlation to 
RNA-seq gene expression data in corresponding samples was se-
lected. Differential stability (DS), a correlation-based metric, was 
applied to assess the reliability of expression patterns in differ-
entially expressed genes across brain structures in the six donor 
brains.39 Genes were ranked based on their DS values, and the top 
half of high-DS genes were selected for correlation analysis with 
neuroimaging data. With this pipeline, a gene expression matrix 
for Scale 1 was obtained, with dimensions of 5093 genes × 1782 
samples. When performing the transcriptome-neuroimaging asso-
ciation analysis in region-level Scales 2–4, the allocation of sam-
ples to specific regions within the respective parcellation schemes 
was determined based on the closest Euclidean distance, and the 
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expression values of all samples within each region were averaged, 
providing the expression levels for each brain region. The dimen-
sions of expression matrices for Scale 2, Scale 3, and Scale 4 were 
5093 genes × 138 regions, 5093 genes × 27 regions, and 5093 
genes × 9 regions, respectively.

WGCNA, a powerful bioinformatics method extensively used 
in genomics and systems biology, was utilized to categorize genes 
into network modules and reveal biologically significant insights.40 
At each chosen spatial scale, a signed network is established using 
the gene × sample/region expression matrix, wherein the strength 
of co-expression relationships is determined through a soft 
thresholding technique. Next, hierarchical clustering is employed 
to identify modules consisting of co-expressed genes. The expres-
sion pattern for each module, represented as a matrix (number of 
samples × number of genes within the module), is subsequently 
condensed into its first principal component, known as the mod-
ule eigengene (ME). This ME is represented as a vector with di-
mensions of number of samples × 1, providing a summary of the 
module's overall expression profile.

ReHo difference maps were generated by comparing schizophre-
nia patients with HCs at both the voxel level (Scale 1) and regional 
level (Scales 2–4) using two-sample t-tests or non-parametric test 
according to whether the corresponding ReHo data were normally 
distributed, while controlling for age and gender as nuisance covari-
ates. Kolmogorov–Smirnov tests were employed to test the normal-
ity of ReHo values at regional level (Scales 2–4). For the comparisons 
of ReHo values at voxel level (Scale 1), the standard procedure using 
the two-sample t-tests was performed using the software package 
SPM12.41-43 Furthermore, a transcriptome-neuroimaging associa-
tion analysis was carried out to explore the relationship between 
transcriptional profiles and ReHo differences. Specifically, at Scale 1, 
a sample-level spatial correlation analysis was performed, where the 
mean t-value within a 6 mm sphere centered on each tissue sample 
was extracted from the uncorrected case–control ReHo difference 
map and correlated with each ME. At Scales 2–3, a regional level 
spatial correlation analysis was performed, involving the calculation 
of the mean t-value within each region from the ReHo difference 
map and its correlation with each ME. Notably, the spatial correla-
tion analysis was separately conducted for subcortical and cortical 
samples due to significant differences in gene expression profiles 
between these regions.38 At Scale 4, a total of nine sampling points 
were extracted from the left hemisphere to construct expression 
matrices, which was insufficient to meet the sample size recom-
mended by the WGCNA website (at least 15 samples). Therefore, 
WGCNA analysis was not conducted at Scale 4 to ensure the reliabil-
ity of the study findings.

2.7  |  Enrichment analysis

The genes within significant modules were aggregated at each 
scale, and enrichment analysis related to gene ontology (GO) was 
performed on these genes using the Toppogene (https://​toppg​ene.​

cchmc.​org/​) to identify significant enrichments. In this analysis, all 
enrichment analyses were corrected by BH-FDR p < 0.05.

3  |  RESULTS

3.1  |  Demographic and clinical characteristics of 
participants

The demographics and clinical characteristics of the patients with 
schizophrenia are presented in Table 1. A total of 213 right-handed 
participants were recruited for this study, which included 103 pa-
tients with schizophrenia. The mean age for the patients with schizo-
phrenia was 33.9 years (±9.6), and the group consisted of 49 females 
and 54 males. Additionally, 110 healthy controls were included in 
the study, with a mean age of 33.7 years (±11.0), and the group com-
prised 65 females and 45 males. There were no significant differ-
ences in age and gender distribution between the two groups, and 
no participants were excluded from the study due to excessive head 
motion.

3.2  |  Classification analysis utilizing ReHo metric 
across four spatial scales

The classification accuracies of the ReHo metric for distinguishing 
schizophrenia from HCs across four spatial scales are presented in 
Figure S1. Our findings revealed that the accuracy of ReHo classifi-
cation increased from 83.1% at Scale 1%–84.6% at Scale 2. However, 
this accuracy gradually decreased from 78.5% at Scale 3%–74.2% 
at Scale 4, as the spatial scale expanded. Importantly, all of these 
results significantly exceed chance levels (p < 0.001), highlighting 
the stability of ReHo as a neuroimaging biomarker for schizophre-
nia classification. Detailed information on the optimal parameters 

TA B L E  1 Demographic and clinical characteristics of 
participants.

Schizophrenia HCs p Value

Sample size 103 110

Illness duration 
(months)

116.6 ± 95.9 –

Age (years) 33.9 ± 9.6 33.7 ± 11.0 0.856a

Gender (M/F) 54/49 45/65 0.092b

Handedness (R/L/B) 103/0/0 110/0/0

PANSS total score 71.1 ± 22.3 –

PANSS positive score 16.8 ± 7.7 –

PANSS negative score 20.0 ± 8.9 –

PANSS general score 34.3 ± 10.5 –

Abbreviations: HCs, healthy controls; PANSS, Positive and Negative 
Syndrome Scale.
aTwo-sample t-test.
bChi-square test.

https://toppgene.cchmc.org/
https://toppgene.cchmc.org/
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obtained through grid search for achieving the highest classification 
accuracy in the four scales is shown in Table S3. The features with 
consistently high weights (top 20% absolute weight values) for Scale 
1 and Scale 2 are shown in Figure S2. The overlapping regions be-
tween Scale 1 and Scale 2 were indicated in red in Figure S2C. These 
indicated that there were some consistent features (brain regions) 
in both Scale 1 and Scale 2, furthermore, all the consistent features 
(brain regions) can be observed in Scale 2. The detailed information 
of brain regions were shown in Table S4.

Among the brain regions with high weight (Table S4), the ReHo 
values of FuG_R_2 was positively correlated with PANSS negative 
score (correlation coefficient = 0.32; p = 0.001; Figure  S3A); ReHo 
values of Hipp_L_2 was negatively correlated with PANSS gen-
eral scores (correlation coefficient = −0.29, p = 0.003; Figure  S3B) 
and PANSS total score (correlation coefficient = −0.31, p = 0.002; 
Figure S3C). No other significant correlations were found between 
ReHo values and PANSS scores.

The results obtained without global signal regression showed 
that the performance of the classification model was decreased 
compared with those obtained with the global signal regression 
(Tables S3 and S5). This decrease in performance might be attributed 
to the presence of global noise and non-neuronal fluctuations within 
the global mean signal, which would obscure the true neural activity 
patterns and reduce the signal-to-noise ratio.

3.3  |  Case–control difference in ReHo metric 
across four spatial scales

After controlling for age and sex, ReHo values at regional level 
(Scales 2–4) for HCs and patients with schizophrenia were normality 
distributed, confirmed by Kolmogorov–Smirnov tests (Table S6), and 
thus two-sample t-tests were employed to identify differences in 
ReHo between patients and HCs for each scale. The results showed 
that, compared with HCs, the patients with schizophrenia showed 
altered ReHo in multiple brain regions at each scale (Figure  S4; 
Scale 1: p < 0.05, FWE corrected; Scale 2: p < 0.05/272 = 1.83 × 10−4; 
Scale 3: p < 0.05/54 = 9.3 × 10−4; Scale 4: p < 0.05/17 = ×0.0029; all 
Bonferroni-corrected).

3.4  |  Transcriptome-neuroimaging association 
analysis

The expression pattern for each module was shown in Table 2. At 
Scale 1 (voxel-level), WGCNA analysis identified 17 distinct mod-
ules. Subsequent spatial correlation analysis at the sample level dem-
onstrated significant associations with 14 of these modules in both 
cortical and subcortical regions (Figure 2A). When examining Scale 
2 (272 regions), we found a total of eight modules. Among them, five 
were significantly associated with cortical regions, while three mod-
ules showed significance in subcortical regions (Figure 2B). At Scale 
3 (53 regions), we identified seven modules. Of these, four were 

significant in cortical regions, while none exhibited significance in 
subcortical regions (Figure 2C).

3.5  |  Enrichment analysis

GO enrichment analysis was performed for the genes associated 
with ReHo differences. Detailed results, including enriched biologi-
cal processes, molecular functions, and cellular components, can be 
found in Table S7.

In terms of biological processes, in Scale 1, genes were enriched 
for pathways related to innate immune response, inflammatory re-
sponse, synapse pruning, chemical synaptic transmission, inorganic 
cation transmembrane transport, cell adhesion, blood vessel devel-
opment, gliogenesis, neurogenesis, and axonogenesis (Figure 3A). In 
Scale 2, in addition to the pathways identified in Scale 1, genes were 
also enriched for pathways related to ion transmembrane trans-
port, cell activation/migration, and the G protein-coupled receptor 
signaling pathway (Figure S5B). In Scale 3, genes were enriched for 
pathways related to myelination, axon ensheathment/regenera-
tion, cell–cell signaling, neuron development, and signal release 
(Figure S6B).

For molecular functions, in Scale 1, genes in these significant 
modules were enriched for pathways related to immune receptor ac-
tivity, G protein-coupled receptor activity, voltage-gated cation chan-
nel activity, glutamate receptor binding, metal ion transmembrane 

TA B L E  2 The number of genes in each module.

Module
Number of 
genes Module

Number of 
genes

Scale 1

Black 153 Midnightblue 44

Blue 1163 Pink 125

Brown 427 Purple 99

Cyan 45 Red 190

Green 261 Salmon 45

Greenyellow 77 Tan 75

Gray 708 Turquoise 1202

Lightcyan 41 Yellow 330

Magenta 108 All 5093

Scale 2

Black 38 Gray 328

Blue 1251 Red 149

Brown 744 Turquoise 1877

Green 324 Yellow 382

All 5093

Scale 3

Blue 1039 Red 74

Brown 254 Turquoise 2124

Green 135 Yellow 183

Gray 1284 All 5093



8 of 14  |     PENG et al.



    |  9 of 14PENG et al.

transporter activity, GTPase-activating protein binding, and tran-
scription regulator activity (Figure  3B). In Scale 2, apart from the 
pathways identified in Scale 1, genes were also enriched for path-
ways related to GABA receptor activity, amino acid transmembrane 
transporter activity, and molecular transducer activity (Figure S5A). 
In Scale 3, genes were enriched for pathways related to transporter 
activity, transmembrane transporter activity, calcium ion transmem-
brane transporter, and estrogen receptor activity (Figure S6A). In 
terms of cellular components, in Scale 1, genes were enriched for 
pathways related to synapse, dendrite, neuron spine/projection, 
GABAergic synapse, somatodendritic compartment, and glutama-
tergic synapse (Figure 3C). In Scale 2, in addition to the pathways 
identified in Scale 1, genes were also enriched for pathways related 
to dopaminergic synapse, cholinergic synapse, and GABA receptor 
complex (Figure S5C). In Scale 3, genes were enriched for pathways 
related to axon, synaptic vesicle, cell body, hippocampal mossy fiber 
to CA3 synapse, and myelin sheath (Figure S6C).

4  |  DISCUSSION

To our knowledge, this study represents the first attempt to explore 
the diagnostic potential of multi-scale ReHo and its molecular foun-
dations in schizophrenia. Specifically, a comprehensive examination 
spanning various spatial scales, encompassing fine-grained voxel-
level and broader region-level parcellations, is provided, thereby 
highlighting the robustness of ReHo as a reliable neuroimaging bio-
marker for schizophrenia classification. Additionally, an extensive 
transcriptome-neuroimaging association analysis is included, unveil-
ing compelling connections between multi-scale ReHo differences 
and genes associated with immune responses, receptor activities, 
and synaptic components.

A significant classification accuracy for schizophrenia was 
achieved at both fine-grained voxel-level and coarser region-level 
scales. Scale 2, composed of 272 regions, achieved the highest clas-
sification accuracy at 84.6%, while Scale 1 (voxel-level) exhibited 
an accuracy of 83.1%. Conversely, Scale 4, comprising 17 regions, 
demonstrated the lowest accuracy at 74.2%. The differences in clas-
sification accuracy among different spatial scales could be due to the 
trade-off between information loss and signal-to-noise ratio (SNR) 
improvement. The Scale 2 exhibited the highest classification accu-
racy compared to the other scales, likely due to an optimal trade-off: 
a relatively small information loss and a considerable gain of SNR 
compared to the Scale 1. As the spatial scale expands from 272 
regions to 17 regions, classification accuracy gradually decreased, 
suggesting an increasing information loss. This emphasizes that, 
with an increase of spatial scale (i.e., a decrease in region number), 

the impact of information loss becomes more prominent than the 
SNR improvement, resulting in a decreased classification accuracy. 
At Scale 2, brain regions such as the bilaterally cerebellum, inferior 
frontal gyrus, superior temporal gyrus, inferior temporal gyrus, fu-
siform gyrus, postcentral gyrus, thalamus, and insular gyrus were 
found to contribute significantly to the classification (i.e., showing 
high weights). The structural or functional abnormalities in these 
brain regions have been reported in schizophrenia.44-46 The ranges 
of classification accuracy in previous studies using ReHo were from 
72.49% to 90.14%.9,30,47,48 The important features contributing to 
the classifications were consistent with those of our findings.9,30 
Furthermore, our results showed that the ReHo metrics could suc-
cessfully classify the patients with schizophrenia from HCs at each 
Scale, indicating that ReHo has the potential to serve as a diagnostic 
tool in clinical settings. Considering that current schizophrenia di-
agnosis mainly relies on subjective evaluation, such objective neu-
roimaging biomarkers could complement the traditional subjective 
method and enhance the diagnosis precision.

In the transcriptome-neuroimaging association analysis, we 
found that the number of gene modules decreased with the increase 
of the spatial scale: the largest number of gene modules (17 mod-
ules) was identified for Scale 1 and the least (eight modules) were 
identified for Scale 3. One possible reason is the information loss 
caused by merging voxels/smaller regions into larger regions from 
Scale 1 to Scale 3, and thus less biological pathways/functions could 
be identified through the transcriptome-neuroimaging association 
analysis. Similarly, Scale 1 exhibited the highest number of biologi-
cal pathways. Therefore, our findings suggest that Scale 1, with the 
highest number of biological pathways and relatively high classifica-
tion accuracy, provides the richest information. Scale 2, with gene 
modules similar to Scale 1, exhibits slightly higher classification ac-
curacy. On the other hand, Scale 3 has fewer biological pathways 
and lower classification accuracy, may be associated with its spe-
cific gene modules. Besides the number of biological pathways, the 
unique GOs in Scale 1 included the ribonucleoprotein complex, glu-
tamatergic postsynaptic density, GABA-ergic synapse, postsynaptic 
density membrane, parallel fiber to Purkinje cell synapse, voltage-
gated potassium channel complex, and adherens junction, etc. The 
unique GOs in Scale 2 included dopaminergic synapse, cholinergic 
synaps, and GABA receptor complex, and the unique GOs in Scale 
3 included hippocampal mossy fiber to CA3 synapse, hippocampal 
mossy fiber, myelin sheath, and synaptic vesicle. These unique GOs 
in each scale have been reported to be involved in the etiologies 
of schizophrenia and might also cause the different classification 
accuracy.49-57 Moreover, shared biological pathways were identi-
fied within Scales 1–3, as well as between any two of these scales. 
Notably, the number of shared gene profiles between Scales 1 and 

F I G U R E  2 Pearson's correlation between MEs of gene modules and t-statistics values of case–control ReHo differences in cortical 
and subcortical regions of schizophrenia at Scales 1–3. (A–C) Showed the correlation coefficients between MEs of gene modules and 
ReHo differences in Scale 1 (voxel level), Scale 2 (272 cerebral regions), and Scale 3 (53 regions), respectively. The color bar represents the 
correlation coefficients. At Scale 4 (17 regions), the limited number of cerebral regions prevented the implementation of WGCNA analysis, 
leading to underpowered analysis and inaccurate network modules.
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F I G U R E  3 Gene enrichment of 
genes significantly correlated with ReHo 
alterations in schizophrenia in Scale 1. 
(A) Significant GO items of biological 
processes; (B) Significant gene ontology 
(GO) items of molecular function; 
(C) Significant GO items of cellular 
components. The x-axis represented the 
p value of enrichment for each GO item 
(y-axis). The size of each sphere indicated 
the number of genes overlapped with 
each GO item, and the color of each 
sphere indicated the significance level of 
enrichment, as shown in the color bar.
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2 significantly exceeded that between Scales 1 and 3. These results 
offer a potential explanation for the subtle variation in classification 
accuracy between Scales 1 and 2 in the context of schizophrenia, 
while revealing a more pronounced difference in classification ac-
curacy between Scales 1 and 3. Furthermore, distinct biological 
pathways were evident within each individual scale, serving as an in-
dication that different scales hold unique information, alongside the 
shared elements. The presence of shared and specific gene modules 
across different scales highlights the complex nature of the molecu-
lar basis of schizophrenia.

Our enrichment analysis revealed that genes associated with 
ReHo alterations in schizophrenia were significantly enriched in 
pathways related to the innate immune response, inflammatory 
response, and microglial cell activation. These findings align with 
previous research indicating that immune dysregulation and in-
flammation play crucial roles in the pathophysiology of schizo-
phrenia.58,59 For instance, increased levels of pro-inflammatory 
cytokines have been observed in patients with schizophrenia, sug-
gesting that inflammation may contribute to neural abnormalities 
and cognitive impairments seen in this disorder.60 Additionally, we 
found significant enrichment in pathways involved in synaptic sig-
naling, chemical synaptic transmission, and neurotransmitter reg-
ulation, including glutamatergic and GABAergic signaling. These 
pathways are critical for maintaining normal synaptic function and 
neural communication. Dysregulation in these signaling pathways 
has been implicated in schizophrenia, contributing to the synaptic 
deficits and cognitive dysfunctions characteristic of the disorder.61 
For example, alterations in glutamate signaling have been associ-
ated with both positive and negative symptoms of schizophrenia.62 
Furthermore, pathways related to ion transmembrane transport, 
voltage-gated ion channel activity, and neurodevelopmental pro-
cesses such as axonogenesis and gliogenesis were also significantly 
enriched. Abnormal ion channel functioning can affect neuronal 
excitability and synaptic transmission, leading to the neurophysi-
ological abnormalities observed in schizophrenia.63 Furthermore, 
disruptions in neurodevelopmental processes during critical periods 
of brain development may underlie the structural and functional 
brain abnormalities seen in patients. A recent study by Ji and col-
leagues also found these biological processes in connection with 
alterations in gray matter volume in schizophrenia.43 These findings 
imply a relationship between these biological processes and changes 
in neuroimaging phenotypes, including alterations in cerebral func-
tional activity and structural characteristics, among individuals with 
schizophrenia. Moreover, several biological pathways were common 
among Scales 1–3, encompassing synaptic processes such as synap-
tic signaling, chemical synaptic transmission, glutamatergic synapse, 
pre- and post-synapse functions, as well as signal release, neuron 
projection, dendrite, cell surface, and ion transmembrane trans-
port activity, suggesting that potential fundamental mechanisms 
for schizophrenia could involve neuronal dysfunction and develop-
mental irregularities.64 Furthermore, biological pathways related to 
cellular components (e.g., glutamatergic synapse, synapse, pre- and 
post-synapse, dendrite, neuron projection), and molecular functions 

(e.g., voltage-gated cation and ion channel activity) have also been 
previously linked to the onset of schizophrenia.65

The shared biological pathways between Scales 1 and 2 com-
prise a range of critical processes, including microglial cell activation, 
glial cell development and migration, innate and adaptive immune 
responses, inflammatory reactions, G protein-coupled receptor 
signaling pathways, retinoid metabolic processes, and blood vessel 
development and morphogenesis. Disruption in genes responsible 
for functions such as cell adhesion, migration, proliferation, synaptic 
transmission, signal transduction, and glial development has been 
shown to have implications for brain development and can contrib-
ute to the onset of schizophrenia.43,65 In accordance with this, prior 
studies suggest that genetics, transcriptomics, post-mortem analy-
sis, epidemiology, peripheral biomarkers, and therapeutic interven-
tions for schizophrenia collectively indicate dysregulation in both 
adaptive and innate immune systems, actively influencing the condi-
tion's symptoms.66,67 Microglial cells, being central immune cells of 
the central nervous system, play a pivotal role in inflammatory re-
sponses, neuronal remodeling, and synaptic pruning.68 Additionally, 
we observed correlations between the ReHo biomarker and gene 
modules enriched for blood vessel development and morphogene-
sis, which may be attributed to the ReHo's foundation in the neuro-
vascular coupling theory of blood oxygen level dependent (BOLD) 
signals, where brain vessels are integral components of the neuro-
vascular unit.69 These findings align with previous studies, such as 
the work of Xue et al.,64 reinforcing our hypotheses. Furthermore, 
our study identified correlations between ReHo and gene modules 
enriched for the retinoid metabolic process, which is intrinsically 
linked to neural development, connectivity, plasticity, and the patho-
physiology of schizophrenia, particularly in patients with severe 
cognitive impairment.70 The retinoid pathway has been implicated in 
synaptic plasticity, thereby influencing brain function and behavior. 
Collectively, these results emphasize the pivotal role these pathways 
play in brain function and the development of schizophrenia.

In Scale 3, a significant correlation was found between the ReHo and 
the expression profiles of gene modules enriched for myelination pro-
cesses, with a particular focus on central nervous system myelination 
and axon ensheathment in the central nervous system. Myelination 
plays a pivotal role in shaping neural circuit plasticity, a fundamental 
aspect of brain function that governs precise timing and overall brain 
performance.71 It is essential to recognize that myelination represents 
an evolutionary advancement critical for sensory, motor, and higher-
order cognitive functions. Myelin, a complex multilayered structure de-
rived from the oligodendrocyte plasma membrane, functions to wrap 
axons, enabling efficient electrical conduction.72 Disruptions in glial 
function, glial structure, or glial-neuronal interactions have been linked 
to myelin deficits in various psychiatric disorders, underlining the im-
portance of these findings in understanding neurological conditions.73 
All these insights gained from the transcriptome-neuroimaging associ-
ation analysis not only provide a deeper understanding of the molecu-
lar underpinnings of the ReHo alterations in schizophrenia but also lay 
the foundation for more accurate diagnosis and effective individualized 
treatment of schizophrenia based on one's genetic profile.
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Our study has several limitations. First, in our transcription-
neuroimaging association analysis, we did not integrate gene ex-
pression and neuroimaging data from the same individuals. As a 
result, our analysis focused solely on genes that showed consis-
tent expression patterns across various brain regions in different 
subjects. Second, the sample size for individuals with schizophre-
nia was relatively small and the patients were medicated chronic 
patients with various symptom severity. These factors might 
have affected the observed ReHo changes, and thus future stud-
ies with a larger group of first-episode, drug-free schizophrenia 
patients are needed to validate our results. Third, an anatomical 
atlas was used to generate different spatial scales of brain par-
cellations in the present study; however, functional parcellations 
(e.g., Schaefer's parcellation) might be more appropriate for in-
vestigating the alterations of brain functional metrics (e.g., ReHo), 
which will be tested in future studies. Fourth, in this study, we 
only tested F-scores for feature selection, and other approaches 
such as Lasso regularization or PCA might perform better and will 
be tested in future studies. Finally, the gene expression data used 
in this study are not specific to East Asian populations, as they 
originate from the AHBA, which is currently the only source for 
high-resolution gene expression data. Since there is no available 
East Asian gene expression dataset at present, future research 
aiming to replicate our findings should consider using gene ex-
pression profiles from Asian brains.

5  |  CONCLUSION

In summary, the multi-scale ReHo analysis has demonstrated its abil-
ity as a neuroimaging biomarker for distinguishing individuals with 
schizophrenia from HCs. Notably, Scale 2, which comprises 272 re-
gions, has shown the highest classification accuracy. Our exploration 
of the relationship between ReHo alterations and genes associated 
with immune responses, synaptic functions, and receptor activities, 
through transcriptome-neuroimaging analysis, has revealed signifi-
cant connections. The examination of diverse spatial scales has un-
covered both shared and unique biological pathways contributing to 
ReHo changes in schizophrenia, emphasizing the intricate nature of 
the disorder. Overall, this study not only improves diagnostic accu-
racy but also provides valuable insights into the molecular underpin-
nings of the condition, paving the way for future advancements in 
diagnosis and personalized medicine.
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