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Transcriptomic classification of diffuse large
B-cell lymphoma identifies a high-risk
activated B-cell-like subpopulation with
targetable MYC dysregulation
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Chih-Chao Hsu3, Matthew J. Maurer 5, Nicholas Stong 1, Yumi Nakayama 3,
Lei Wu3, Hsiling Chiu 3, Ann Polonskaia3, Samuel A. Danziger6, Fadi Towfic7,
Joel Parker8, Rebecca L. King9, Brian K. Link10, Susan L. Slager 2,5,
Vivekananda Sarangi2, Yan W. Asmann11, Joseph P. Novak2, Akshay Sudhindra12,
Stephen M. Ansell 2, Thomas M. Habermann 2, Patrick R. Hagner3,
Grzegorz S. Nowakowski2, James R. Cerhan 2, Anne J. Novak 2,13 &
Anita K. Gandhi3,13

Immunochemotherapy has been the mainstay of treatment for newly diag-
nosed diffuse large B-cell lymphoma (ndDLBCL) yet is inadequate for many
patients. In this work, we perform unsupervised clustering on transcriptomic
features from a large cohort of ndDLBCL patients and identify seven clusters,
one called A7 with poor prognosis, and develop a classifier to identify these
clusters in independent ndDLBCL cohorts. This high-risk cluster is enriched for
activated B-cell cell-of-origin, low immune infiltration, high MYC expression,
and copy number aberrations. We compare and contrast our methodology
with recent DLBCL classifiers to contextualize our clusters and show improved
prognostic utility. Finally, using pre-clinical models, we demonstrate a
mechanistic rationale for IKZF1/3 degraders such as lenalidomide to overcome
the low immune infiltration phenotype of A7 by inducing T-cell trafficking into
tumors and upregulating MHC I and II on tumor cells, and demonstrate that
TCF4 is an important regulator of MYC-related biology in A7.

Diffuse Large B-cell lymphoma (DLBCL) is the most common subtype
of non-Hodgkin Lymphomawith a 5-year relative survival rate of 60%1.
While most patients with newly diagnosed (nd) DLBCL are treated and
cured with R-CHOP (rituximab, cyclophosphamide, doxorubicin,

vincristine, and prednisone), about 40% of patients are either refrac-
tory or experience relapse, highlighting the need for novel targeted
agents2. Current approaches for high-risk patient identification in
clinical practice include International Prognostic Index Score (IPI),
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MYC, BCL2 and/or BCL6 translocations by FISH, and activated B-cell
(ABC)/non-germinal center B-cell (non-GCB) cell-of-origin (COO) sub-
typing by gene expression or immunohistochemistry3,4. COO has been
used prospectively for patient selection in two randomized control
trials ROBUST (NCT02285062) and PHOENIX (NCT01855750); how-
ever, neither reached their primary endpoint5,6. Over the last several
years, multiple genetic classifications have been published and
each reported predominantly ABC subtypes, such as C57, MCD8,9,
and MYD8810 all with poor survival with R-CHOP. Gene expression
signatures such as double hit/dark zone signature (DHITsig/DZsig)11,12

and molecular high grade13 identified mostly high-risk GCB patients;
while TME26 categorized DLBCL tumors into high and low infiltration
of T cells, macrophage, and dendritic cells14 Only recently with
seminal work on Lymphoma Microenvironment ((LME15) and
EcoTyper16 has the crosstalk between tumor cells and their micro-
environment come into focus. These molecular classifications
may eventually take DLBCL into the era of tailored targeted therapies,
exemplified by a recent report in an R-CHOP +X trial, X being an agent
that could specifically target the biology of a predefined patient
segment17.

In this work, we sought to identify high-risk patients using a
combination of both tumor-intrinsic and tumor microenvironment
features for two purposes: (1) to develop a biomarker to be used in the
clinic for identifying high-risk ndDLBCL patients for selection, strati-
fication, or enrichment in clinical trials; and (2) to identify biological
targets for these high-risk patients for future precision medicine
approaches.

We performed unsupervised clustering on transcriptomic fea-
tures derived from RNAseq data generated from routine diagnostic
formalin-fixed paraffin-embedded (FFPE) samples of 1208 excisional
lymph node biopsies of ndDLBCL patients. The results showed seven
uniquebiological clusters forwhichwe subsequentlydeveloped agene
expression classifier called SubLymE that allows the classification of
ndDLBCL patients into one of the seven clusters. We found cluster A7
to have poor outcomes on R-CHOP treatment, and key biological
features included enrichment for ABC COO, upregulation of MYC and
MYC downstream pathways without MYC amplifications or transloca-
tions, and low immune cell infiltration. Significant genomic features of
A7 included enrichment of chromosome 3 and 18 gains and 9p21 loss.
Using pre-clinical models, we further propose TCF4 as a potential
therapeutic target for A7 biology and patients. Retrospective analysis
of the lenalidomide plus R-CHOP (R2-CHOP) experimental arm in the
ROBUST trial indicated R2-CHOP has significant clinical benefit in A7
patients, for which we describe a mechanism of action of how lenali-
domide overcomes high-risk features in A7 patients via enhanced
immune infiltration.

Results
Unsupervised clustering analysis identifies seven molecular
subpopulations of ndDLBCL
Unsupervised clustering using iClusterPlus18 was performed on a Dis-
covery cohort of 1208 ndDLBCL patients including both ABC and GCB
subtypes (see Methods and Table 1). While there are currently many
publicly datasets available, this discovery cohort was selected based
upon its large size, consistent profiling methodology, and availability
of genomic and clinical data at the inception of this research. In
addition to normalized RNAseq gene expression data, three sets of
gene-expression-derived features were included as input, including
Gene Set Variation Analysis (GSVA) scores from the MSigDB Hallmark
pathways (H), chromosomal copy number alterations (C1)19, and
inferred immune cell type abundance scores (seeMethods). No clinical
features or survival data were included as input features (Fig. 1A).

Unsupervised clustering identified eight clusters (A1–A8 for
aggressive lymphoma) in the Discovery cohort (Fig. 1B). COO and
TME26 classification are shown for each cluster as measurements of

cluster biological properties. For determination ofCOOwe applied the
Reddy method20 due to its wide applicability to gene expression data,
and limited availability of Nanostring LST calls21. A comparison of
Reddy versus Nanostring COO scores in samples where both data were
available showed high concordance (r = 0.923) (Supplementary Fig. 1).

Certain clusters are significantly enriched for ABC (A7: 86% ABC,
p < 2.2e−16) or GCB patients (A2: 90% GCB, p < 2.2e−16), TME26-
positive (A6: 98% TME26 + , p < 2.2e−16) or TME26-negative (A1: 62%
TME26-, p = 0.009; A2: 62% TME26-, p =0.001; A7: 70% TME26-,
p < 2.2e−16).Mean tumor purity (74% overall) varied by cluster, with A1
and A7 showing higher (80% and 83%) and A4 and A6 showing lower
purity (70% and 68%). The smallest cluster A8 (n = 25, 2% of the dis-
covery cohort) was found to be highly distinct from the rest, with A8
cases almost never clustering among other subtypes and having vir-
tually no effect on the clustering in the rest of the data. Further analysis
showed thatdespite initial quality controlfilters, A8 contained samples
of borderline technical quality, evidenced by aberrant alignment
metrics including a high number of unaligned, intergenic, and ribo-
somal reads, and low number of reads assigned to coding regions
(Supplementary Fig. 2A). As we sought to classify groups defined by
lymphoma biology, A8 was omitted from classifier training. Using the
A1-A7 cluster labels, we then trained a multinomial generalized linear
model (named as SubLymE) on the Discovery cohort to generate a
classifier for identifying these clusters in independent ndDLBCL
cohorts.

Using the SubLymE classifier, the seven clusters were reproduced
in four replication cohorts: Molecular Epidemiology Resource (MER)
of the University of Iowa/Mayo Clinic Lymphoma (n = 343)22, REMoDL-
B (n = 928)23, GOYA (R-CHOP arm only, n = 271)24, and Reddy
(n = 442)20. All seven clusters have consistentmolecular characteristics
asmeasured by COOor TME26 status across discovery and replication
cohorts (Fig. 1C, Table 1), although cluster prevalence varies somewhat
from cohort to cohort, with A6 and A7 being more stable than others
possibly attributable to variations across patient populations (Fig. 1C).
We further demonstrated biological consistency of the clusters by
showing the top 50 up- and down-regulated differentially expressed
genes for each cluster which exhibited similar expression patterns in
the replication datasets (Fig. 1D). Furthermore, the directionality and
magnitude of cluster-specific dysregulation of Hallmark pathways as
measured by normalized enrichment score (NES) were consistent
between the discovery and MER cohorts for all clusters with the
exception of A4 (Supplementary Fig. 2B).

Cluster A7 is a reproducible high-risk patient subpopulation in
newly diagnosed DLBCL treated with R-CHOP
We next examined EFS (in MER, REMoDL-B, GOYA) and OS (in Reddy)
of the seven clusters under R-CHOP or R-CHOP-like treatment regi-
mens. In the MER cohort, cluster A7 displayed the shortest median
event-free survival (EFS) of 38.2 months compared to 165.6 months in
non-A7 patients (Fig. 2A), and a binarized model showed a statistically
significant difference in survival between A7 and non-A7 patients
(p = 0.0052, Fig. 2B). A7 identifies 18% of the patients who will fail to
achieve 24 months of event-free survival (EFS24)25, marginally enrich-
ing for this clinically relevant pattern of early treatment failure when
compared tonon-A7patients (p = 0.058). Thesepatterns are replicated
in R-CHOP-treated patients in the REMoDL-B, GOYA, and Reddy
cohorts (Fig. 2A, B), with significant differences in EFS/OS between A7
and non-A7 patients (p = 0.0019, p = 0.012, p = 0.0029, respectively),
and significant enrichment of EFS24 (but notOS24) failures (p =0.004,
p =0.03,p = 0.10, respectively). Noother cluster consistently showed a
significantly different hazard rate when compared to all other clusters
combined (Supplementary Fig. 3).

Given the high prevalence of ABC patients within A7, we con-
strained the survival analysis to the ABC subtype and found the high-
risk nature of A7 was not solely due to its enrichment of the ABC
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subtype, with the A7 vs. non-A7 hazard ratio (HR) amongABCs being in
MER 1.71 (95% confidence interval: 0.98–3.00; p =0.071), in REMoDL-B
1.50 (0.89–2.53;p =0.13), inROBUST 1.64 (1.08–2.51,p = 0.01), inGOYA
1.67 (0.91–3.05; p =0.093), and in Reddy 1.61 (1.0–2.58; p =0.048)
(Fig. 2C). Even though the ABC-only subpopulation comparisons in
MER, REMoDL-B, and GOYA are non-significant, the subpopulations
are too small to reliably call effects of this magnitude significant
(power < 50%), and the effect sizes are consistent with the appro-
priately powered and significant estimates from ROBUST and Reddy.

A7 status is not strongly associatedwith known clinical prognostic
factors such as IPI, age, extranodal involvement, or disease stage.
There is a trend of high-risk clinical factors being associated with the
high-risk A7 class, and there is a nominal association of some features
in certain cohorts (Supplementary Fig. 4). A Cox proportional hazards
model showed that A7 status is significantly associated with EFS in the
MER cohort when considered alone in a univariate model (HR = 2.00
(1.24–3.26), p =0.006). Furthermore,multivariate Coxmodels showed
that A7’s risk associationwas not accounted for byother risk factors, as

Table 1 | Demographics and clinical characteristics of the discovery and replication cohorts

MER REMoDL-B ROBUST ITT ROBUSTscreening GOYA Reddy
(N = 343) (N = 469) (N = 392) (N = 1016) (N = 271) (N = 442)

Demographic features Sex

Female 144 (0.42) 205 (0.44) 180 (0.46) 484 (0.48) 124 (0.46) 189 (0.43)

Male 199 (0.58) 264 (0.56) 212 (0.54) 532 (0.52) 147 (0.54) 253 (0.57)

Age (year)

Median 65 (18–90) 66 (24–86) 66 (21–83) 65 (18–86) 63 (18–83) 62 (9–93)

<60 124 (0.36) 150 (0.32) 117 (0.3) 378 (0.37) 104 (0.38) 184 (0.42)

≥60 219 (0.64) 319 (0.68) 275 (0.7) 638 (0.63) 167 (0.62) 243 (0.55)

Ann Arbor Stage

I-II 146 (0.43) 146 (0.31) 41 (0.1) 217 (0.21) 64 (0.24) Not available

III - IV 196 (0.57) 321 (0.68) 351 (0.9) 776 (0.76) 207 (0.76) Not available

ECOG PS

0-1 281 (0.82) 417 (0.89) 329 (0.84) 329 (0.32) 242 (0.89) Not available

2-4 61 (0.18) 52 (0.11) 63 (0.16) 63 (0.06) 29 (0.11) Not available

Elevated LDH 164 (0.48) 363 (0.77) 230 (0.59) 230 (0.23) Not available 228 (0.56)

Extranodal site

0-1 278 (0.81) Not available 224 (0.57) 224 (0.22) 97 (0.36) 321 (0.73)

>1 65 (0.19) Not available 168 (0.43) 168 (0.17) 75 (0.28) 98 (0.22)

IPI Group

Low (0-2) 215 (0.63) 239 (0.51) 182 (0.46) 182 (0.18) 149 (0.55) 201 (0.45)

High (3-5) 128 (0.37) 230 (0.49) 208 (0.53) 258 (0.25) 122 (0.45) 171 (0.39)

Molecular classifications COO

ABC 155 (0.45) 192 (0.41) 352 (0.9) 505 (0.5) 120 (0.44) 192 (0.43)

GCB 152 (0.44) 218 (0.46) 5 (0.01) 352 (0.35) 113 (0.42) 191 (0.43)

UNC 36 (0.1) 59 (0.13) 35 (0.09) 159 (0.16) 38 (0.14) 59 (0.13)

TME26

Positive 145 (0.42) 173 (0.37) 98 (0.25) 360 (0.35) 86 (0.32) 200 (0.55)

Negative 198 (0.58) 296 (0.63) 294 (0.75) 656 (0.65) 185 (0.68) 242 (0.45)

SubLymE

A7 39 (0.11) 42 (0.09) 144 (0.37) 203 (0.2) 38 (0.14) 95 (0.21)

A7 among ABC 34 (0.21) 36 (0.19) 139 (0.39) 174 (0.34) 35 (0.29) 68 (0.35)

Outcome on RCHOP-like
therapy

Median PFS (months)

A7 38.2 25 22.6 Not available Not achieved (NA) Not available

non-A7 165.6 Not achieved (NA) Not achieved (NA) Not available Not achieved (NA) Not available

Median OS (months)

A7 90.1 Not achieved (NA) Not achieved (NA) Not available Not achieved (NA) 59.5

non-A7 183.8 Not achieved (NA) Not achieved (NA) Not available Not achieved (NA) 128.3

Complete Response

A7 24 (0.75) 32 (0.73) 51 (0.80) Not available Not available 76 (0.84)

non-A7 189 (0.77) 258 (0.67) 102 (0.80) Not available Not available 262 (0.81)

EFS24

A7 19 (0.58) 17 (0.46) 24 (0.41) Not available 21 (0.57) Not available

non-A7 194 (0.73) 226 (0.67) 61 (0.58) Not available 159 (0.76) Not available

The ROBUST RNAseq cohort comprised the majority of the Discovery data, the remainder of which belonged to a commercial cohort that lacked clinical features. Data for the RCHOP arm of the
REMoDL-B dataset are shown for consistency of outcome metrics.
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Fig. 1 | Unsupervised clustering identifies biological subpopulations within
newly diagnosed DLBCL.Unsupervised clustering was applied to a large cohort of
patient-derived RNAseq data to identify biologically homogeneous subtypes of
DLBCL.A Schematic of data transformation, unsupervised clustering, and classifier
training methodology. Steps in black represent data objects, while steps in blue
represent algorithmic processes. B Co-clustering frequency heatmap identifies

sample clusters that consistently group together over repeated subsampling runs.
C Cluster prevalence and breakdown by COO and TME26 classification. Bar heights
represent theobservedproportion in each cohort, and error bars represent the 95%
confidence interval. D Top 50 up- and down-regulated genes per cluster from the
Discovery dataset, replicated in each cohort. Source data are provided as a Source
Data file.
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A7, and (C) by a binarizedmodel comparingA7 to non-A7 in theABCsubpopulation
only. Source data are provided as a Source Data file.
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A7 status remains a significant risk predictor evenwhen controlling for
other clinical or molecular risk factors such as age, COO, and IPI
(Table 2).

Comparison among lymphoma subtypes identifies cluster-
specific biological themes
Thebiologyof the SubLymEclusters canbeexplored in contrast to one
another to identify points of differentiation. Figure 3A shows a heat-
map of GSVA signature scores sorted by cluster in ROBUST, arranged
into six categories of lymphoma-related processes. For example,
Clusters A1, A2, and A7 show strong downregulation of tumor micro-
environment signatures, in contrast to cluster A6 which shows strong
upregulation of these signatures. Clusters A2, A5, and A7 also show
upregulation of malignant processes and metabolism signatures
including MYC signaling pathways, while clusters A3 and A6 showed
downregulation of these signatures. Differential B-cell transcription
factors were related to the COO makeup of the clusters, with
A2 showing upregulation of GCB-related signatures (IRF4Dn-1) and
A7 showing strong upregulation of ABC-related signatures (IRF4Up-7,
OCT2Up-1). Overall, cluster A7 is unique in its combinationof high ABC
signals, upregulatedmetabolic andmalignant processes, upregulation
of B-cell differentiation pathways, and low TME expression. Clusters
similar to A7 include A2, which differentiates from A7 primarily along
theCOOaxis, as well as A5, which sharesmany tumor-intrinsic features
with A7 but has a more active immune microenvironment. Expression
patterns of these pathways are replicated in the other cohorts, with
similarities in the directionality and significance of cluster-associated
pathways (Supplementary Figs. 5, 6).

To characterize the SubLymE clusters in the context of recently
described DLBCL subtyping methods, we applied eleven other mole-
cular classification approaches to the MER dataset, which was chosen
for its availability of transcriptomic, genomic and clinical data.
Thesemethods included B-cell states and Lymphoma Ecotypes (LEs)16,
Lymphoma Microenvironment (LME)15, LymphGen9, HMRN10, Dark
Zone Signature (DZsig)11, TME2614, Reddy COO20, Molecular High
Grade (MHG, applied to REMoDL-B instead of MER)13, LymphProg26,
and HRsig-Mayo classifiers27,28. The association between SubLymE
and the other subtypes showed varying effect sizes in the range of

moderate-to-large (0.22 < Cramer’s V <0.55, Supplementary Fig. 7),
consistent with the levels of association between other pairs of
methods. Although none of the classifiers tested were statistically
independent of all others, moderate association metrics suggest that
while certain methods may leverage common biological themes, the
patient-level classifications between methods are heterogeneous.

Apairwise comparisonof specific class labels provides insight into
similarities between patient groups identifiedunder differentmethods
(Fig. 3B and Supplementary Fig. 7). Cluster A7 was associated with
groups from several different classification methods, including the S5
high-risk B-cell state, the Unclassified Ecotype, the High-Risk HRsig-
Mayo class, the MYD88 HMRN group, the Depleted LME, ABC Reddy
and MHG COO, LymphProg-High, and TME26 negativity. In contrast,
cluster A6 showed association with multiple clusters hallmarked by
their relative abundance of immune activity, including the S2 B-cell
State, Ecotypes LE4 and LE7, the Low Risk HRSig-Mayo group, the
Infiltrated LME, LymphProg-Low, and TME26 positivity.

Cluster A2 was strongly associated with clusters hallmarked by
GCB biology, including the S1 B-cell state, DZSig-Pos, the LE8 Eco-
type, the EZB LymphGen cluster, and GCB Reddy COO, and both
GCB and MHG under MHG-COO. The cluster was not solely defined
by its GCB biology but also its lack of immune infiltration, as
observed by its associations with both the Depleted LME class and
the TME26 negative class. Cluster A3 was another cluster showing
significant overlap with GCB-related classes like GCB COO, Lymph-
Gen EZB, and LME-GC. In contrast to the low-TME A2 GCB cluster,
however, A3 exhibited overlap with TME26 positivity and Treg-
enriched LE5. Sankey plots illustrating cluster co-incidence may be
found in Supplementary Figs. 8–11. Although some SubLymE classes
significantly enrich for particular subtypes called by other classi-
fiers, there exists no clear one-to-one correspondence between
SubLymE classes and other methods.

A7 DLBCL tumors are associated with copy number alterations
Focusing on A7 as the high-risk cluster, we assessed genomic features
associated with A7 and discovered no significantly enriched non-
synonymous somatic mutations after multiple hypothesis corrections
in comparison to other clusters using the ROBUST data. However,
several mutations associated with ABC-DLBCL and particularly MCD
genetic subtype such as ETV6 and PIM1 were nominally enriched in A7,
reflecting the mostly ABC-DLBCL nature of A7 tumor biology (Sup-
plementary Fig. 12A). Certain links may be drawn between nominally
enriched mutations in SubLymE and cluster-defining mutations from
other classification methodologies. A2 exhibits enrichment of EZH2
mutations, a feature of the LymphGen EZB cluster; A5 is enriched for
MYD88, similar to the MYD88 HMRN cluster.

On the other hand, copynumber alteration analysis demonstrated
a number of significantly enrichedCNAs inA7 (FDR <0.05), suggesting
copy number changes involvingmultiple genesmay be genetic drivers
of A7 biology rather than point mutations. Approximately 60% of A7
DLBCL patients exhibit arm-level copy number gains on chromosomes
3p, 3q, and 18q, and 44% exhibit focal deletions on chromosome 9p
(Fig. 4, Supplementary Fig. 12B). Several important genes related to
DLBCL etiology have been identified at these loci, including FOXP1
(3p), BCL6 (3q), CDKN2A and MTAP (9p21), BCL2, MALT1, and
TCF4 (18q).

A7 tumors exhibit TCF4-linked upregulation of MYC and MYC
signatures
Differential expression and pathways analysis of A7 vs. non-A7 cases
showed that A7 exhibited elevated expression of pathways defined
by MYC targets, E2F targets, and G2M checkpoint signatures
(Fig. 5A), as well as upregulation ofMYC itself (Fig. 5B), indicative of a
highly proliferativemalignant DLBCL clone. AsMYC target pathways
were upregulated in A7, we investigated MYC gene and protein

Table 2 | Cox proportional hazards models showing EFS risk
factors in MER

Univariate
(Feature)

Bi-variate (A7 + Feature)

A7 Feature

Feature HR p HR p HR p

A7 2 0.006 – – – –

Age > 65 1.2 0.32 1.98 0.007 1.19 0.36

LDH>ULN 2.2 0.0001 1.73 0.04 2.1 0.0003

IPI > 2 2.5 4.24E-06 1.73 0.04 2.44 7.90E-06

ECOG> 1 2.13 5.00E-04 1.81 0.02 2.07 8.00E-04

Ann Arbor
Stage >2

1.97 6.00E-04 1.88 0.01 1.92 1.00E-03

Bulky Disease 1.35 0.31 2.06 0.004 1.44 0.22

Extranodal
sites > 1

1.53 0.06 2.05 0.005 1.56 0.04

Double-
hit FISH

2.03 0.03 2.63 0.0007 2.33 0.01

ABC COO 1.3 0.16 1.91 0.02 1.12 0.58

Each row represents a clinical feature, from which two models are built—the univariate model
uses only the feature in question, while themultivariate version models EFS as a function of the
feature plus A7 status. Reported are the hazard ratios and p-values observed for each feature in
both the univariate and multivariate models. A7 remains significantly prognostic even when
accounting for other clinical features.
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expression through gene expression and IHC analyses, respectively.
Pathways dysregulated in other clusters may be found in Supple-
mentary Fig. 13.

Although A7 patients have somewhat elevated tumor purity
(median 90% in A7, median 80% in non-A7, p = 2.7e−10, ROBUST),MYC
expression is not correlatedwith tumor cellularity, indicating that high
MYC expression in A7 is a true biological feature of A7 tumors not
simply driven by high tumor cellularity (Supplementary Fig. 14A). Myc
protein expression was elevated in A7 tumors compared to non-A7
tumorsas indicatedby ahigher percentageof c-mycpositive tumorsas
defined by a cutoff of ≥40% positive cells in the discovery cohort and
REMoDL-B, (Fig. 5C; Supplementary Fig. 14B). Knowngenetic drivers of
increased MYC expression and signaling such as MYC translocations,
amplifications and mutations are not enriched in A7 DLBCL tumors,
implicating other mechanisms of MYC upregulation.

As shown in Fig. 4, chromosome 18q is amplified at an arm level in
A7 DLBCL tumors. TCF4, a basic helix-loop-helix (bHLH) transcription
factor residing at 18q21.2 was previously reported to drive MYC gene
expression in ABC-DLBCL through binding to MYC enhancer29. Inter-
rogation of DLBCL patient tumor gene expression and DNA copy
number alterations demonstrated the association between TCF4 copy
number and elevated expression of both TCF4 and MYC in ROBUST
(Fig. 5D).We identified two cell linemodels through genomic andCOO
profiling (RIVA and U2932), which showed them to be ABC cell lines
that uniquely exhibited both of the largest and most significant A7-
specific genomic features, arm-level gains in chr3 and chr18 (Supple-
mentary Fig. 15). Examination of these cell lines demonstrated a strong
correlation between TCF4 gene expression and TCF4 copy number
leading to elevated TCF4 protein levels compared to non-A7-like cell
lines (Fig. 5E, F).

A) B)
A1   A2     A3       A4     A5       A6         A7

Normalized 
Enrichment 

Score

Fig. 3 | Biological interpretation of SubLymE clusters. AHeatmap of biologically
relevant pathways across SubLymE classes in the ROBUST dataset. Heatmap colors
represent signature-level normalized enrichment scores.BAssociation of class calls
by SubLymE and other classification methods. The heatmap shows Cohen’s Kappa
values measuring strength of association between specific pairs of classes, tested
by binarizing each classifier with respect to the classes being compared. Positive

values indicate classes that are commonly called together, while negative values
indicate classes that are rarely called together. Kappa values not significantly dif-
ferent from 0 (p <0.05) were set to 0 to highlight statistically significant associa-
tions. Associations are shown for MER, with the exception of the MHG
comparisons, which were tested in REMoDL-B. Source data are provided as a
Source Data file.
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To characterize TCF4 function in an A7-like DLBCL setting, we
performed a TCF4 knockdown in DLBCL cell line models (Fig. 5G, H,
Supplementary Fig. 16A, B) which led to a reduction of c-myc protein
expression in the TCF4 amplified cell lines (RIVA andU2932), but not in
those without TCF4 amplification (SU-DHL-2 and TMD8), suggesting
TCF4 amplification contributes to MYC over-expression in 18q gain
DLBCL models. Additionally, qPCR analysis further confirmed the
reduction of myc expression led to decreased myc transcriptional
activity of known myc target genes (Supplementary Fig. 16C) In line
with these observations, knockdownof TCF4 strongly and significantly
inhibited cell proliferation and increased apoptosis in TCF4-amplified
cell lines, whereas induction of the same shRNAs had only about half
the effect size in cell lines without TCF4 amplification (Fig. 5I, Sup-
plementary Fig. 16D, E). Further studies utilizing shRNA targetingMYC
confirmed the broad role myc has in regulating proliferative capacity
of all four DLBCL cell lines, independent of TCF4 amplification status
(Supplementary Fig. 16F, G). Taken together, these data suggest TCF4
as an important regulator of myc-related biology within the A7 DLBCL
population.

A7 DLBCL tumors exhibit decreased MHC expression and a less
immune infiltrated tumor microenvironment
Utilizing computational immune deconvolution algorithms (see
Methods, Cell Type Signatures) to interrogate bulk RNAseq data

generated from DLBCL tumor biopsies, A7 tumors were revealed to
have an enrichment of B-cell populations and a diminished infiltration
of multiple T-cell populations, dendritic cells, and macrophages
(Fig. 6A). UtilizingCOOandTME26 as continuous variables, it becomes
apparent that A7 exhibits a combination of highest ABC scores and
lowest TME26 scores, in contrast to the other clusters (Fig. 6B). How-
ever, neither COO and TME26 alone or combined are sufficient to
uniquely identify A7. Using the COO or TME26 scores as univariate
predictors of A7 membership yields prediction AUCs between 0.82
and 0.86 in both ROBUST andMER datasets, with optimized classifiers
achieving roughly 80% sensitivity. However, the specificity in classify-
ing A7 with these parameters is only 70% as over half of ABC-DLBCL
patients with a low tumor microenvironment infiltration are non-A7.

To confirm the computational inferences of low immune infiltra-
tion in A7 DLBCL tumors, we generated an antibody panel appropriate
for multiplexed ion beam imaging (MIBI) which could interrogate
tumor and immune features of the DLBCL tumor microenvironment.
Antibodies were validated on four different tissue types (tonsil, thy-
mus, liver and placenta). As shown in Supplementary Figs. 17–19,
staining of tonsil shows expected histological distribution of cells and
immune markers such as T cells with membranous staining of CD3 in
the intrafollicular area and B cells expressing CD20 andMHC class II in
the germinal center. Additionally, transcription factors such as Ki67
and FoxP3 were located in the nucleus and demonstrated known
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colocalization patterns in appropriate cell types (e.g., FoxP3 staining
primarily in CD4+ T cells) (Supplementary Figs. 17–19). Initial staining
of DLBCL tumor samples demonstrated significant interpatient het-
erogeneity in staining patterns with A7 DLBCL tumors exhibiting high
levels of CD20 cells with low overall antigen presentation marker
expression and a lack of T-cell infiltration (Fig. 6C, Supplementary

Figs. 20, 21). Overlaying multiple channels to visualize markers of
tumor and immune populations demonstrated that A7 tumors were
indeed enriched for proliferative (Ki67 + ) CD20 +DLBCL cells and
absent of CD3 +T-cell infiltration compared to non-A7 tumors (Fig. 6D,
top panel, Supplementary Figs. 17–19). Reports in the literature30 have
linked T-regulatory cells to a highly proliferative tumor through
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secretion of inhibitory cytokines such a TGF-β and expression of high
avidity receptors for essential cytokines such as IL-2 leading to inhi-
bition of T-cell activation and lack of recruitment to the TME, however
this was not differentially observed between tumors from A7 and non-
A7patients inour cohort (Fig. 6D,middlepanel). Interestingly,wewere
able to confirm that A7 DLBCL tumor cells do not exhibit prominent
surface expression of MHC class I or II molecules, in line with reported
data for solid and hematologic tumors with dysregulated c-myc
expression31 (Fig. 6D, bottom panel, Supplementary Figs. 17–19).
We also hypothesize that chromosome 9p21 loss, which is known to be
associated with cold tumors including B-cell neoplasms32, may be one
of the genetic drivers for low TME in A7.

Lenalidomide treatment increased T-cell infiltration in vivo and
overcomes poor prognosis of A7 when combined with R-CHOP
in DLBCL patients
Lenalidomide is a known T cell activator33–35 and based on this ratio-
nale, was hypothesized to overcome the low T cell phenotype of A7
tumors and perhaps overcome its poor prognostic behavior. In addi-
tion, another Aiolos/Ikaros degrader avadomide has been shown to
enhance T cell trafficking into DLBCL tumor tissue in a clinical trial36.
Given this finding, we sought to demonstrate a mechanism by which
lenalidomide may overcome high-risk aspects of A7 biology.

To this end, we performed ChIP-seq for Aiolos and Ikaros in
DLBCL cell lines. We found binding of these two transcriptional
repressors to thepromoter regionofmultiplemembers ofMHCclass I/
II such as HLA-A, HLA-C,and CD58, respectively as well as other costi-
mulatory genes including β2M and CD86 (Fig. 7A)37. Subsequent flow
cytometry experiments demonstrated that degradation of Aiolos and
Ikarosby lenalidomide treatment inHLA-A2 positiveDLBCL cell line RL
resulted in upregulation of both MHC class I and II expression on the
cell surface (Fig. 7B). This lenalidomidemediated upregulation ofMHC
expression resulted in increased CD8+ T-cell specific cytotoxicity as
measured by decreased target cell viability and increased secretion of
granzyme B detected in the supernatant of a co-culture model of
DLBCL cells loaded with an HLA-A2 specific EBV peptide (Fig. 7C).
Degradation of Aiolos and Ikaros within T cells is known to induce
immunomodulatory activities such as activation, increased prolifera-
tion, cytokine expression and phenotypic shifts towardsmore effector
populations33,36,38. To evaluate the effect of lenalidomide on immune-
mediated activities in vivoweperformed a cross between a humanized
CRBN mouse, where exons 2-12 of the human CRBN sequence were
inserted into the genomic locus of the mouse CRBN and the insertion
of a stop codon to prevent translation of the endogenousmouse gene,
with an eµ-myc DLBCL mouse. Diseased spleens from the resulting
progeny were harvested and utilized in an adoptive transfer into
recipient hCRBN mice to generate a cohort of homogenous animals
where drug-mediated effects could be measured. As shown in Sup-
plementary Fig. 22A, transplant of diseased splenocytes results in
effacement of the normal germinal center architecture and the pre-
sence of large B cells (red arrow) in a diffuse pattern within the spleen
compared to non-transplantedmice. Four days post-transplantation of
hCRBN/eµ-myc DLBCL cells, mice were randomized to either vehicle

control or lenalidomide treatment groups (n = 8 mice/cohort). Mice
were then treated once daily for four more days prior to euthanasia
and collection of the spleen. Multiplex immunofluorescence for mar-
kers to quantify the number of tumor and immune cells within the
spleen was performed, leading to the observation that lenalidomide
treatment significantly increased the infiltration of CD8+ T cells but
not CD4+ T cells within the spleen compared to vehicle controls while
also decreasing B cells including proliferating B cells (Fig. 5D, E; Sup-
plementary Fig. 22B). Additionally, we observed increased HLA-DR
expression onmalignant DLBCL cells within the spleen ofmice treated
with lenalidomide and this correlated with increased DLBCL cells
staining positive for cleaved caspase 3, a marker of apoptosis (Sup-
plementary Fig. 22C). Overall, lenalidomide can improve immune vis-
ibility of DLBCL cells through increased MHC I/II expression and
increase trafficking of CD8+ T cells to the DLBCL tumor.

We next examined the effect of lenalidomide in combination with
R-CHOP (R2-CHOP) compared to R-CHOP in the ROBUST trial, and
found an interaction between A7 status, treatment arm, and outcome.
While there was no significant different in event-free survival rates
between treatment arms in the overall ITT population5, a retrospective
analysis restricted to A7 patients showed that R2-CHOP is significantly
associated with a superior EFS compared to R-CHOP (Fig. 7F; A7 R2-
CHOP vs. A7 R-CHOP HR=0.50 (0.30-0.83)). Interestingly, the clinical
performance of R2-CHOP in non-A7 ABC-DLBCL patients is not sig-
nificantly different from R-CHOP (HR = 1.05; (0.69–1.59).

Discussion
While many patients with newly diagnosed DLBCL are cured, about
40%have progressive disease and are in need of novel therapies. Given
the clonal heterogeneity of DLBCL and the involvement of both tumor
intrinsic and extrinsic factors, prospectively identifying these patients
and developing targeted agents remains a challenge in the field. Newer
classification systems based on genetics and gene expression have
identified subtypes with poor clinical outcome but have proven chal-
lenging to implement in the clinic. Here we apply an unsupervised
clustering approach called iClusterPlus, in order to identify patient
clusters among transcriptomic features representing both the tumor
and the microenvironment. We identify a high-risk patient population
called A7 in ndDLBCL whose poor outcome is not explained by clinical
prognostic indicators such as IPI, and therefore provides a biologically
meaningful way to identify high-risk patients that clinical fac-
tors do not.

The high-risk A7 patient population is constituted of approxi-
mately 80% ABC-DLBCL and accounts for approximately 40% of all
ABC patients. One hallmark of A7 is elevated expression ofMYC and its
downstream pathways, however this is likely driven by upstream reg-
ulators ofMYC as theMYC gene is not amplified or the recipient of an Ig
translocation in A7 patients. Elevated levels of c-myc expression and
downstream affected pathways are associatedwith a reorganization of
the tumormicroenvironment leading to lack of infiltration of immune
cells such as T and NK-cells39. Others have shown that elevated MYC
mRNA and protein expression is associated with poor survival in ABC
patientswhereMYC translocations are rare40; andMYCover-expression

Fig. 5 | A7 DLBCL tumors are characterized by high c-myc expression and
activity. A Results of GSEA Hallmark pathway analysis presented as positive or
negative association with A7 cluster membership. B c-myc gene expression by A7
status across clinical cohorts. In each cohort, MYC is expressesd at significantly
higher levels in A7 compared to non-A7 (two-sided, unadjusted Wilcoxon p-values:
ROBUST, <2.2e16; MER, 2.9e-7; REMoDL-B, 2.2e-9; GOYA, 5.5e-8; Reddy, 1.8e−9).
CRepresentative c-myc IHCstaining inmultiple A7cases andnon-A7cases; samples
were selected for similar tumor cellularity. D Gene expression of TCF4 in patients
plotted with copy number alteration status of TCF4 (ROBUST, N = 299), value in
parentheses, copy number of TCF4;. Box plots represent the median and upper/
lower quartiles, with whiskers extending to the most extreme values. **** indicates

p < 0.0001 (TCF4 Diploid vs. Gain, p = 1.8e−5; Diploid vs. Amplification, p = 4.4e
−14), N.S., not significant (two-sided, unadjusted Wilcoxon test). E TCF4 mRNA
expression in DLBCL cell lines, value in parentheses is the copy number of TCF4 in
each model. FWestern blot analyzing expression of TCF4 in ABC-DLBCL cell lines.
Representative blots from 3 independent experiments. G, H Western blot analysis
and quantitation of expression of MYC and TCF4 in TCF4 knockdown ABC-DLBCL
cell lines. GAPDH, loading control. Represetative blots from 2 independent
experiments. I Cell proliferation assay of control (shNT) and TCF4 knockdown
(shTCF4) in ABC-DLBCL cell lines. Each point represents the mean of technical
triplicates with standard error of the mean too small to visualize. Source data are
provided as a Source Data file.
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is not associated with translocation events or copy number gain41.
While somatic mutations are not significantly associated with A7, the
group is enriched in CNAs including amplifications on chromosomes 3
and 18. Copy number gains on chromosome 3 could contribute to
immune escape (FOXP1, 3p14), NF-κB pathway activation (NFKBIZ,
3q12) and B cell differentiation arrest (BCL6, 3q27)42. This finding is not

surprising as the discovery of A7 was based on gene expression which
may be more a function of copy number alterations than single
nucleotide variants.

Limitations of our analysis include the bulk nature of the RNAseq
data, which hampers analysis of cell-type specific signatures found
only in tumor or immune cells, for example. Further analysis may be
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conduced in single cell RNAseqdata to better understand specificity of
our signatures with regard to certain cell types, as well as the cellular
composition of different SubLymE clusters.

Comparisons to other subtyping methodologies showed that our
classifier shares points of commonality and differentiation with other
methods, respecting the combination of both tumor-intrinsic and
microenvironment features of DLBCL. A7 showed strong association
with ABC-associated classes including ABC COO, the HMRN MYD88
group, and DZsig-Neg. In addition, A7 is characterized by an immune-
low microenvironment and has strong associations with LME-DE and
TME26-negative signatures. A7 was associated with the Unclassified
Ecotype and showed no enrichment in any LymphGen cluster. Froman
outcome perspective, A7 enriches for EFS24 failure and is associated
with the HRSig-Mayo High-risk/ARID1A signature, as well as the
LymphProg-High risk class. Finally, A7 is associated with B-cell state S5
which describes ABC/pre-plasmablast biology.

Pairwise associations between classificationmethods showed that
nomethodwas statistically independent from all othermethods, and a
hierarchical clustering of the association metrics (Supplementary
Fig. 7) showed that the methodologies associate in three main groups.
These include a group of genomic/tumor-intrinsic classifiers (Lymph-
Gen, HMRN, DZsig), a group dominated by microenvironment-based
classifiers (TME26, Ecotyper, LME, HRSig-Mayo), and a group depen-
dent on relationships between tumor-intrinsic and microenvironment
signal (SubLymE, B-cell State, COO by Reddy and LymphProg).
Although Reddy does classify tumor-intrinsic COO signal, it also bears
a nonlinear relationship to microenvironment infiltration (Fig. 6B).

Survival analysis of the different clustering methods (Supple-
mentaryFigs. 8–11) showed that fourof the tested classifiers resulted in
significant stratification of EFS inMER (or REMoDL-B, forMHG), which
were the SubLymE classifier, the HRsig-Mayo classifier, DZsig, MHG,
and LymphProg. The SubLymE classification method provides a com-
plementary approach to other methods, identifying unique high-risk
patient subsets not identifiable by other methods.

TCF4 is a transcription factor known to regulateMYC expression29

andour in vitro data demonstrated this linkage supportingTCF4 asone
putative therapeutic target for A7 patients. It will be important in
future work to characterize TCF4 protein expression in patient biop-
sies as a potential biomarker and therapeutic target. Additional path-
way changes enriched in A7 include upregulation of G2M checkpoint
and mitotic spindle checkpoint indicative of cell cycle dysregulation.
Upregulation of DNA repair pathways and down-regulation of the p53
pathway were also observed but in the absence of enrichment of TP53
mutations. Another feature of A7 is upregulation of the oxidative
phosphorylation pathway whichwas previously reported in in a subset
of DLBCL43,44.

An important hallmark of A7 is the low abundance of immune
infiltrating cells includingTcells andmacrophages aswell as lowMHC I
and II expression on the malignant B cells. Interestingly, we show ret-
rospectively in a large Phase 3 trial that lenalidomide, a cereblon reg-
ulator and IKZF1/3 degrader, in combination with R-CHOP can
overcome the poor prognosis of R-CHOP alone in A7 patients. These
findings are supported by our prior study that identified a cohort of

DLBCL with early clinical failure that were enriched for ABC, had
enhanced activation of inflammatory pathways, and were sensitive to
R2CHOP45. Upon binding of lenalidomide to CRBN, CRBN converts to a
closed active form andbinds substrates IKZF1 and 3 (Ikaros andAiolos)
thereby recruiting them for ubiquitination by theCRL4-CRBN complex
and subsequent degradation via the proteosome33,35,46,47. Ikaros and
Aiolos directly repress the transcription of multiple families of genes
including interferon stimulated genes whose function results in
decreased proliferation of DLBCL cells48. Mechanistically, lenalido-
mide has been shown to induce a proliferative block and increased
apoptosis in ABC-DLBCL cells48–50. Additional data presented herein
demonstrate that lenalidomide may also stimulate immune cell traf-
ficking into the DLBCL tumor as well as increased MHC expression
leading to immune recognition of tumor cells by CD8+ T cells.
Although these data do not support use of lenalidomide as part of
front-line therapy for DLBCL, they provide a mechanistic rationale for
the use of more active IKZF1/3 degraders such as CC-99282/golcado-
mide in both standard risk and high-risk A7 ndDLBCL patients, which
requires testing in the clinic51. It also opens the potential for epigenetic
agents that may enhanceMHC expression. Application of SubLymE to
the bortezomib arm of REMoDL-B showed that A7’s poor prognosis
was mitigated somewhat (p = 0.16), although by an unknown
mechanism of action and to a lesser extent than lenalidomide in
ROBUST. Newer therapies such as Polatuzumab in combination with
R-CHP and T cell engagers are emerging52, although mechanisms of
resistance such as lower baseline CD8 T-cell levels and Myc
overexpression53 may pose challenges. The clinical benefit of these
promising agents as well as others like BTK inhibitors in the A7
population remains an open question, but application of SubLymE to
these patient cohorts would provide insights. Future prospective
application of SubLymE to cohorts treated with drugs of different
mechanisms of action beyond immunochemotherapy may provide
further insight into the interplay between the biology defining the
SubLymE classes and the biological drivers of disease progression, as
well as establishing A7 as a distinct subgroup amenable for clinical
intervention.In summary, this work identified a biologically homo-
geneous high-risk DLBCL patient population that needs prospective
validation but holds promise for future targeted drug development
in DLBCL.

Methods
Ethics Statement
Our research methodology complies with all relevant ethical regula-
tions, including FDA approval for clinical trial protocols and patient
consent, and Mayo Clinic IRB approval for the MER observational
study. Animal studies were approved by the internal BMS Institutional
Animal Care and Use Committee. Tumor size/burden was not used as
an inclusion/exclusion criterion for the cohorts analyzed in this work.

Datasets
The Discovery cohort of 1208 patients was a combination of the
ROBUST clinical trial screening population (NCT02285062, n = 1016)5

which included all DLBCLs irrespective of treatment or COO, and a set

Fig. 7 | Lenalidomide in combination with R-CHOP can overcome poor prog-
nostic outcomes associated with A7 in ABC-DLBCL patients. A ChIP-seq peaks
demonstrating direct binding of Aiolos and Ikaros at representative promoters of
MHCclass I and II genes in U2932DLBCL cells.B Surfacemeanfluorescent intensity
of MHC class I (black bars) and MHC class II (gray bars) in DLBCL cells treated with
vehicle or lenalidomide for 24h as measured by flow cytometry. Error bars repre-
sent standard error of the mean. C Vehicle and lenalidomide treated target DLBCL
cell viability following co-culture with EBV reactive CD8+ T cells overnight. % live
target cells are marked by inverted triangles. ELISA measurements for granzyme B
in resulting co-culture supernatants aremarkedby rounddots. Error bars represent
standard error of the mean. D Cellular composition for indicated population in

hCRBN/eu-myc transplanted mice treated with vehicle or lenalidomide (30mg/kg)
for four days). Scale bars = 300 µm.N = 5. E Intratumoral cell counts in transplanted
mice and transplanted mice treated with vehicle or lenalidomide by multiplex
immunofluorescence for indicated cell population (**p <0.01, ****p <0.0001; B cells
No transplant vs. Vehicle p = 5.7e−10, Vehicle vs. Len p = 1.4e−7; CD8+ T cells No
transplant vs Vehicle, p = 1.8e−12, Vehicle vs. Len p = 4.4e−6). F Kaplan Meier EFS
curves for A7 and non-A7 ABC-DLBCL populations treated with either R-CHOP or
lenalidomide plus R-CHOP (R2-CHOP) in the ROBUST trial, with accompanying
table of group-pairwise log-rank p-values. Source data are provided as a Source
Data file.
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of commercially sourced newly diagnosed patient samples (n = 192).
The replication cohorts included MER (Molecular Epidemiology
Resource), an observational epidemiology cohort study of pro-
spectively enrolled newly diagnosed DLBCL patients at Mayo Clinic
(Rochester,MN) and theUniversity of Iowa (IowaCity, IA) (n = 343)22 as
part of Lymphoma Genome Project (LGP). Patient samples in these
studies were collected with informed consent for research use and
were approved by the Institutional Review Board at Mayo Clinic (for
MER) and each study site’s Institutional Review Board (for ROBUST) in
accordance with the Declaration of Helsinki. Other replication cohorts
were obtained from public sources include REMoDL-B; the REMoDL-B
clinical trial cohort (n = 928, n = 469 on R-CHOP arm;23 the GOYA
clinical trial (n = 271, R-CHOP); and the Reddy cohort (n = 442, R-
CHOP). All cohorts were unblinded with respect to treatment during
analysis in order to assess differential effects by treatment arm.

SubLymE was trained entirely on DLBCL NOS patients without
HGBL. Samples from the MER cohort generally had high tumor cellu-
larity by pathology review, with 83% of samples having >50% purity,
and 57% having >70% purity. Unless otherwise specified, analysis of
clinical outcomewas conducted only in R-CHOP-treated patients, or in
the MER dataset, R-CHOP-like-treated patients, which included a
minority of patients treated with MR-CHOP (9% of the RCHOP-like
treated cohort), R-EPOCH (7%), Other immunochemotherapy (3%), ER-
CHOP (1%), RAD-RCHOP (1%), and RCHOP/Zevalin (1%). For ROBUST,
clinical outcome was available only for ABC patients. Demographics
and clinical characteristics of the discovery and replication cohorts are
summarized in Table 1.

RNAseq and DNA sequencing
ROBUST, MER, and the Commercial samples were sequenced at
Expression Analysis, Inc (Durham, HC, USA) according to standard
protocols. The Allprep DNA/RNA FFPE kit was used to simultaneously
purify genomic DNA and total RNA from formalin-fixed, paraffin
embedded (FFPE) tissue sections. RNAseq libraries (75PE, 50M) were
constructed using Illumina TruSeq RNA Access method.

Whole exome sequencing (WES) libraries (200x for tumor, 100x
for germline control) were created for MER and Commercial cohorts
using the Agilent SureSelectHumanAll Exon v6.Whole genome (WGS)
libraries (60X for tumor, 30X for germline) were prepared for ROBUST
samples using the Swift Accel-NGS 2S Plus DNA library kit (#21024 or
21096, Swift) with modifications to the Ampure Bead cleanup steps in
the procedure.

Sequencing data QC and processing
RNAseq samples met minimum quality thresholds in terms of library
size, duplication rate, and alignment. Cohort-level QC was performed
by removing samples failing multiple outlier detection metrics. After
an initial round of unsupervised clustering, a small, highly distinct
cluster of borderline quality samples were removed for further
analysis.

Sequencing data were processed through an internal cloud-based
platform which runs the Sentieon implementation of the GATK best
practices, using BWA-mem for alignment and the Sentieon imple-
mentation of Mutect2 (tnhaplotyper). Variants were annotated with
SnpEff using the dbnsfp database. For WGS, data copy number aber-
rations were called using Battenberg54 and structural variants were
called by Manta. For WES data copy number aberrations were called
using Sclust55. Structural variants were not called for the WES data.
RNA-seq data was aligned with STAR aligner and quantified with
salmon.

RNAseq data normalization
The MER, ROBUST, GOYA, and Reddy cohorts were reference nor-
malized to a subset of the Discovery data, referred to as the com-
mercial samples,whichwasfixed as a referencepopulation. To do so, a

sample-wise scaling was applied to TPM RNAseq data using the mean
of five DLBCL-specific housekeeping genes used in the Nanostring
Lymph2Cx assay (ISY1, R3HDM1, TRIM56, UBXN4, and WDR55). After
sample-level scaling, each gene was standardized to the reference
population by subtracting the reference mean and dividing by the
reference standard deviation. Ultimately, the reference fixes all genes
to have a mean of 0 and a variance of 1, while all other datasets were
transformed to be a gene-wise Z-scoring with respect to the reference
population.

Because the REMoDL-B dataset was Illumina BeadArray and not
RNAseq data, we applied a self-standardization approach that used the
housekeeping scaling step as described above, followedby a gene-wise
scaling that explicitly set eachgene to havemean0 and variance 1. This
self-standardization approach is suitable for large, representative
patient cohorts as applied herein, but could yield unexpected results
for a small or non-representative cohort.

The reference normalization approach puts all of the data in a
unified numerical space with comparable expression levels and allows
for portable models that can be trained in one dataset and applied
directly to any other cohort without the need for re-parameterization.
It also allows for the normalization of even a single sample, with no
requirement for a representative batch, and furthermore, normalized
data is never affected by the introduction of new samples. Existing
classifiers such as the Reddy COO classifier20 and TME26 classifier14

were adapted to the normalized gene expression space by re-
weighting decision thresholds.

In practice, no significant batch effects by dataset were observed
in the normalized combined datasets of all cohorts (Supplementary
Fig. 23). We also validated that the normalization approach left rele-
vant biological signals intact by comparing gene expression classifiers/
signatures applied to the normalized data against orthogonal, non-
RNAseq data. These included comparing the Reddy COO classification
against the Hans IHC-based method, the double-hit signature
classifier12 against FISH calls, and the cell type abundance GSVA scores
against cell type marker density from IHC and MIBI. All features
derived from the normalized RNAseq data were highly concordant
with their corresponding non-RNAseq features.

Statistical Analysis
Differentially expressed significance was calculated by the t-test or
Wilcoxon rank-sum test where appropriate. Multiple hypothesis cor-
rection was performed with the Benjamini-Hochburg false discovery
rate method where noted. All statistical tests were two-tailed. Gene
signature scores were calculated using the “ssgsea” method from the
GSVA package. Correlation values are calculated as Spearman’s rho.
General tests of categorical association are chi-squared (or Fisher
where appropriate). The log-rank test is used to compute p-values for
survival data. All analysis was performed in R version 4.2.1. Various
statistical tests from the stats v3.5.3 R (54) CRAN package were used to
check significanceof the associationof the subpopulations todifferent
variables. Fisher’s exact test for binary data (mutations/CNVs), t-test
for continuous variables (GE pathway scores), and global log-rank test
for outcome (EFS/OS). Boxplot figures represent the lower, middle,
and upper quartiles as the lower box edge, center line, and upper box
edge respectively, with whiskers extending to up to 1.5 times the
interquartile range. Error bars represent 95% confidence intervals.
Statistical analysis was not stratified by (self-reported) sex, but post-
hoc analysis did not find significant associations between our findings
and sex.

Cell type signatures
Cell type specific signatures were generated from the LM22 matrix
which describes 22 functionally defined leukocyte types56. This sig-
nature matrix was augmented and tailored to DLBCL by adding an
additional cell type representing malignant DLBCL B cells, and was
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trained on purified cell populations57. Benchmarking deconvolution
results using the augmented signature matrix identified high correla-
tion between the abundance of CD20+ cells as measured by IHC. The
addition of the DLBCL-specific cell type also significantly reduced the
estimated abundance of the unclassifiable “Other” cell type popula-
tion, which previously accounted for up to 40% of the estimated
abundance.

DLBCL classifiers
The Reddy method20 was implemented to call COO from RNAseq data
and was shown to have excellent concordance with the gold standard
Nanostring method.

The DHIT/DZsig method11,12 was adapted to the normalized RNA-
seq space by using published gene-level DHITsig coefficients to com-
pute a linear DHITsig score. A threshold for this score was selected in
theMER data as the highest threshold that captured all cases known to
bedouble-hit by FISH,whichyielded a classifiermatching the expected
prevalence of DHITsig + cases. This signature was further extended to
represent the DZsig classification by adding a third “indeterminate”
group with approximately 10% prevalence between the positive and
negative groups.

For Ecotyper and Bcell state, we applied the online tool at https://
ecotyper.stanford.edu/lymphoma/.

For LME, we applied BostonGene’s package on Github (https://
github.com/BostonGene/LME).

For theHMRNclassification,we used a total of 115 genetic features
which occurred in at least 1% of patients. These features defined binary
variables denoting 104mutations, 4 amplifications (BCL2,MALT1, REL,
XPO1), and 7 markers (TP53, TNFRSF14, TNFAIP3, RB1, PRDM1,
CDKN2A, CD58) indicating presence of either a homozygous deletion
or mutation. We did not have data on HIST1H2BD_S mutation and
DDX3X marker.

We applied the LymphGen method using the v1.0 tool available
online at https://llmpp.nih.gov/lymphgen/index.php. We followed
the documentation including copy number and mutation data
where possible, but had a small number of missing input features.
We omitted one CNV feature (LOC107986596), and two mutation
features (TMEM121 and LOC107986596), out of 104 total features in
each. We included synonymous, truncating, and MYD88 L265P
annotations for the mutation data. We did not include arm-level
copy number data.

To apply a version of the LymphProg classifier to our normalized
data, we applied a weighted sum of classifier genes according to the
coefficients provided in the literature, and applied the provided score
threshold of −0.521, which yielded class prevalences in line with
expectations.

The MHG classifier was examined in the REMoDL-B dataset, for
which the MHG classifications were publicly available. Although dif-
ferential signatures ofMHGversus other COOsubtypeswere identified
in the literature, we could not find an implementation of the classifier
itself to apply to the MER data.

Unsupervised clustering
The clustering input data consisted of normalized RNAseq gene
expression features plus feature scores derived from the gene
expression data, agnostic to clinical and outcome data. Expression
features were restricted to genes in the top quartile of mean expres-
sion and variance in TPM space. The derived features consisted of
GSVA signature scores19 including the MSigDB Hallmark and C1 path-
ways, as well as cell type signatures57. While the derived features did
share some information content with the raw gene expression fea-
tures, most features were derived using raw features not selected for
clustering. Some presence of redundant signal across the input data
types is expected, and indeed relied upon by the latent variable
model used.

To better understand the unique signal carried by each input
matrix, we calculated the sample-pairwise correlationmatrix in eachof
the four individual feature spaces. We then calculated the Correlation
Matrix Distance (CMD) between the correlation matrix in raw gene
expression space and the other three correlation matrices, in order to
assess whether the correlation structure among patients was repeated
across the data types, or if patients showed different patterns of
similarity in different feature spaces. This was compared against a null
distribution of CMD values when using an equivalent number of raw
gene expression features, rather than the engineered features. We
found in each case that the derived features showed significantly
greater CMD than selected features, indicating that the derived fea-
tures allow different views of patient similarity not easily captured in
raw gene expression space. In short, the engineered signature features
provide distinct views of the patients rather than simply representing
redundant signal already captured in the gene expression features.

The iClusterPlus method18 was applied to the subset data for
multiple choices of K from 2 to 12. This procedure was repeated 200
times, with cluster assignments recorded in each case. The 200 runs
were then summarized using a sample-pairwise co-clustering fre-
quency matrix, which was computed as the number of times two
samples were assigned to the same cluster, divided by the number of
times two samples appeared in the same run. This sample-pairwise
matrix was then clustered using hierarchical clustering using theWard
method and 1minus the co-cluster frequency as the distancemetric, in
order to obtain one final clustering per choice of K. One value of K was
selected by evaluating cluster stability measures including the silhou-
ette metric and co-cluster frequency distribution, with 8 being the
being the best-fitting number of clusters (Supplementary Fig. 24).

SubLymE classifier
Ageneralized linearmodel (GLM) classifierwas trainedon theDiscovery
data using the consensus cluster labels (with A8 samples removed) as
the gold standard. Several choices of the elastic net mixing parameter
alpha were tested, with the goal of maximizing predictive performance
and minimizing model complexity. The regularization parameter
lambda was optimized using cross-fold validation and was selected as
the minimum value that yielded a misclassification rate within one
standard error of the minimum32. Cross-validation results indicated
good performance of the classifier training methodology, with 93%
accuracy on the training cohort, as well as 81-98% sensitivity/positive
predictive value within each cluster individually. Since the training data
was normalized to a reference population, the classifier is directly
applicable to other datasets normalized to this space, with no need to
re-train parameters or thresholds. The SubLymE classifier may be
applied to any FFPERNAseq samplenormalized in the samewayandwill
produce a class label for each case (i.e., no case will be unclassified).
Although a class labelwill beproduced for any inputdata, application to
poor quality data will produce poor quality results. When applying
SubLymE to the previously omitted A8 samples in the Discovery data,
most were classified as A4, which was the least reproducible cluster in
terms of pathway dysregulation and prevalence.

MHC I/II expression
Differential surface expression ofMHC I and II molecules on DLBCL cell
lines treatedwith DMSOor lenalidomide (1 μM) for 3 days was assessed
viaflowcytometry using anti-humanHLA-ABCand anti-humanHLA-DR/
DP/DQ antibodies (clone G46-2.6 and clone Tu39, respectively, BD
Biosciences). No commonly misidentified cell lines were used.

Antigen-specific CD8 T-cell cytotoxicity
DLBCL cell lines selected for the antigen-specific CD8 T cell cytotoxi-
city were obtained from American Type Culture Collection (ATCC), or
Leibniz Institute-DSMZ (Braunschweig, Germany), and maintained in
RPMI medium [RPMI-1640 with 10% fetal bovine serum (FBS),

Article https://doi.org/10.1038/s41467-024-50830-y

Nature Communications |         (2024) 15:6790 15

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fecotyper.stanford.edu%2Flymphoma%2F&data=05%7C01%7CMatt.Stokes%40bms.com%7C7df6a26db5c04ae8897708db5d53ba23%7C71e34cb83a564fd5a2594acadab6e4ac%7C0%7C0%7C638206386409862271%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=G5Kd8hY7bQS4FutZLZl3%2FeuiPfr9l%2BeYPu9%2Bud9%2F65I%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fecotyper.stanford.edu%2Flymphoma%2F&data=05%7C01%7CMatt.Stokes%40bms.com%7C7df6a26db5c04ae8897708db5d53ba23%7C71e34cb83a564fd5a2594acadab6e4ac%7C0%7C0%7C638206386409862271%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=G5Kd8hY7bQS4FutZLZl3%2FeuiPfr9l%2BeYPu9%2Bud9%2F65I%3D&reserved=0
https://github.com/BostonGene/LME
https://github.com/BostonGene/LME
https://llmpp.nih.gov/lymphgen/index.php


supplemented with 2 mmol/L L-glutamine, 1% penicillin/streptomycin
and 1mmol/L sodium pyruvate]. HLA-A2 surface expression was
accessed via flow cytometry using antibodies (clone BB7.2, BD Bios-
ciences). HLA-A2 positive, EBV-specific primary human CD8 T cells
were obtained from Charles River (donor 213, CMV negative). HLA-
A*02:01 EBV BMLF1 peptide was obtained fromMBL International. To
conduct the cytotoxicity assay, target DLBCL cell lines were labeled
with 400 nMof CFSE (Thermo Fisher Scientific) and treatedwith either
DMSO or lenalidomide (1 µM) for 3 days. On the day of co-culture,
target cells were labeled with or without 1 ng/ml of EBV peptides for
30min. EBV-specific effector CD8 T cells were thawed and counted.
Co-culture of CD8 T cells with target cells was set up in 96 well round
bottom plates at an effector:target ratio of 1:1 overnight. On the fol-
lowing day, supernatants from co-culture samples were collected for
Granzyme B secretion via ELISA (Biolegend), while cells were stained
with Annexin V and TO-PRO-3 (Thermo Fisher Scientific) and analyzed
by flow cytometry. CFSE+ target cells were gated on, followed by
gating on Annexin V-, TO-PRO-3- double negative cells as viable target
cells. Absolute cell count was obtained using CountBright Absolute
Counting Beads (Thermo Fisher Scientific).

Multiplex immunofluorescence in mouse tissue
Mouse spleen samples were fixed in formalin 4% for 72h and embedded
into paraffin blocks. Sequential 4-µm-thick sections were placed on
Super Frost slides for standard Hematoxylin–Eosin, IHC and IF staining.
Chromogen staining was performed for immunohistochemistry valida-
tion of specificity of individual antibodies. Antibodies against B220
(dilution 1:50, PTPRC/1783R, NBP-54578, Novus Biologics), CD8 (dilution
1:200, D4W2Z, 98941S, Cell Signaling Technology), CD4 (dilution 1:50,
D7D2Z, 27520, Cell Signaling Technology), KI67 (dilution 1:100, SP6,
ab231172, Abcam) were validated as a chromogen and monoplex
immunofluorescent staining. IHC and mIF assays were performed on
using a VENTANA DISCOVERY ULTRA automated staining instrument,
using VENTANA reagents, according to the manufacturer’s instructions.
Slides were de-paraffinized using EZ Prep solution (950–102, Roche) and
epitope retrieval was accomplishedwith CC1 solution (950–224, Roche).
Slideswere incubatedwith rabbit 1°Abs, diluted in antibodydiluent (760-
219, Roche), followed by secondary anti Rabbit-HQ (OC 07017812001,
Ventana) for chromogen staining or Rabbit-Polymer (non-diluted,
ARR1001KT, Ventana) for immunofluorescent staining. For chromogen
detection, slides were developed using the Ventana Discovery Chro-
moMap DAB kit (760-159, Ventana) according to the manufacturer’s
instructions. Slides were then counterstained with hematoxylin (790-
2208, Ventana), followed by Bluing reagent (760-2037, Ventana). For
fluorescent staining and detection, slides were stained with Opal Polaris
7‐ColorAutomation IHCKit (NEL871001KT,AkoyaBiosciences).Weused
Opal 480 (1:100), Opal 520 (1:100), Opal 570 (1:100), Opal 620 (1:100),
and Opal 690 (dilution 1:50) and Opal 780 (1:25). Fluorescent singleplex
staining was performed for each biomarker and compared to the
appropriate chromogenic singleplex to assess staining performance.
After the staining was completed, the slide was mounted by using Pro-
long Diamond Antifade Reagent (P36970, Invitrogen). Multispectral
images were acquired on the PhenoImager HT system (Vectra Polaris,
Akoya Bioscience), analyzedwith InForm software (Vectra Polaris, Akoya
Bioscience), and the quality report and marker quantification were
generated with the phenoptrReports package.

shRNA knockdown
Doxycycline (Dox)-inducible shRNA constructs were generated by
Cellecta (Mountain View, CA, USA) using pRSITEP-U6Tet-(sh)-EF1-
TetRep-2A-Puro plasmid. Briefly, 293FT cells were co-transfected with
lentiviral packaging plasmid mix (Cellecta, Cat# CPCP-K2A) and
pRSITEP-shRNA constructs. Viral particle was collected 48 and 72 hrs
after transfection and then concentrated with Lenti-X Concentrator
(Takara Bio USA). For infections, cells were incubated overnight with

concentrated viral supernatants in the presence of 8 µg/ml polybrene.
Cells were then washed to remove polybrene the next day. At 48 h
post-infection, cells were selected with puromycin (2 µg/ml) for more
1 week before experiments. For knockdown experiments, cells were
seeded at 1×105 cells/ml and induced with 20 ng/ml of Dox or DMSO
vehicle control. On day 3 of Dox induction, cells were re-seeded in
medium with refreshed Dox or DMSO. For proliferation assay, 15,000
cellswere seeded in 96well U-bottomplate followed bymeasuring cell
viability with CellTiter-Glo (Promega) for 5 consecutive days. The
remaining cells were seeded at 5×105 cells/ml and incubated for addi-
tional 2 days. Cells were then harvested for Western blot analysis. The
shRNA target sequences were: shNT: CAACAAGATGAAGAGCACCAA;
shTCF4-13: GAGACTGAACGGCAATCTTTC; shTCF4-14: CACGAAATC
TTCGGAGGACAA. shMYC-40: CAGTTGAAACACAAACTTGAA; shMYC-
42: CCTGAGACAGATCAGCAACAA

Western blotting
Cells were lysed with cell lysis buffer (50mM TrisHCl pH7.4, 250mM
NaCl, 0.5% Triton X100, 10% glycerol) supplemented with Halt pro-
tease/phosphatase inhibitors (Thermo Fisher Scientific, 78443). Cell
lysates were subjected to sonication to breakdown nuclei and reduce
viscosity caused by released genomic DNA. The protein concentration
was measured by a Bradford Protein Assay (Bio-Rad). Samples were
diluted to equal concentration followed by with NuPAGE LDS sample
buffer and 2-Mercaptoethanol (1.25% final concentration) before boil-
ing at 95 °C for 5min.Whole-cell lysateswere resolvedonNuPAG4-12%
Bis-Tris Midi Protein Gels (Invitrogen) and transferred onto nitro-
cellulose membranes, which were then subjected to blocking in
Intercept® (TBS) blocking buffer (LI-COR). Proteins of interest were
detectedby incubationwith theprimary antibodies listedbelowat 4 °C
overnight. After washing with 1XTBST, the membrane was incubated
with either IRDye 800CW goat anti-rabbit IgG or IRDye 680LT goat
anti-mouse IgG secondary antibody (1:10,000) at RT for 1 h. After
washing with 1XTBST, bends were visualized by Odyssey Imaging
System (LI-COR). Antibody information: TCF4 (Proteintech, 22337-1-
AP, 1:1,000), MYC (abcam, ab32072, 1:1,000), GAPDH (Cell Signaling
Technology, 2118 L, 1:5,000).

Capillary Western blot analyses
Capillary Western analyses (Supplementary Fig. 16A, B, and F) were
performed using the ProteinSimple Jess System (Catalog # 004-650).
Protein samples (1 µg/well) were loaded 12-230 kDa separation capil-
lary cartridges (ProteinSimple, SM-W004) and processed according to
the manufacture instruction. The antibodies used were identical to
those used in the traditional Western blot except for dilution factors.
The dilution factors: TCF4 (1: 40), MYC (1:40), and GPADH (1:1,000).
Results were analyzed by Compass for SW software (Version 6.2.0).

Multiplexed ion beam imaging (MIBI)
MIBI is performed by staining tissue with a panel of metal-labeled
antibodies and then imaging the tissue using time-of-flight secondary
ion mass spectrometry (ToF-SIMS). Tumor biopsy slides were stained
using standardprotocol at Ionpath Inc. (Menlo Park, CA). Expressionof
markers were quantified at the single cell level using scaled (arcsinh
transformed) summed intensities. Thresholds for each marker were
initially determined based on the histogram distribution of intensity
values across all field of views (FOVs). Samples used in MIBI analysis
were taken from the Commercial cohort.

Immunohistochemistry and pathology scoring
Immunohistochemistry (IHC) assay was performed using Bond Poly-
mer Refine Detection Kit on Leica Bond slide autostainer (Leica
Microsystems Inc., Buffalo Grove, IL). Briefly, formalin-fixed paraffin-
embedded (FFPE) tissues were sectioned at 4 micron and depar-
affinized on the Bond autostainer. Antigen retrieval was performed

Article https://doi.org/10.1038/s41467-024-50830-y

Nature Communications |         (2024) 15:6790 16



with Epitope Retrieval 2 (ER2, pH 9.0) for 20min at 100 °C. The slides
were blocked for endogenous peroxidase activity with Peroxide Block
for 5min at room temperature. Sections were then incubated with the
rabbit monoclonal anti-MYC antibody (Abcam, Catalog No. ab32072)
at a 1/200 and 1/1000 dilution, respectively, for 15min at room tem-
perature. Horseradish peroxidase (HRP) labeled Polymer was used at
the instrument’s default condition. The antigen–antibody complex
was then visualized with hydrogen peroxide substrate and diamino-
benzidine tetrahydrochloride (DAB) chromogen. Slides were coun-
terstained with hematoxylin. MYC immunoreactivity was evaluated on
entire tumor sections by a pathologist.

FISH and copy number analysis
For the MER cohort, translocation events in MYC (8q24.1), BCL2
(18q21.2), and BCL6 (3q27) were determined by FISH break apart
probes (Abott Laboratories, Des Plaines, IL, USA) on tissue microarray
slides. Imaging analysis was completed by a technologist in the Mayo
Clinic department of Laboratory Medicine and Pathology. Detailed
methods for FISH analysis are previously published58.

Adoptive transfer of eu-myc/hCRBN splenocytes and treatment
of recipient mice
Humanized CRBN (hCRBN) C57BL/6 mice were bred with eu-myc
C57BL/6 mice. Upon development of lymphoma, spleens were har-
vested and resulting splenocytes were viably frozen. To transplant
diseased splenocytes to hCRBN mice, splenocytes were thawed,
washed, and viability determined. Viable splenocytes cells were
resuspended in RPMI media (GIBCO) and injected 1×105 lymphoma
cells by tail vein into recipient hCRBN mice. Lymphoma cells were
allowed to engraft for four days, followed by randomization between
vehicle and lenalidomide (30mg/kg) treatment once daily for via PO
for four additional days. Spleens were harvested and subjected to
multiplex immunofluorescence with indicated antibodies. Animal
research followed the ARRIVE guidelines, using 8-10 week old female
mice in groups of 10 We followed AAALAC and NIH guidelines for
mouse health and body condition assessment.

RNA extraction, reverse transcription, and real-time PCR
Total RNA was extracted by RNeasy Mini Kit (Qiagen) and reverse
transcribed by iScript™ cDNASynthesis Kit (Bio-rad). Quantitative real-
time PCR (qPCR) was conducted on a VillA 7 System using the Power
SYBR Green PCR Master Mix (Applied Biosystems). Gene expression
values were calculated by normalization to 18S using the comparative
CT method. Primers used in the study are listed in Supplementary
Table 14,25,27,28,44,51,52.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided as a SourceData file, found in themanuscript
supplement. The sequencing data for the ROBUST clinical trial have
been deposited in the EGA database under accession code
EGAD50000000482. The data are available under restricted access,
and can be applied for through the BMS FastTrack portal (https://
fasttrack.bms.com/, hd-sci-apps@bms.com), which has an expected
review time of 2-3 weeks. The ChIPseq data generated in this work are
available on GEO under GSE267437. Additional data generated in this
study are provided in the Supplementary Information/Source Data
file. Source data are provided with this paper.

Code availability
Our SubLymE classification code and model weights are available at
https://github.com/mattstokesBMS/SubLymE.
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