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Tumor-associated macrophage clusters
linked to immunotherapy in a pan-
cancer census
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Transcriptional heterogeneity of tumor-associated macrophages (TAMs) has been investigated in
individual cancers, but the extent towhich these states transcend tumor types and represent a general
feature of cancer remains unclear. We performed pan-cancer single-cell RNA sequencing analysis
across nine cancer types and identified distinct monocyte/TAM composition patterns. Using
spatial analysis from clinical study tissues, we assessed TAM functions in shaping the tumor
microenvironment (TME) and influencing immunotherapy. Two specific TAM clusters
(pro-inflammatory and pro-tumor) and four TME subtypes showed distinct immunological features,
genomic profiles, immunotherapy responses, and cancer prognosis. Pro-inflammatory TAMs resided
in immune-enriched niches with exhausted CD8+ T cells, while pro-tumor TAMs were restricted to
niches associated with a T-cell-excluded phenotype and hypoxia. We developed a machine learning
model to predict immune checkpoint blockade response by integrating TAMs and clinical data. Our
study comprehensively characterizes the common features of TAMs and highlights their interaction
with the TME.

The tumor microenvironment (TME) plays an important role in clinical
outcomes and response to therapy1. It is now recognized that the TME
contains numerous immune cells, of which tumor-associated macrophages
(TAMs) tend to be themost abundant2.We previously reported that TAMs
are associated with multiple potent functions, including but not limited to
tumor cell invasion, cancer stem cells, therapy resistance, and crosstalk with
other cancer cells3–5. Connections between the molecular and functional
diversities of TAMs are emerging. It is crucial to elucidate the heterogeneity
of TAMs by identifying their molecular signatures to ensure their precise
targeting.

Data illustrating the cellular heterogeneity in cancer have increased in
recent years owing to the widespread application of single-cell RNA-
sequencing (scRNA-seq) technology. Recent pan-cancer studies have
characterized themolecular diversity of TAMs6–8; however, the considerable
heterogeneity observed among these cells prompts the need for more in-
depth analysis. It is also crucial to examine the biological relevance and
clinical implications of TAM subsets in larger cohorts of patients, particu-
larly concerning their role in immunotherapy. Additionally, how TAMs

shape the TME by interacting with other TME components remains to be
determined. Recent advances in the spatial transcriptome have allowed the
simultaneous identification of diverse cells in the TME; therefore, com-
bining single-cell transcriptome data with spatial transcriptome data will
contribute to an improved understanding of the inter-cellular commu-
nication within the TME.

Recent studies have identified an association between increased
TAM infiltration, along with the regulation of T-cell activation, and its
effect on immunotherapy response in tumors9,10. Furthermore, the
clinical association between TAMs and their relationship to immu-
notherapy remains to be established, and there remains a need to
understand the biological properties and signaling pathways activated
by TAMs in the TME, which, in turn, may influence the response to
immunotherapy.

Herein, we used scRNA-seq data and classification of The Cancer
Genome Atlas (TCGA) database to identify specific transcriptional,
immunological and genomic features for monocyte/TAM clusters across
cancers, with a particular focus on immunotherapy-related TAMs.
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Additionally, we used a spatial profiling assay to assess the multifaceted
functions of TAMs inmolding the TME. Finally, by fully integrating TAMs,
a machine learning algorithm was developed to accurately predict the
probability of immunotherapy response in patients.

Result
Identification and molecular characterization of monocyte/TAM
clusters
We analyzed the scRNA-seq data of monocytes/macrophages across
nine cancer types through the combination of eight scRNA-seq data-
sets (Fig. 1a). Filtering out adjacent normal tissue, peripheral blood,
and nonsignificant clusters, the integrated data contained 24,983
monocytes/macrophages from primary treatment-naïve tumor tissues.
High-resolution clustering of the integrated data identified seven
clusters, comprising two groups of Monos, and five groups of TAMs
(Fig. 1b, c). Significantly, each subtype contained cells from a different
tumor type, indicating that the clusters and expression states were
largely consistent and did not represent patient-specific subpopula-
tions or batch effects, although they do vary in their proportions across
nine cancer types (Supplementary Fig. 1a). Next, we conducted dif-
ferentially expressed gene (DEG) analysis (Supplementary Fig. 1b) and
gene set enrichment analysis (GSEA) (Fig. 1d) between Mono/TAM
clusters. CD14+ Mono, indicative of classical monocytes, were char-
acterized by high expression levels of CD14 and S100A8/9, typically
recruited during inflammation. These cells exhibited expression of
monocyte trafficking factors such as SELL, which is involved in
endothelial cell adhesion. CD16+ Mono, representing non-classical
monocytes, were identified by their low expression of CD14 coupled
with high expression of FCGR3A and CDKN1C, making them less

abundant. HSPA6+ TAMs display a complex expression profile that
includes components of the major histocompatibility complex class II
(HLA-DPB1, HLA-DRA, HLA-DPA1, and HLA-DRB1) and mole-
cular chaperones (HSPA1A and HSPA6), underscoring their role in
antigen presentation and stress response. CXCL3+ TAMs are char-
acterized by the expression of G0S2, indicative of their involvement in
lipid metabolism and apoptosis regulation. FOLR2+ TAMs are
marked by the expression of FOLR2 and a diverse array of genes such as
SLC40A1, C1QC, C1QA, and SEPP1, indicating their involvement in
iron homeostasis, activation of the complement system, and selenium
metabolism, respectively. SPP1+ TAMs showed preferential expres-
sion of genes involved in hypoxia, angiogenesis, epithelial-to-
mesenchymal transition (EMT), and the mammalian target of rapa-
mycin signal pathway, which promote multiple aspects of tumor
progression (Fig. 1d and Supplementary Fig. 1C). Using SCENIC, we
found enhanced expression of the transcription factors TP53, PBX3,
and MITF in SPP1+ TAMs (Supplementary Fig. 1d). Moreover,
TNFSF10+ TAMs expressed genes associated with interferon (IFN)-
regulated, complement, IL-6/JAK/STAT3, APM, and canonical
M1 signatures, highlighting TNFSF10+ TAMs as important sources of
inflammatory response and immunoregulatory molecules (Fig. 1d and
Supplementary Fig. 1e). High expression of immune checkpoint
molecules, such as CD274, as well as LGALS9, PDCD2, and HAVCR2
in TNFSF10+ TAMs can be regulated by STAT1, indicating that they
contribute to T-cell suppression (Supplementary Fig. 1d, f).

We next sought to define gene signatures with the aim of inferring the
abundance and functions of SPP1+ and TNFSF10+ TAMs within other
scRNA datasets and bulk tumor transcriptomes. To this end, we conducted
a single-cell DEG analysis, before filtering the DEGs list to identify themost

Fig. 1 | Comprehensive analysis of pan-cancer single-cell transcriptome and
functional characteristics of monocytes/TAMs. a Schematic representation of
pan-cancer single-cell transcriptome of monocytes/TAMs. Figures were created
using BioRender (biorender.com) with authorized permission. b, c The UMAP plot

of all monocyte/TAMclusters. dCancer cell pathway and immune-related pathways
enrichment analysis in seven monocyte/TAM clusters. e Scatterplot of the mean T
cell-attraction score versus the mean T cell-suppression score for monocyte/TAM
clusters.
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significant DEGs, screening each of the DEGs based on their ability to
selectively discriminate specific TAM clusters (Supplementary Table 1 and
the “Methods” section). The top expressed genes in the TNFSF10+ TAM
signature included the guanylate-binding family proteins GBP1, GBP4, and
GBP5, which are induced in IFN-γ-activated macrophages and promote
inflammatory signaling within the innate immune system via inflamma-
some assembly11. Genes associated with IFN responsiveness (MX1, IFIT3,
RSAD2, PARP14, CXCL9-10, and STAT1), innate immune responses
(SAMD9L), and antigen presentation (PSMB9 and TAP1) were also iden-
tified in the TNFSF10+ TAM signature. We next quantified the T-cell-
attractive and T-cell-suppressive properties of all monocyte/TAM clusters,
the results of which showed that TNFSF10+ TAMs have a strong potential
to recruit T cells and subsequently suppress T-cell function (Fig. 1e). The
core signatures of SPP1+ TAMs can be represented by the expression of
ECM deposition and remodeling factors (SPP1, FN1, CTSB, and CTSD),
suggesting a role in promoting metastasis. Transcriptional signatures spe-
cific to SPP1+ TAMs were also identified, including lipid-related genes
(APOC1 andAPOE)12, TREM213, and SDC214, whichmay actively suppress
antitumor immune responses. We refined these signatures by probing the
expression of these transcripts across multiple monocytes/macrophages
across nine cancer types, only retaining genes specific for TNFSF10+ and
SPP1+ TAM clusters (Supplementary Fig. 2a). We then validated these
features in independent gastric and large pan-cancer cohorts (GSE183904
and PMID: 35931863). As a result, we identified two distinct clusters of
macrophages, which were identified as SPP1+ and TNFSF10+ TAMs
based on scoring cells for our previously derived gene signatures (Supple-
mentary Fig. 2b, c).

Based on their signature genes, enriched pathways, and predicated
function,wenamed theseTNFSF10+ andSPP1+TAMspro-inflammatory
TAMs and pro-tumor progression TAMs (pro-inflam TAMs and pro-
tumor TAMs), respectively. Through a cross-sectional comparison of three
recently published monocyte/macrophage scRNA-seq datasets, cluster
similarity analysis showed that our monocyte/TAM clusters shared simi-
larities but were distinct in specific cancer types (Supplementary Fig. 2d).
Thus, our analysis expanded our understanding of common pan-cancer
monocyte/macrophage characteristics.

Four distinct subtypes based on pro-inflamed and pro-tumor
TAMs across pan-cancer levels
Next,we conducteda pan-cancer analysis in theGTEx andTCGAconsortia
to compare pro-inflam and pro-tumor TAMs between non-disease healthy
tissue and tumor tissue. We discovered that pro-inflam and pro-tumor
TAMs were consistently low across normal tissues, but upregulated in a
variety of tumors (Supplementary Fig. 3a, b). Compared with pro-inflam
TAMs, pro-tumor TAMs were superior in discriminating patient survival
withinmultiple cancer types (Supplementary Fig. 3c).We implemented the
CIBERSORT algorithm to infer the differential abundance of immune cells
associated with pro-inflam and pro-tumor TAM signatures from 9164
TCGA tumor specimens. Consistent with findings that macrophage-
derived CXCL9 and CXCL10 are required for T-cell infiltration15, pro-
inflam TAMs were associated with a high level of M1 macrophages and
T cells (Supplementary Fig. 3d). Pro-tumor TAMs were related to TME
lacking effector T cells andwith amixture ofM0,M1, andM2macrophages
(Supplementary Fig. 3d).

To stratify various types of cancer based on pro-inflam and pro-tumor
TAMs, we used RNA-seq data from a cohort of 9164 TCGA tumors across
32 cancer types.Wefirst applied consensus clustering to identify two groups
of robustly co-expressed pro-inflam and pro-tumor TAM genes to be used
for subtyping (Supplementary Fig. 4a). Then, we confirmed that these
markers obtained from scRNA-seq could be used in bulk RNA-seq data by
measuring gene co-expression (Supplementary Fig. 4b). Furthermore, our
analyses showed a positive correlation between the expression of pro-inflam
and pro-tumor TAM markers in bulk tumors (Supplementary Fig. 4c).
Significantly, we identified no correlation between pro-inflam and pro-
tumorTAMmarker scores and tumorpurity, indicating that tumorpurity is

not a pertinent confounder for these transcriptomic signatures (Supple-
mentary Fig. 4d). To further clarify the potentially relevant immune cells for
pro-inflam and pro-tumor TAM markers, we identified the immune cell
predictors for these TAM markers by random forest (RF) analysis. M1
macrophages were found to be the important variable for predicting pro-
inflam TAMs, whereas M2 macrophages predicted pro-tumor TAMs
(Supplementary Fig. 4e, f). In summary, we showed that the expression of
our pro-inflam and pro-tumor TAMs marker gene sets derived from
scRNA-seqdata are highly specific formacrophages and sufficient to further
sample stratification by bulk RNA-seq.

Next, we calculated the median expression levels of co-expressed pro-
inflam and pro-tumor TAMgenes for each sample and used them to assign
one of the following four distinct subtypes associated with these two TAMs:
absence, pro-inflam TAMs, pro-tumor TAMs, and mixed (Fig. 2a, d and
Supplementary Fig. 2e). These TAM subtypes existed in 28 cancer types at
varying abundances (Fig. 2b). The estimated 5-year overall survival (OS)
rate were 64.4% (absence, 95% confidence interval (CI): 61.9–66.9%), 60.8%
(pro-tumor TAMs, 95% CI: 57.7–64.1%), 53.9% (pro-inflam TAMs, 95%
CI: 50.7–57.3%), and 55.4% (mixed, 95%CI: 52.6–58.2%), respectively. Pro-
inflam TAM-enriched cases were associated with the shortest OS (Fig. 2c),
consistent with the role of the inflammatory TME in tumor progression16.
Interestingly, a survival benefit was observed in the absence of pro-inflam
and pro-tumor TAM expression (Fig. 2c). The enrichment scores for
immune infiltration (Fig. 2e), M1 macrophages infiltration (Fig. 2f),
inflammatory potential (Fig. 2g), antigen presentation (Fig. 2g, i), cytokines,
and chemokines (Fig. 2h) were greater in the pro-inflam TAM-enriched
subtypes, and were lower in the pro-tumor TAMs and absence subtypes.
Additionally, the pro-tumor TAM subtype was devoid of T-cell infiltration
(Fig. 2e). In summary, the pro-inflam TAM-enriched subtypes were enri-
ched in immunologically ‘hot’ tumors, and pro-tumor TAMs are an
important determinant of a T-cell-excluded tumor phenotype across dif-
ferent cancer types within TCGA.

Next, we performed principal component analysis (PCA) through co-
expressed pro-inflam and pro-tumor TAM genes to further characterize the
overall function of pro-inflam and pro-tumor TAMs across pan-cancer. The
four subtypes of the 9164 TCGA tumors mentioned above were separated
(Supplementary Fig. 5a). We projected these markers to the PCA space to
validate the relationships between co-expressed pro-inflam and pro-tumor
TAM genes and found that pro-inflam and pro-tumor TAM markers that
were away from the origin were grouped (Supplementary Fig. 5b). Using
uniform manifold approximation and projection (UMAP) clustering based
on the principal components as input, the four subtypes identified above
couldbewell separated anddidnot indicate cancer-specific subgroups (Fig. 2j
and Supplementary Fig. 5c). We confirmed that pro-inflam and pro-tumor
TAM-derived signatureswere largely restricted to pro-inflamandpro-tumor
TAM-enriched subtypes, respectively (Supplementary Fig. 5d). Consistent
with the single-cell results, the pro-inflam TAM-enriched subtype (pro-
inflam TAMs and mixed) scored highest for IFN response signatures (Fig.
2k, l), inflammatory response, and complement activation (Supplementary
Fig. 5e, f), while the pro-tumor TAM-enriched subtype (pro-tumor TAMs
and mixed) scored highest for EMT (Fig. 2m) and angiogenesis (Supple-
mentary Fig. 5g), showing a pro-metastatic pattern. Additionally, the high
expression of TGF-β observed in pro-tumor TAMs (Supplementary Fig. 5h)
aligns with previous research linking TGFβ with immune cell exclusion in
tumors17. A series of stepwise events named the “cancer-immunity cycle”
involved in the anti-cancer immune response can effectively kill cancer cells18.
Notably, in the subtypeenriched inpro-inflamTAMs(pro-inflamTAMsand
mixed), activities of themajority of the cancer-immunity cyclewere identified
as upregulated, including the antigen release and presentation (Supplemen-
tary Fig. 5i–l), trafficking (Supplementary Fig. 5m), and infiltration (Sup-
plementary Fig. 5n) of immune cells to tumors. GSEA on the MsigDB
Hallmarks gene sets revealed that tumor progression and inflammatory
response were closely associated with the subtypes of pro-inflam TAMs and
pro-tumorTAMs, respectively (SupplementaryFig. 6a).Moreover,TEAD119,
TWIST120, RUNX221, and TCF1222, which are preferentially activated in
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TAMs with tumor growth properties, were elevated in the pro-tumor TAM
subtype (Supplementary Fig. 6b, c). Additionally, STAT123, a transcription
factor that stimulates macrophage-mediated inflammatory responses and
inducesmacrophage differentiation towards the pro-inflammatory direction,
was highly expressed in the pro-inflam TAM subtype consistent with
decoupleR analyses (Supplementary Fig. 6b, c).

Tumor genomic profiles of the four distinct subtypes based on
pro-inflam and pro-tumor TAMs
To gain further insights into the genomic landscape within the tumor,
which has been shown to affect antitumor immunity and TME activity,
we investigated the links between genomic and TAM classification. As a
result, we observed that the pro-inflam TAM subtype exhibited a higher
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tumor mutation burden (TMB) compared to other subtypes (Supple-
mentary Fig. 7a, b) and markedly more mutations in APOBEC-related
signatures (Supplementary Fig. 7a). Among the frequently mutated
genes (>5%), the pro-inflam TAM subtype had more mutations of
TP5324, TTN25, and KMT2D26, which have been previously reported to
be associated with the effectiveness of immunotherapy, while the
absence subtype was abundant in mutations in APC. Furthermore, no
clearly mutated genes were found in the pro-tumor TAM subtype
(Supplementary Fig. 7a). Pro-inflam TAMs were negatively associated
with tumor purity (Supplementary Fig. 7d), which correlates with pre-
viously observed “cancer-immunity cycle” properties. Pro-inflamTAMs
were also enriched in ploidy (Supplementary Fig. 7c), homologous
recombination deficiency (HRD) (Supplementary Fig. 7e), loss of het-
erozygosity (LOH) (Supplementary Fig. 7f), neoantigen (Supplementary
Fig. 7g), and aneuploidy (Supplementary Fig. 7h). Copy number
alterations were highlighted for comparison, and the pro-inflam TAM
subtype harbored genomic amplification in the IFN-γ pathway,
including JAK1, JAK2, PIK3CA, CASP8, CASP9, and STAT1, as well as
copy number loss of CDK5, indicating a response to immune checkpoint
blockade (ICB) (Supplementary Fig. 7i)27,28. The additional T-cell
recognition observed in the pro-inflam TAM subtype may be linked to
the amplification of genes associated with antigen-presentation
machinery (Supplementary Fig. 7j). Subsequently, a multinomial
logistic regression analysis was performed to evaluate the association
between single-base mutational signatures and TAM subtypes. The pro-
inflam TAM subtype had significantly more mutations in the context of
APOBEC-related signatures (SBS2 and SBS13) compared to other
subtypes, which were previously associated with ICB response and
tumor aggressiveness29 (Supplementary Fig. 7k). Moreover, the pro-
tumor TAM subtype had a relatively high frequency of mutations in
SBS25 and SBS11 (Supplementary Fig. 7l). Concordantly, a high con-
tribution of APOBEC-related signatures and SBS25were associated with
the mixed subtype (Supplementary Fig. 7m). Ultimately, the integration
of transcriptomic- and genomic alteration-based TAM classification
reveals the potential value of TAMs subtypes in terms of tumor pro-
gression and response to immunotherapy.

Identifying pro-inflam and pro-tumor TAMs related to
immunotherapy
ICB has yielded encouraging results in numerous types of cancers. Our
aforementioned analyses suggested that pro-inflam and pro-tumor TAMs
play a central role in ICB therapy. To better understand the mechanism
underlying the ICB response, we performed pro-inflam and pro-tumor
TAM-derived signatures on two scRNA-seq datasets (phs002065.v1 and
GSE120575) to identify the TAMs related to ICB response. In the scRNA-
seq data analysis (phs002065.v1), these monocytes/macrophages were
redivided into eight clusters (Fig. 3a), in which 1324 macrophages of
Cluster1 were identified as pro-tumor TAMs, and 451 macrophages of
Cluster5 were identified as pro-inflam TAMs (Fig. 3b). Meanwhile, pro-
inflam and pro-tumor TAM-derived signatures were highly restricted to
Cluster5 and Cluster1, respectively (Supplementary Fig. 8a, b). Functional
enrichment analysis confirmed that inflammatory-related pathways, such
as hallmark IFN-γ response, IFN-α response, and IL-6/JAK2/STAT3, were
activated in Cluster5, while the hypoxia pathway was activated in Cluster1,

with M2-like features that could contribute to ICB resistance (Fig. 3c). To
better understand the roles ofCluster5 andCluster1 in the course of ICB,we
examined their expression of immune checkpoint genes and immune-
related transcriptional programs. The results revealed that the co-inhibitory
receptors CD274, LGALS9 (encoding Galectin 9), and LAG3 were detected
in a larger proportion of Cluster5 (Fig. 3d). Moreover, genes previously
identified as a pro-inflam TAM signature (CXCL9, CXCL10, TAP1, and
STAT1),whichmark immune cell infiltration,were pronounced inCluster5
fromcells from responders comparedwith those fromnon-responders (Fig.
3e). Furthermore, Cluster5 from responders upregulated gene sets asso-
ciated with IFN-γ response and complement, indicating a response to pro-
inflam TAMs in responders (Fig. 3f).

Next, we reclassified monocytes/macrophages in the GSE120575
dataset into six clusters (Fig. 3g) and observed systematic qualification of
pro-inflam and pro-tumor TAM-derived signatures in Cluster5 and Clus-
ter2, respectively (Fig. 3h and Supplementary Fig. 8c). Similar results were
obtained in that Cluster5 highly expressed immune-checkpoint genes
(HAVCR2, LGALS9, and CD274; Supplementary Fig. 8d). GSEA revealed
upregulationof IFNresponses, IL-6/JAK2/STAT3, and ‘M1-like’phenotype
in Cluster5 (Supplementary Fig. 8e). Comparing ICB responders with non-
responders, Cluster2 upregulated the hypoxia pathway and M2-like sig-
nature in non-responders (Supplementary Fig. 8f). To interpret Cluster5
and Cluster2 subset dynamics following immunotherapy and their rela-
tionship with immunotherapy response, we examined the regulatory effects
of immunotherapyon these subsets.As a result, the non-responders showed
decreased levels of Cluster5, which was accompanied by elevated levels of
Cluster2 following ICB treatment (Fig. 3i). To further understand the spe-
cific monocyte/TAM clusters associated with ICB responses, we performed
Scissor on our integrated scRNA-seq dataset containing only gastric cancer
(GC) cells with GC bulk patients with known immunotherapy response
information (PRJEB25780) (Supplementary Fig. 8g).We determined 77.1%
of Cluster5 as being Scissor+ cells, which was associated with a favorable
ICB response, and 83.1% of Cluster3 as Scissor− cells, which are related to
unfavorable ICB responses (Supplementary Fig. 8h). Collectively, such
observations imply a close correlation of pro-inflam and pro-tumor TAMs
with immunotherapy.

Spatially mapping pro-inflam and pro-tumor TAMs
To identify the spatial distribution of the pro-inflam and pro-tumor TAMs
illustrated above and their co-localization to the defined TME, we next
performed spatially resolved transcriptomic RNA-sequencing (stRNAseq)
on formalin-fixed, paraffin-embedded (FFPE) tissue. Treatment-naive tis-
sue samples were obtained from four patients with primary GC from our
clinical study of neoadjuvant therapy (ClinicalTrials.gov: NCT04341857),
and the datasets contained a total of 4435 sequenced spots. After spatially
mapping the expression profiles based on pro-inflam and pro-tumor TAM
signatures, the results confirmed the co-localization of classicalmacrophage
markers and the aforementioned functional features (Fig. 4a and Supple-
mentary 9a). To gain further insights into the spatial distribution of pro-
inflam and pro-tumor TAMs, we examined the pro-inflam and pro-tumor
TAM signatures in spatially resolved transcriptomics of other cancer sam-
ples with pathological annotation. The results showed that both signatures
tended to be enriched in tumors compared with nontumor sections at the
level of spatial transcriptomics clusters in primary liver cancer

Fig. 2 | Expression levels, subtype distribution, survival analysis, and immune-
related signatures of pro-inflammatory and pro-tumor TAMs across pan-TCGA
samples. a Scatter plot showing median expression levels of co-expressed pro-
inflammatory and pro-tumor TAMs genes in each pan-TCGA sample. b Stacked bar
plot of four subgroups distribution across 32 different cancer types. c Survival analysis
of four subtypes in thepan-TCGAdataset. The statistical significancewasdetermined
by a log-rank test. dHeatmap depicting expression levels of co-expressed pro-inflam
and pro-tumor TAMs genes across four subgroups. eHeatmap depicting expression
levels of immune cell scores calculated by ssGSEA across four subgroups. fHeatmap

depicting expression levels of M0/1/2 macrophage scores calculated by ssGSEA
across four subgroups. g Heatmap depicting expression levels of inflammatory and
antigen-presentation-related signatures calculated by ssGSEA across four subgroups.
hHeatmap depicting expression levels of chemokines, cytokines, and receptor scores
calculated by ssGSEAacross four subgroups. iHeatmapdepicting expression levels of
IPS across four subgroups. j UMAP display color-coded by four subtypes using
Louvain clustering to cluster patients in pan-TCGA patients. Each dot represents a
single patient. k–m Violin plots depicting AUCell scores for IFN-alpha response,
IFN-alpha response, and EMT across four subgroups.
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(Supplementary Fig. 9c). Among the three kidney tumor-normal interface
samples, both TAMs were enriched in the tumor core rather than the
normal and interface regions (Supplementary Fig. 10a). As expected, the
spatial distribution of pro-inflam and pro-tumor TAMs dispersed across
invasive cancer, stroma, and lymphocyte regions in breast cancer (Supple-
mentary Fig. 9b). Neighborhood analysis found that spots enriched for the

pro-inflamTAM signature were enriched for CD8+T, with keymarkers of
exhaustion (e.g., TCF7 and NFATC2) (Fig. 4b). In contrast, spots enriched
for the pro-tumor TAM signature exhibited no T-cell gene enrichment.We
next integrated our spatial transcriptomics data with re-annotated scRNA-
seq data for 10major cell types and sought tomap spots to specific cell types
(Fig. 4c). Generally, deconvolution methods yield high correlations
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(Supplementary Fig. 9d). The spatial proximity of enriched pro-inflam
TAMs coupled with T cells is confirmed in Fig. 4d. Compared with pro-
tumor TAMs, both the main and juxta spots of enriched pro-inflam TAMs
were enriched with immune cells, including T cells identified using Tan-
gram (Supplementary Fig. 10b-c). To further demonstrate the spatial
dependence of T-cell exhaustion (Tex) on enriched pro-inflam TAMs, we
quantified the putative distance between the two cell types. Spots containing
T cells thatwere highly expressed for Texmarkerswere adjacent to enriched
pro-inflam TAMs, suggesting that pro-inflam TAMs are associated with
Tex (Fig. 4e). Spots containing T cells located in the main and juxta of
enriched pro-inflam TAMs exhibited a high TexInt score compared with
others, implying that T cells surrounding these TAMs possessed the
potential to regain cytotoxicity after immunotherapy (Fig. 4f). Elevated
expression levels of cytotoxic enzymes, including GZMB and GZMA,
hallmarks of tumor reactivity, and cytotoxic profiles, including IFNG and
TNF,were observed in spots containingT cells located in themain and juxta
of enriched pro-inflamTAMs (Fig. 4g).Moreover, a high hypoxia scorewas
expressed in epithelial cells located in the main and juxta spots of enriched
pro-tumor TAMs compared with others (Fig. 4h). These findings support
our original observations in that pro-inflam TAMs resided in spatially
immune-enriched niches alongside exhausted CD8+ T cells, forming pro-
inflam TAM–Tex niches, while pro-tumor TAMs were restricted to niches
associated with hypoxia. Despite their exhausted phenotype, T cells in pro-
inflam TAM–Tex niches may still exert cytolytic effector functions and
retain antitumor activity.

Based on cell type deconvolution and integration, the potential med-
iators of pro-inflam TAM–CD8+ T-cell interactions could then be mod-
eled. Spatial analysis of the interaction expression of ligand-receptor pairs
that positively correlated (r > 0.4) with the pro-inflam TAM signature was
mapped (Supplementary Fig. 11a). Interestingly, multicellular pair inter-
actions revealed that pro-inflam TAMs provided the ligands, while the T
cells in pro-inflam TAM–Tex niches expressed the receptors: pro-inflam
TAM expression of HLA-C, CXCL9, CXCL11, TNFSF10 (TRAIL), and
CD274 (PD1) as ligands for LILRA1/B1/B2, CXCR3, TNFRSF10A
(TRAILR1), and PDCD1 on T cells (Supplementary Fig. 12a), with the
finding that pro-inflamTAMswere themain producer of the above ligands
in the integrated scRNA-Seq data (Fig. 1f and Supplementary Fig. 11b). The
spatial proximity of thepro-inflamTAMligands coupled to the neighboring
T-cell receptors was confirmed (Supplementary Fig. 11c). The interaction
expression of ligand-receptor pairs was high in TRG0 patients, implying
that these pairs are strongly associated with immunotherapy benefit (Sup-
plementary Fig. 12b). Additionally, we discovered genes that were highly
expressed in spotswithpro-inflamTAM–Texniche-enrichedpathways that
contribute to the recognition and regulation of T cells, and were enriched in
antigen binding, receptor ligand activity, and CXCR chemokine receptor
binding (Supplementary Fig. 12c). Given that the expression of ligand-
receptor pairs in different cell types partially overlap, and given that each
spot contains other cell types, we further used mIHC to visualize those
proteins and observed contacts between CD68+TNFSF10+ TAMs (pro-
inflam TAMs) and CD8+ PD1+T cells (Supplementary Fig. 12d). We
further confirmed higher infiltration of CD68+TNFSF10+TAMs and

CD8+ PDCD1 T cells in TRG0 patients than in TRG1-3 patients (Sup-
plementary Fig. 12e). These results suggest that these pro-inflamTAM–Tex
niches have the potential to restore antitumor activity through immu-
notherapy, which may be critical for treatment efficacy (Supplementary
Fig. 12f).

Pro-inflam and pro-tumor TAMs correlate with immunotherapy
efficacy
To identifywhetherTAMclassification canbe applied as a tool topredict the
response to ICB, the responses to ICB were undertaken across the three
TAM subtypes, in which we combined pro-inflam and mixed TAMs into
the pro-inflam TAM-enriched subtype. In an independent metastatic
melanoma cohort (n = 73) treated with anti-PD-1 alone or combined anti-
PD-1 and anti-CTLA-4 immunotherapy, patients were classified into three
TAM subtypes (Fig. 5a), with the pro-inflam TAM subtype found to be
significantly associated with response (complete response/partial
response+ long-term survival with stable disease) to ICB (Fig. 5b). Similar
findings were observed with independent cohorts of patients with GC
(n = 45; Fig. 5c, d), melanoma (n = 115; Fig. 5e–g and Supplementary Fig.
13a), and lung cancer (n = 27; SupplementaryFig. 13bandFig. 5h).Thehigh
mutational burden, the synergistic effects of combined anti-PD-1/CTLA-4
therapies, and the immunogenicity of melanoma currently make it more
sensitive to combinatorial ICB treatment compared to other tumors30,31. The
patients of these cohorts received anti-PD(L)-1, anti-CTLA-4, adoptive
T-cell therapy, or anti-PD(L)-1 plus anti-CTLA-4, suggesting that the TAM
classification system can be applied to diverse immune-based therapies as a
potential biomarker of response.When examining whether pro-inflam and
pro-tumor TAMs are relevant to ICB, subtypes enriched in pro-inflam
TAM were found to exhibit the longest OS in patients receiving immu-
notherapy (Supplementary Fig. 13c–e). Moreover, patients with pro-tumor
TAM subtypes treated with immunotherapy had a poorer prognosis than
those with other subtypes (Supplementary Fig. 13c–e). Notably, in lung
cancer, the PFS following anti-PD(L)-1 was the longest in the pro-inflam
TAM subtype (Supplementary Fig. 13f). In contrast, in melanoma and
bladder cancer, patients with the pro-inflam TAM-enriched subtype who
were not treated with immunotherapy displayed an inferior prognosis
(Supplementary Fig. 13g and Supplementary Fig. 14a), highlighting the
importance of immunotherapy in patients with the pro-inflam TAM-
enriched subtype.

As expected, the pro-inflam TAM-enriched subtype was recog-
nized as an immune-inflamed phenotype (Supplementary Fig. 14b)
and higher neoantigen burden (Supplementary Fig. 14c). Furthermore,
the immune-favorable TME type non-fibrotic (IE) was higher in the
pro-inflam TAM-enriched subtype that saw the greatest benefit from
immunotherapy (Supplementary Fig. 14d–g). In contrast, the immu-
nosuppressive subtype F, which is characterized by low T-cell infil-
tration and lower response rates to immunotherapy, was found to be
more prevalent in the pro-tumor TAM-enriched subtype (Supple-
mentary Fig. 14d–g). We then assessed whether pro-inflam and pro-
tumor TAMs were altered in patients with distinct responses during
immunotherapy in the ERP105482 cohort. Tumors that attained a

Fig. 3 | Analysis of monocyte/TAMs clusters and pathway activities, and
immunotherapy response in the phs002065 and GSE120575 datasets. a UMAP
visualization of all re-clustered monocytes/macrophages in the phs002065 dataset.
bHeatmaps formonocytes/macrophages clusters in the phs002065 dataset for select
pro-inflam and pro-tumor TAMs markers highlighted. c Heatmap shows the dif-
ference in pathway activities scored by GSVA per cell between different monocytes/
macrophage clusters in the phs002065 dataset. d The expression of co-inhibitory
molecules of monocytes/macrophages clusters in the phs002065 dataset. e Volcano
plot showing upregulation of markers specific for pro-inflam TAMs in the Cluster5
(ICB responders) in comparison with the Cluster5 (ICB non-responders). R:
responders including ICB PR patients; NR: non-responders including ICB SD/PD
patients. f GSEA shows enriched pathways in the Cluster5 (ICB responders). R

responders including ICB PR patients, NR non-responders including ICB SD/PD
patients. g UMAP visualization of all re-clustered monocytes/macrophages in the
GSE120575 dataset. h Violin plots depicting AUCell scores for gene signatures
derived for pro-inflam and pro-tumor TAMs across all re-clustered monocytes/
macrophages in the GSE120575 dataset. i UMAP plots showing the distribution of
pro-inflammatory and pro-tumor TAMs in non-responders after immunotherapy
(top); fraction of cells belonging to each immunotherapy phase for in Cluster2 and
Cluster5; each point represents one sample; R responders including ICB CR/PR
patients, NR non-responders including ICB SD/PD patients. Percentage corrected
according to the total number of cells per sample; error bars indicate the 95% CI for
the calculated relative frequencies; p value using the default Wilcoxon rank sum test
(bottom).
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response tended to be enriched for pro-inflam TAMs (Supplementary
Fig. 14j), which increased in a stepwisemanner with the introduction of
immunotherapy (Supplementary Fig. 14k). In contrast, in non-
responders, tumors lacked pro-inflam and pro-tumor TAMs (Sup-
plementary Fig. 14l), which increased by a small margin with the
introduction of immunotherapy. Additionally, the increase in pro-
tumor TAMs was greater than that in pro-inflam TAMs (Supple-
mentary Fig. 14m), further supporting the notion that these cell
populations are critical in the response to ICB.

Performance of TAM predictors of response to immunotherapy
To investigate thepredictive value ofpro-inflamandpro-tumorTAMsas an
improved gene expression-based predictor,we collected bulkRNA-Seqdata
and clinical information from eight ICB cohorts grouped into two datasets,
the training set (n = 471) and testing set (n = 203). Approximately 45.1% of
the patients had melanoma, 44.2% had bladder cancer, and the remaining
10.69% had non-small-cell lung cancer and GC (Supplementary Fig. 15a).
These patientswere treatedwith tumor-infiltrating lymphocytes, PD-1/PD-
L1 inhibitors, CTLA-4 blockade, or a combination of bothPD-1/PD-L1 and
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CTLA-4 agents (Supplementary Fig. 15a). We integrated the above clinical
information (cancer type and drug class) and pro-tumor and pro-inflam
TAMs, and derived a series of three immunotherapy response prediction
models, including different feature combinations, using the following: (1)
clinical information and pro-tumor and pro-inflam TAMs; (2) clinical
information and pro-inflam TAMs; and (3) clinical information and pro-
tumor TAMs.We trained themodel with fivemachine-learning algorithms
and appliedfivefold cross-validation (CV) for theparameteroptimizationof
eachmodel. TheRFmodel achieved thehighest accuracy andwas selected as
the successor model. The flowchart of the analysis process is shown in
Fig. 6a. We attempted to assess the performance of the integrated clinical-
TAMs RF model in terms of multiple metrics. The integrated model
achieved superior performance, as indicated by the area under the curve
(AUC) in discriminating responders and non-responders compared with
pro-tumor or pro-inflam TAMs alone in both the training (0.83, 0.77, and
0.78, respectively) and test cohorts (0.73, 0.64, and 0.72, respectively) (Fig.
6b). We further verified the higher area under the precision-recall curve
(AUPRC) achieved by the integrated RF model than pro-tumor or pro-
inflam TAMs alone in both the training and test cohorts (Fig. 6c). We also
performed subgroup analysis in the test cohort. In addition to the
GSE135222 cohort, which presented with the lowest AUC of 0.63, in other
cohorts, the integrated RFmodels all showed robust, generalizable ability to
predict response, with AUCs of >0.65 (Supplementary Fig. 15b–h). These
results prompted us to use a machine learning framework to incorporate
pro-tumor and pro-inflam TAMs into a predictive model of response. The
TMB has been approved by the FDA as a biomarker to predict ICB efficacy
in solid tumors, and we also compared the performance of the integrated
model with TMB. The integrated model showed better performance than
the TMB in both the training and test cohorts (Supplementary Fig. 15i, j).
We further compared the performance of the integrated model with pre-
vious well-established predictive gene signatures, including our own
established GC stem-like cell-related score (GCScore)3. The majority of
these pan-cancer signatures exhibited desirable performance in only one or
two cohorts. For instance, the AUC of the CXCL9:SPP1 ratios attained 0.92
in GSE135222 (Supplementary Fig. 16g), and 0.75 in GSE100797 (Supple-
mentary Fig. 16i) but declined to 0.58 in GSE91061 (Supplementary Fig.
16f). Nevertheless, our TAM signature reached adequate performance in all
cohorts (Supplementary Fig. 16), across four cancer types, which further
highlights its potential as a pan-cancer ICB response prediction model.

Furthermore, a prolonged OS was consistently observed for patients
predicted as ICB responders using our RF-basedML in the test cohort with
OS data available (Fig. 6d), regardless of cancer type (Fig. 6e) and treatment
regimens (Supplementary Fig. 17a). To test whether pro-tumor and pro-
inflamTAMsignatures could alsopredictOS,we evaluated theperformance
of the classical Cox proportional hazards (Cox) model and the random
survival forest (RSF) model using the concordance index (C-index) and
integrated brier score. We found that the C-index of the integrated TAM
RSFmodel (0.75, 95%CI: 0.72–0.77) was significantly higher than others in
the training cohort and that theC-index of the pro-inflamTAMRSFmodel
(0.71, 95% CI: 0.66–0.76) was higher than others in the test cohort (Fig. 6f).
Compared with the CXCL9:SPP1 ratio, our integrated model exhibited

enhanced prognostic performance (Supplementary Fig. 17b). The inte-
grated TAM RSF model showed good calibration with low Brier scores
(SupplementaryFig. 17c).Additionally, the time-dependentAUCsuggested
that the integratedTAMRSFmodel had considerable value inpredictingOS
(Supplementary Fig. 17d).

Importance and interaction analysis of pro-inflam and pro-
tumor TAMs
We next explored the importance of, and interactions between pro-inflam
and pro-tumor TAMs in the integrated clinical-TAMs RF model using
Shapley additive explanations (SHAP) and PDPbox. The effect of clinical
information, pro-inflam, and pro-tumor TAMs on the output of the model
was investigated using the SHAP value. We found that pro-tumor TAMs
were effective for response prediction only at the highest values, in contrast
to pro-inflam TAMs, which displayed significant discriminative power
across all values (Fig. 6g, h). Based on PDPbox, a significantly increased
response was observed when pro-inflam TAMs were higher than
approximately 0 (Supplementary Fig. 18a). Similar to the amount of pro-
tumor TAMs that can affect the response to immunotherapy (Fig. 6h), the
negative effects on immunotherapy occur when the pro-tumor TAMs are
>1.5 (Supplementary Fig. 18a).We also identified interactions between pro-
inflam and pro-tumor TAMs, in that they were significantly positively
correlated (Supplementary Fig. 18b). Consistent with PDPbox (Supple-
mentaryFig. 18c), ahighpro-tumorTAMcombinedwithhighlypro-inflam
TAMwasmore predictive of responses, supporting the differentiation state
from pro-tumor TAMs toward pro-inflam TAMs for patient responses
(Supplementary Fig. 18b). These results were in a good agreement with the
above-mentioned result concerning the immune profile of pro-inflam and
pro-tumor TAMs.

Discussion
As one of the most abundant immune cell types in tumors, macrophages
have multiple potent functions highlighting their heterogeneous nature32.
With the wide application of single-cell technologies, a few studies have
delved into the heterogeneity of monocyte/macrophage clusters through
pan-cancer analysis6,7,33. Although these studies have revealed significant
transcriptomic diversity in monocyte/macrophages, a unifying annotation
of their molecular functional characteristics remains lacking. Considering
that monocytes and macrophages exhibit a high degree of complexity and
tissue specificity, we excluded those from blood, normal tissue, and lymph
nodes when integrating the scRNA-Seq database, focusing only on tumor-
enriched monocytes and macrophages. In the present analysis, all mono-
cyte/TAM clusters were observed in each cancer type, although certain
preferences were evident. An in-depth cross-sectional comparison of three
monocyte/macrophage scRNA-seq datasets through CellTypist has sig-
nificantly contributed to our understanding of TAM heterogeneity in
cancer. We identified pro-tumor TAMs sharing characteristic features of
TAMs, including TREM2 and C1Q, which promote tumor growth34,35 and
general immunosuppression13. Our approach to generating pro-tumor
TAMs is broader thanpreviously reported, encompassingwide tumorigenic
potential and further inducing immunosuppressive and tumor growth-

Fig. 4 | Spatial distribution and topological analysis of immune and hypoxia
markers, TAMs, and Tex. a Surface plot of INF-γ, hypoxia, pro-inflam, and pro-
tumor TAMs signatures, and classical markers in the S1 tumor sample. b Schematic
illustrating topological analysis on the Visium spot hexagonal grid: reference spot
depicted in gray shows the average gene expression, with adjacent spots one hexagon
away in orange and those two hexagons away in red, demonstrating average
expression of the same gene. Average expression of Tex markers and various T-cell
markers surrounding spots enriched for pro-inflam and pro-tumor TAMs sig-
natures. c Graphical summary of deconvolution and integration of spatial tran-
scriptomics spots; main spot, TAMs-localized spot; juxta spot, TAMs-neighboring
spot (spots of distance less than or equal to 100 µm). dMapping of monocytes/
macrophages, enriched pro-inflam TAMs, and T cells in S1 tumor sample. e Line
plots illustrate the distance between two spots that have been randomly selected for

their enrichment in pro-inflamTAMs. The x-axis represents the trajectory direction,
with the distance units (µm) away from the starting enriched pro-inflam TAM spot.
The two ends of the x-axis represent the positions of the two selected enriched pro-
inflam TAM spots. y-Axis represents the expression of Tex markers. f Boxplots
showing the score of Tex processes signatures in the spots containing T cells. Tex
Prog1 T cell exhaustion progenitors, Tex Prog2 T cell exhaustion progenitors 2,
TexInt T cell exhaustion intermediate, Tex term T cell exhaustion terminally.
g Heatmap showing the expression of select markers of cytotoxic potential, tumor
activity, and cytokine secretion for spots containingT cells. TheWilcoxonRank Sum
test was utilized to identify DEGs between groups of spots, with an asterisk (*)
indicating a significance level of p < 0.05. h Boxplots showing the enrichment score
of hypoxia signaling pathways in the spots containing epithelial cells.
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Fig. 5 | Clinical response to immunotherapy for different TAM subtypes across
multiple datasets. a Heatmap of pro-inflam and pro-tumor TAMs co-expressed
genes for three different TAMs subtypes classification in the IMvigor210 dataset.
b Rate of clinical response to immunotherapy in three different TAM subtypes in
the IMvigor210 cohort. c Heatmap of pro-inflam and pro-tumor TAMs co-
expressed genes for three different TAMs subtypes classification in the PRJEB25780
dataset. d Rate of clinical response to immunotherapy in three different TAM

subtypes in the PRJEB25780 cohort. eHeatmap of pro-inflam and protumor TAMs
co-expressed genes for three different TAMs subtypes classification in the
GSE100797 dataset. f Rate of clinical response to immunotherapy in three different
TAM subtypes in the GSE100797 cohort. g Rate of clinical response to immu-
notherapy in three different TAM subtypes in the ERP105482 cohort. h Rate of
clinical response to immunotherapy in three different TAM subtypes in the
GSE135222 cohort.
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Fig. 6 | Machine learning framework for predicting immunotherapy response
and survival outcomes based on TAM subtypes. a Schematic of the machine
learning framework. b ROC curves and corresponding AUC values for three feature
types in the training and test cohorts. c The corresponding AUPRC values of three
feature types in the training and test cohorts. dKaplan–Meier curves comparing OS

between responders and non-responders in the testing cohort. e OS stratified
between responders and non-responders in patients in the testing cohort with dif-
ferent cancer types. f Comparison of C-index of multiple prediction models in
training and testing cohorts. g, h Feature importance of pro-inflam and pro-tumor
TAMs in the integrated TAMs RF model in the testing cohort.
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promoting functions. Our “pro-inflam TAMs” exhibited more elevated
activities than those traditionally ascribed to inflammatory macrophages.
These TAMs act not only as potent inflammatory signals but also act as
specialists of immune regulation, similar to specialized subsets such as
CXCL10-Hi TAMs and IL4I1 TAMs7. Such insights not only break para-
digms but are at the core of the designing of TAM-targeted therapies and at
improving our ability to predict patient responses to immunotherapy. Our
study diverged from the pan-cancer approaches of Cheng et al.6 and
Combes et al.8 by introducing a novel computational framework that
integrates scRNA data with spatial transcriptomics. This approach sheds
light on the spatial distribution of TAMs and reveals new interactions
between pro-inflam TAMs and T cells, underlining their pivotal role in
modulating responses to immunotherapy. While Mulder et al.7 delineated
five TAM subsets in various cancers, our work went a step further by
detailing the interactions between these subsets and other immune cells,
thereby offering novel predictions for immunotherapy outcomes by com-
bining TAM signatures with clinical data. Ma et al.32 emphasized the
importance of unified nomenclature for TAMdiversity and highlighted the
advancements in single-cell omics technologies that have enriched our
understanding of TAM molecular diversity. The absence of consensus on
TAM subset terminology has hindered the full exploitation of data wealth
from various studies. Our study aims to bridge this gap by providing a
detailed analysis of two TAM subsets, pro-tumor and pro-inflammatory,
characterized by their distinct gene expression profiles and potential spatial
interactions with other immune cells, notably T cells. These interactions
hold significant implications for tumor progression and response to
immunotherapy, thus offering a fresh perspective on TAM diversity that
enriches the existing literature.Contrary to thebroad categorizationsoffered
byChen et al.6 andMulder et al.7, our study proposed a nuanced perspective
on TAM roles in immunotherapy. In doing so, we aligned with Ma et al.‘s
call for a more refined understanding of TAM diversity, considering both
molecular and spatial dimensions.

A recent review concluded that IFN-primed TAMs act as immuno-
suppressive macrophages highly expressing IFN-regulated genes, such as
CXCL10, PDL1, andM1-likemarkers acrossmany tumor types32. Similar to
these previousfindings,we found that pro-inflamTAMswere characterized
by high expression of IFN-regulated genes and immune checkpoint mole-
cules. However, we further observed that pro-inflam TAMs exhibited
inflammatory phenotypes that actively recruit and regulate immune cells.
Pro-inflam TAMs constitute an inflamed immune environment, which
mediates Tex through potential ligand-receptor axes including TRAIL-
TRAILR1, PD1-PDCD1, and CXCL9/CXCL11-CXCR3. These axes have
been implicated in the recruitment and development of Tex36. Indeed, the
possibility of modulating these axes to decrease the exhausted states of
T cells has been investigated in early-stage clinical trials37. We show that
enrichment of pro-inflam TAMs is associated with different clinical out-
comes, including poor prognosis in patients who were not treated with ICB
and better prognosis in patients receiving immunotherapy. This may be
partly explained by the identification of an association between an
exhaustion-like T-cell phenotype and an inflamed immune environment
with altered cytotoxic and proliferation potential, consistent with previous
results38,39. Hypoxia and EMT induce a series of biological alterations
that promote angiogenesis and are associated with resistance to
immunotherapy40,41. The SPP1 gene encodes osteopontin, which is asso-
ciated with EMT, hypoxia, and tumor progression42,43. Consistent with
previous studies linking SPP1+ TAMs to angiogenesis enriched in hypoxic
regions in the TME6,44, pro-tumorTAMsmarked by the expression of SPP1,
which were associated with angiogenesis, EMT, and hypoxia, predicted a
poor prognosis. Significantly, we investigated the generalized characteristics
ofT-cell-excludedphenotype in the pro-tumorTAM-enrichedTME,which
explains the poor effect of immunotherapy. Our investigation markedly
enhances the existing paradigm concerning TAMs by meticulously
addressing three critical dimensions: infiltration/number, transcriptional
diversity, and spatial localization. We advance beyond traditional quanti-
tative assessments of TAM densities, as conducted by Mantovani45 and

Nixon et al.10, by stratifying these cells into functionally distinct pro-
inflammatory and pro-tumor phenotypes, thus elucidating their differential
impacts on oncogenesis and immune regulation. Using single-cell RNA
sequencing, wemap out the transcriptional heterogeneity inherent to TAM
populations, revealing specific gene expression signatures that indicate their
functional states within the TME. Furthermore, by applying spatial tran-
scriptomics andmIHC,weprecisely chart the locational dynamics ofTAMs,
showing how their spatial arrangements relative to other tumor and
immune cells critically influence their biological roles. This integrative
analysis not only deepens our understanding of TAM functionalities but
also highlights their potential as versatile targets for therapeutic strategies,
capable of influencing tumor progression throughnuancedmanipulationof
their spatial and transcriptional landscapes.

Our main conclusions hold upon the integration of scRNA-Seq ICB
cohorts, TCGA pan-cancer transcriptomic analysis, and genomic land-
scapes. In the scRNA-Seq ICB cohorts, pro-inflam TAMs were associated
with a favorable ICB response, while pro-tumor TAMs were related to
unfavorable ICB responses. TCGA pan-cancer transcriptomic analysis
showed increased infiltration of immune cells, especially CD8+ T cells, in
tumors with the pro-inflam TAM subtype across different cancer types.
Genomic features suggest that the pro-inflam TAM subtype was correlated
with TP53 mutations, TMB, HRD, APOBEC mutational signatures, and
chromosomal instability. These ICB biomarkers have been previously
reported24,46–48 and should prompt a search for potential mechanisms
associated with pro-inflam TAMs.

Our findings indicate that pro-tumor and pro-inflam TAMs can
more effectively predict ICB response and accurately distinguish
patients with survival benefits. Predictive modeling of tumor immu-
notherapy using Scikit-learn and associated machine-learning algo-
rithms has garnered widespread validation in the scientific community.
Studies such as Kong et al.‘s network-based approach49, Wiesweg et al.‘s
PD-L1–independent response predictions50, and Polano et al.‘s pan-
cancer analysis51 demonstrate the robust application of these tools in
predicting outcomes of cancer immunotherapies. These models utilize
various machine learning algorithms implemented in Scikit-learn,
yielding significant insights into treatment responsiveness and enhan-
cing predictive accuracies across different types of cancers.We utilized a
series of machine learning algorithms to analyze the role of TAMs in
immunotherapy response. These algorithmswere selected based on their
proven efficacy in previous studies for handling complex datasets and
delivering reliable predictive performance. The validation of these tools
is well-documented in oncological research, ensuring that our metho-
dology is thoroughly rigorous and reproducible. The observed overlap
and correlation between pro-inflam and pro-tumor TAM signatures do
not diminish their value for patient stratification; instead, they under-
score the significance of acknowledging the spectrum of TAM pheno-
types within tumor biology. While individual studies have underscored
the prognostic value ofmarkers like CXCL9 and SPP152–54, our integrated
model, which encompasses a broader range of TAM-associated bio-
markers, showed improved predictive capability over a variety of data-
sets and cancer types. Moreover, our analysis revealed that our TAM
signature demonstrates greater consistency and reliability across all
evaluated cohorts when compared to the CXCL9:SPP1 ratio55. This
suggests that while individual biomarkers are insightful for under-
standing the tumor immune environment, an aggregated signature that
captures various facets of TAM activity may be a more robust tool for
predicting patient responses to immunotherapy. In addition to being
satisfied with the effectiveness of themodel, we have givenmore thought
to the reasons for the model’s effectiveness. Furthermore, the impor-
tance of pro-inflam and pro-tumor TAMs in the model and how each
feature affects the final prediction results were analyzed. Subject to
further validation, we aim to pursue clinical implementation of our
approach in the near future. Our identification of TAM subsets not only
aligns with the diversity highlighted by Mulder et al.7 but also extends
beyond the classifications proposed by Chen et al.6 by elucidating their
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functional implications across various cancer types. The comprehensive
analysis underscores the call by Ma et al.32 for a more nuanced under-
standing of macrophage diversity, unveiling unique TAM functions that
could guide therapeutic strategies. Our research emphasizes the critical
role of TAM spatial distribution, as explored by Qu et al.56 and Qi et al.54,
in influencing immune responses, thereby underlining the necessity of
incorporating TAM localization into therapeutic design considerations.

Our study does have some limitations that warrant discussion. First,
while we have characterized the common characteristics of two TAM
clusters, experimental validation remains necessary to determine whether
these functional TAMs play a similar role and to explore the potential
mechanism across different cancer types. Second, due to the limited number
of patients meeting the inclusion criteria (treatment-naïve sample, gastro-
scopy sample resectability, and postoperative pathological regression data),
only four clinical trial patients were recruited for our ST cohort. Addition-
ally, the ST technique has not yet achieved single-cell resolution. Due to
inherent limitations in the method, it is not always possible to differentiate
between variations in gene expression and differences in cell type compo-
sition within spot transcriptomes. Our study design and the insights drawn
from the analysis of these four samples are in line with accepted practices in
the field of spatial transcriptomics, wheremeaningful biological insights can
still bederived froma limitednumberof samples, particularlywhenstudying
the spatial architecture and cellular interactions within the TME57,58. For
instance, apro-inflamTAM–Texniche interactionmayoccur either because
T cells have upregulated these receptors or because T cells with these
receptors have migrated to this location. However, in either scenario, a
pathogenic mechanism is identified, offering therapeutic value. Future stu-
dies will aim to expand the dataset and utilize more robust statistical
methods to confirm the observed trends and refine our understanding of
pro-inflam TAM–Tex niche interactions in tumor tissues responding to
immunotherapy. Thirdly, the mechanism by which immunotherapy indu-
ces functional changes in the two TAMs remains unclear. Additional
experimental validation is necessary to confirm whether this state shift in
TAMs is a result of altered differentiation or population changes.

In summary, we present a comprehensive atlas of two TAM clusters
that are commonly observed across cancer types, including their phenotypic
and biofunctional categorization, as well as their association with immu-
notherapy and prognosis. Additionally, we identify exhaustion-associated
TME characteristics, which may facilitate the discovery of new therapeutic
targets and highlight the value of TAMs as a novel biomarker for response
stratification and prediction.

Methods
scRNA‑Seq data analysis
The outputs of the cell range from eight publicly available scRNA‑Seq
datasets were processed using the Read10X and CreateSeuratObject func-
tions within the Seurat package (V 4.1.0) to construct Seurat objects. In this
study, we selected eight single-cell RNA sequencing datasets based on strict
criteria for robustness and relevance across different cancer types. Inclusion
and exclusion of studies were set according to data sets up to a cut-off of
April 2022, chosen to represent the latest technological advances in single-
cell technologies before our analysis, and to represent the latest findings
relevant to the current state of the art in cancer research. According to our
pan-cancer study design, we selected representative databases for diverse
cancer types, balanced by cell number, to minimize overrepresentation bias
and to mitigate the possibility of one single cancer type affecting the con-
clusions of the study. Each dataset underwent several quality checks,
including the removal of duplicate sequences, strict cell detection, exclusion
of lowly expressedgenes, andoverall quality controls such asUMIcount, the
number of detected genes, and the proportion of mitochondrial genes.
These procedures are important to maintain a high level of data integrity
and tomake it suitable for advanced analytical procedures. In this study, we
applied themost stringent of these criteria to includeonly those datasets that
ensure the most reliable insights into cellular dynamics within the TME,
providing a solid foundation for our understanding of TAM heterogeneity

and its implications across different cancers. The adjacent normal tissue,
lymph node, and peripheral blood were filtered out, and only the primary
treatment-naïve tumor tissue was kept. Then, cells with <1000 unique
molecular identifiers, >6000 expressed genes, or amitochondrial gene count
>10%werefiltered.We extractedmonocytes/macrophages based on the cell
type annotations provided by some of the authors and conducted a re-
clustering analysis of all cells based on monocyte/macrophage markers
(CD14, CD16, CD163, and CD68). Following the removal of low-quality
cells, high-quality cells were normalized and scaled using the sctransform
wrapper in Seurat, before being batch-corrected for the individual dataset
using Harmony (V 1.0.0). We applied principal component analyses to
reduce the dimensionality of the data using the top 3000most variable genes
in the dataset. The FindClusters function was performed to generate dif-
ferent clustering results with resolutions ranging from 0.1 to 0.8. An
appropriate resolution was determined based on cluster stability with
clustree (V 0.5.0)59. The non-significant clusters were filtered based on both
statistical and biological considerations to ensure the relevance and speci-
ficity of our findings. This process involved two key criteria: (1) removing
clusters containing fewer than 200 cells to exclude statistically under-
powered clusters, and (2) identifying and removing potential doublets with
DoubletFinder (V 2.0.4) to reduce technical noise. Seven clusters, including
24,983 cells, were retained for the subsequent analysis. The FindAllMarkers
function provided by Seurat was used to perform differential gene expres-
sion analysis with aWilcoxon rank-sum test to definemarker genes for each
monocyte/TAM cluster. Cancer hallmark gene sets from the Molecular
SignaturesDatabase (MSigDB, https://www.gsea-msigdb.org/) were used in
the GSVA analysis. Genelists for the M1 and M2 signatures were adopted
from Azizi et al.60. Signatures related to hypoxia and immunity, among
others, were collected from the IOBRpackage (V0.99.9) and compiled from
other studies61. GSVA was performed on these DEGs with the GSVA
package (V 1.46.0). We assembled T-cell–attractive and T-cell–suppressive
properties of monocyte/TAM clusters using gene signatures assembled
from the literature38. The activity of individual cells for each gene set was
estimated using the AUCell package (V 1.20.2)62.

We selected the phs002065.v1 and GSE120575 datasets for their well-
documented immunotherapy response information. Initial exploratorydata
analysis involved assessing the quality of the datasets as described above,
normalizing gene expression data, and identifying highly variable genes as
potential markers for cell clustering. To classify cells into meaningful clus-
ters, we employed the Leiden algorithm, chosen for its effectiveness in
revealing the intricate cellular landscape based on transcriptional profiles.
We adjusted the Leiden algorithm’s resolution parameter, a critical step in
defining the granularity of our clustering, allowing us to capture the cellular
diversity within the TME accurately. Upon integrating our pro-inflam and
pro-tumorTAM-derivedsignatureswith the clustering results,we identified
eight clusters within the phs002065.v1 dataset and six within GSE120575.

SCENIC analysis
After annotating each cell type according to the characteristics of cell type
marker genes, we used the pySCENIC package (V 0.12.0) to identify the
enriched transcriptome factors (TF) of monocyte/TAM clusters62. SCENIC
assesses the activity of transcription factors and their downstream target
geneswithin individual cells. The key aspect of SCENIC is its ability tomove
beyond the expression level of individual transcription factors; it determines
their regulons (the group of genes they regulate) by integrating co-
expression analysiswithmotif enrichment analysis. The rawcountmatrix as
the input was the normalized expression matrix output from Seurat. The
Benjamini–Hochberg procedure was used to correct multiple hypotheses.

Single-cell pseudo-time analysis
A recently developed algorithm, PAGA, was performed on monocyte
and macrophage clusters to define imputed pseudotime trajectories in
monocytes/TAMs63. The computations were conducted using default
parameters. Monocle3 (V 1.3.1) was also applied to construct the dif-
ferentiation trajectory of monocytes/TAMs, and trajectory construction
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was performed with default parameters. Additionally, to evaluate the
most likely trajectories of cell progression among monocytes/TAMs, we
applied the algorithm slingshot (V 2.6.0)64. Each cell was given a pseudo-
time value according to its predicted position along the predicted tra-
jectories with default parameters.

Comparative analysis of cross-sectional studies usingCellTypist
To perform comparisons of cross-sectional studies, we trained logistic
regression models with pan‑cancer scRNA‑Seq datasets and cell annota-
tions as the training data using the CellTypist (V 1.3.0)65. We used LR
models optimized using the stochastic gradient descent algorithm to predict
the identities of cells in three previously published datasets7,39,66 and com-
pared the similarities of the monocyte/TAM clusters to the previously
reported annotations.

Pro-inflam and pro-tumor TAM-specific signatures
The DEGs for pro-inflam and pro-tumor TAM clusters were identified as
genes with an adjusted p value < 0.05 and logFC > 2 comparing all other
clusters in the dataset. Next, we screened each DEG based on its ability to
discriminate between individual clusters and selected only those with an
AUC> 0.65.

SCISSOR analysis
We used SCISSOR (V 2.0.0) to integrate phenotypic data from bulk RNA-
seq experiments with known immunotherapy response information
(PRJEB25780) into our integrated single-cell data67. SCISSOR was run on
the primary tumor cells of each patient individually according to the
SCISSOR tutorial using mutation data (logistic regression) and OS (Cox
regression) as dependent variables.

Pan-TCGA: immune microenvironment characterization
Comparisons of pro-inflam and pro-tumor TAM signatures between
tumors from TCGA and their host tissues from GTEx were downloaded
from the GTEx groups and screened for tumor types with significant
differences between normal and tumor tissues68. The infiltration levels of
pro-inflam and pro-tumor TAMs were quantified using the single
sample gene set enrichment analysis (ssGSEA) implemented in the
GSVA package (V 1.46.0) based on pro-inflam and pro-tumor TAM-
specific signatures.

For immune infiltrating cell subpopulation analysis, we used the
CIBERSORT algorithm to quantify the relative abundance of 22 types of
immune cells in the Pan-Cancer Atlas of TCGA69. The TAM-related
immune profiles were established by determining the Pearson corre-
lation coefficients between pro-inflam and pro-tumor TAM signatures
and CIBERSORT results. Additionally, we applied RF analysis to
evaluate the importance of 22 immune cells for the interpretation of
pro-inflam and pro-tumor TAMs using the rfPermute package (V
2.5.1). To estimate the importance of these diverse immune cells, we
used the mean decrease in the Gini coefficient of variables, in which the
higher the value of the mean decrease in the Gini score implies more
important variables.

The immunophenoscore was determined as previously described70.
Briefly, to depict the activation of immune microenvironment-related gene
signatures in each tumor sample, we used ssGSEA to determine pathway
activity using signatures that were summarized and compiled by the IOBR
package (V 0.99.9)61. The signatures frompreviously published studieswere
retrieved using the signature_collection_citation function within the IOBR
package.

Pan-TCGA: survival analysis
Kaplan–Meier survival curves with the cumulative event table and the
cumulative number of censored subjects table were generated using the
survminer package (V 0.4.9). The Cox proportional hazards regression
model was used to calculate the hazard ratios between the good- and poor-
outcome prediction groups within the survival package (V 3.5.0).

Pan-TCGA: consensus clustering
Consensus clustering analysis was performed on the R package Con-
sensusClusterPlus (V 1.62.0) using the following settings: maxK = 6,
reps = 1000, pItem= 0.95, pFeature = 1, clusterAlg = “hc,” and distance =
“Pearson.” Consensus clustering analysis used the K-means method to
identify the optimumnumber of clusters in 9164 pan-TCGApatients based
on the expression of pro-inflam and pro-tumor TAM-specific signatures.
We used consensus clustering to determine two groups of robustly co-
expressed genes for subtype classification to select genes that are co-
regulated within each TAM, thus enhancing the specificity and dis-
criminative power of our subtype definitions. The hard cutoffs refer to the
classification of subtypes based on whether the median values of co-
expressed pro-inflam and pro-tumor TAM are greater than or less than 0.
Four subtypeswere determined for each sample basedon the scaledmeanof
co-expressed pro-inflam and pro-tumor TAM genes, namely absence (co-
expressed pro-inflammatory and pro-tumor TAM genes ≤ 0), mixed (co-
expressed pro-inflammatory and pro-tumor TAM genes > 0), pro-
inflammatory TAMs (co-expressed pro-inflammatory TAM genes > 0
and co-expressed pro-tumor TAMs < 0), and pro-tumor TAMs (co-
expressed pro-inflammatory TAM genes < 0 and co-expressed pro-tumor
TAMs > 0) subgroups.

Pan-TCGA: dimension reduction
PCA was performed with the factoextra R package (V 1.0.7) using co-
expressed pro-inflam and pro-tumor TAM genes. Of note, the top five
components were used for non-linear dimension reduction to generate the
UMAP for visualization.

Pan-TCGA: differential expression
We stratified patients into binary phenotypes based on pro-inflam and pro-
tumor TAMs. Differential expression was performed on raw gene count
data using edgeR (V 3.40.0) to identify groups of genes that are highly or
lowly expressed in different binary phenotypes71. After generating a ranked
list of DEGs for any comparisons of interest, gene set enrichment was
performed using the camera statistical method in edgeR. The annotated
gene sets provided within theMSigDB were used as the input to this GSEA
method.

Pan-TCGA: transcription factor activity
We used DoRothEA (V 1.10.0) and decoupleR (V 2.9.1) to calculate the TF
activity for the four subgroups in TCGA’s Pan-Cancer Atlas72,73. TF activity
was assessed using analytic rank-based enrichment analysis, as part of
DoRothEA. The normalized enrichment score for each TF regulator was
derived from theDoRothEA tutorial. To assessTF enrichment scoreswithin
our dataset, we employed the univariate linear model approach as part of
decoupleR. This methodology entails fitting a linear model for each sample
in our dataset (denoted as ‘mat’) against eachTF in our network (denoted as
‘net’), where themodel predicts observed gene expression levels based solely
on the interaction weights between the TF and its target genes. The t-value
associatedwith the slope of each fittedmodel serves as the enrichment score
for the corresponding TF.

Pan-TCGA: copy-number driver analysis, APOBEC enrichment
estimation, and mutational signatures
To process the TCGA pan-cancer somatic data, we employed the maf-
tools package (V 2.14.0). We utilized GISTIC 2.0 to identify significant
events of genomic deletion or amplification, applying a refined com-
putational approach that assesses somatic copy number alterations. For
each tumor, an APOBEC mutagenesis enrichment score was estimated
using trinucleotideMatrix function within maftools (V 2.14.0), and the
samples were divided into APOBEC enriched and non-APOBEC
enriched74. Signature decomposition was conducted on the bulk
exome sequencing mutation data using deconstructSigs (V 1.9.0). The
Wellcome Trust Sanger Institute Mutational Signature Framework was
used as a reference to reconstruct the mutational signature of each
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tumor. Associations between these mutational signatures and TAM
subtypes were determined usingmultinomial logistic regressionmodels.

Spatial transcriptomics: patients and tissue acquisition
All samples were obtained from the Affiliated Cancer Hospital of Zhengz-
hou University. Four primary tissues were obtained from the gastroscopic
sampling of clinical trial (ClinicalTrials.gov: NCT04341857) patients who
had a pathological diagnosis of GC before receiving neoadjuvant
immunotherapy75. The clinical stages of these patients were all cT3N+M0.
Pathological regression in the primary tumor after surgery was graded
according to the Ryan criteria for TRG as follows76: TRG0 for two patients,
TRG1 for one patient, and TRG3 for one patient.

This study was approved by the Affiliated Cancer Hospital of
ZhengzhouUniversity EthicsCommittee andwritten informedconsentwas
obtained from all patients (IRB: 2023-KY-0018).

Spatial transcriptomics: library construction and sequencing
RNAqualitywas assessed by anAgilent 2100 Bioanalyzer (G2943CA). Four
FFPE samples were used to prepare the spatial transcriptome for con-
struction and sequencing. The Visium Spatial Gene Expression for FFPE
(10× Genomics) protocol was used to perform the deparaffinization,
hematoxylin, and eosin (H&E) staining, and decrosslinking. GEX libraries
were generated for each section and spatial transcriptomic sequencing was
conducted on a NovaSeq PE150 platform according to the manufacturer’s
instructions (Illumina). FASTQ files togetherwith the correspondingH&E-
stained images in tiff format were processed by Space Ranger (V 1.3, 10×
Genomics) with default parameters to generate the gene expression
matrices.

Spatial transcriptomics: spatial gene signatures and neighbor-
hood expression profiles
Visium data were analyzed with Seurat, and the data were normalized with
SCTransform77. Given that each spotmay contain approximately 8–20 cells,
we developed a signature-based strategy to score the enrichments of the two
TAMs in each spot. Specifically, we defined the average log-transformed
normalization expression values of the genes in the signature as the corre-
sponding TAM scores.

The neighborhood of a spot was defined as spots of a distance of
≤100 µm, resulting in sets of ≤6 neighbors per spot. Neighborhood
expression profiles including the spot itself were generated by taking the top
5th percentile of spots for a given signature as the reference spots and then
averaging the expression of neighborhood spots around the reference spot.
Figure 4B shows the average of these profiles across all of the reference spots
considered and standardized across the signatures.

Spatial transcriptomics: deconvolution and integration of spatial
transcriptomics spots
To facilitate cell type deconvolution and the integration of spatial tran-
scriptomics spots, spatial transcriptomics data was integrated with the lar-
gest reference scRNA-seq data for human GC to date using established
methods78–80. To verify the robustness of the applied methods, integration
methods were conducted that were conceived to integrate single-cell and
spatial transcriptomics data. Specifically, CARD(V1.0)81, RCTD (V2.2.0)82,
Tangram (V 1.0.3)83, Stereoscope (V 0.3)84, and anchors, as implemented in
Seurat77, were performed. Tangram is an integrated deep-learning frame-
work constructed for the projection of sc/snRNA-seq data onto spatially
localized transcriptomic data. This allows alignment of profiles obtained
from the sc/snRNA-seq method against spatially collected data from the
same tissue; high-resolution, full-transcriptomic spatial mapping at single-
cell resolution becomes feasible. To identify the overall concordance
between the distinct integrationmethods tested, the results of the scores for
each cell typewere intercomparedwitheachother in a correlationmatrix for
all spots using Pearson’s correlation. The score for each spot of eachmethod
was extracted from the resulting object, and the cell corresponding to the
maximum value of each spot score was considered the cell type identified

using themethod.Considering that spatial transcriptomics spots are not at a
single-cell resolution, at least≥2of the cell types identifiedby themethod are
considered specific cells (Fig. 4C). The spots containing macrophages were
resolved into four types (absence,mixed, pro-inflamTAMs, and pro-tumor
TAMs) based on pro-inflam and pro-tumor TAM-specific signatures, as
described above. We combined the spots containing pro-inflam andmixed
TAMs into enriched pro-inflam TAMs spots. Spots containing pro-tumor
and mixed TAMs were taken as enriched pro-tumor TAM spots.

Tex process and hypoxia signatures were collected from previous
studies85–87. Spots containing T cells and epithelial cells were scored for the
expression of the Tex processes and hypoxia signatures, respectively, using
the AUCell package (V 1.20.2)62.

Spatial transcriptomics: deciphering pro-inflamTAMsandCD8+
T-cell interactions
Spatial co-expression analysis of matching ligand-receptor pairs was based
on information from CellTalkDB88. The ligand-pair analysis used in our
study is adapted from established frameworks89. Initially, the expression of
each ligand and receptor outlined inCellTalkDBwas identified for each spot
in the dataset. The expression of matched ligands and receptors was eval-
uated for each spot and its neighborhood spots. Hence, for each ligand-
receptor pair, we identifiedwhether, for a specific spot expressing partnerA,
partner B was expressed in the same spot or in one of the neighborhood
spots (maximum six). Matched pairs co-expressed in the same spot or
directly in neighborhood spots were deemed to have a high probability of
interaction. The expression of the interacting pairs of ligands and receptors
was inferred, and defined as the average between the mean expression of
partnerAandpartnerBona given spot transcriptomeand its neighborhood
spots. Visualization of the interaction pairs was performed using the R
package SPATA2 (V 0.1.0)90.

To link niche-specific TAM-to-cell communications networks to
these interactions, the Pearson correlation between the interaction
expression value for each ligand-receptor pair and enrichment of pro-
inflam and pro-tumor TAM signatures was determined. We retrieved
the interacting pairs of ligands and receptors satisfying the Pearson
correlation coefficient ≥ 0.4. To account for the spatial location of niche-
specific pro-inflam TAM-to-cell communications, we further classified
spots including T cells based on their location concerning pro-inflam
TAMs (juxta spot, pro-inflam TAM-neighboring spot). Given that each
spot contains other cell types, spots without T cells and mono/macro-
phages were determined based on the cell type that appears most fre-
quently according to the aforementioned deconvolution and integration
methods. Next, theWilcoxon rank-sum test was performed between the
TRG0 and TRG1-3 groups to determine the interactions that were sig-
nificantly altered between different pathological regressions (TRG0 and
TRG1-3). GO enrichment analysis was performed using the cluster-
Profiler R package (V 4.6.0), and the cnetplot function was used to
visualize the enrichment results of the GO biological process91.

Spatial transcriptomics: spatial trajectory
Dynamic gene expression changes along trajectories were evaluated using
the plotTrajectoryGenes function within SPATA290. The SPATA2 package
offers an innovative methodology for conducting spatial trajectory analysis
in spatial transcriptomics, facilitating the visualization and examination of
gene expression alterations along designated trajectories within tissue spe-
cimens. This technique permits investigators to interactively draw trajec-
tories, emphasize them, designate them for later reference, and preserve
them in the SPATA object for subsequent analysis. Utilizing the ‘plot-
TrajectoryGenes‘ function, we can visualize and analyze the variation in
gene expression along spatially defined trajectories. This strategy yields
critical insights into how expression levels evolve across various regions of
interest andpinpoints genes exhibiting analogouspatterns. Such amethod is
exceptionally advantageous for detecting gene expression patterns asso-
ciated with gradients of cell differentiation or migration within the tissue
environment.
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Multiplex immunofluorescence staining
To quantify and spatially visualize pro-inflammatory TAMs, fluor-
escentmultiplex immunohistochemistry was performed on FFPE tissue
samples from 16 patients with GC before receiving neoadjuvant
immunotherapy. Among these, 12 patients were classified as having
TRG 1–3, while four were categorized as TRG0. The multiplex
immunofluorescence staining was conducted using a Bond RX Auto-
stainer (Leica Biosystems). FFPE tissue slides were sequentially incu-
bated with primary antibodies targeting CD8a (85336, CST, 1:600),
PDCD1 (ab237728, Abcam, 1:500), TNFSF10 (3219, CST, 1:3000),
CXCL9 (ab290643, Abcam, 1:6000), CD68 (76437, CST, 1:5000), and
PanCK (ab7753, Abcam, 1:200), followed by incubation with secondary
antibodies and reactive Opal fluorophores (Opal480, Opal520,
Opal620, Opal650, Opal690, Opal780, and Opal570). The multiplex
IHC staining was performed sequentially using the following order of
antibodies: CD68, PD1, TNFSF10, CD8, panCK, and CXCL9. After
completing the sequential reactions, the slides were counterstainedwith
DAPI. Once staining was completed, the slides were scanned using a
fluorescence slide scanner (Leica, VERSA8). Digital whole slide mul-
tispectral images in. qptiff file format and hotspot deconvoluted images
in. tiff format were uploaded to the Indica Lab HALO platform (V 3.0)
for cell quantification. The HALOHighplex FL analysis module (Indica
Labs; Albuquerque, NM, USA) was used with the Halo software for
subsequent analysis. During the analysis process, the parameters for
each analysis module were adjusted according to the actual conditions
of the images. Typically, three representative sections of intact tissue
from each patient were evaluated to provide a complete picture of the
TME. However, the exact number of sections and area analyzed
per section will depend on the sample size and tissue heterogeneity. The
number of macrophages and T cells assessed will depend on the density
of these cells in the selected tissue sections. For quantitative purposes,
immune cell-rich sections are usually analyzed to ensure that the data
accurately reflect the cellular composition and interactions in the TME.
After determining the optimal parameters, the same analysis template
was used for all similar images to avoid the influence of subjective
factors. Each annotation of different regions represented an analysis
layer, the names of which could be customized to identify the different
staining signals of cells within the analysis field of view. Upon com-
pletion of the single-layer quantitative analysis for each image, the
overall information of all results was statistically summarized. For each
defined cell type, the number of positive cells in the sample and the
percentage of that cell type among the total cells in the sample were
calculated.

ICI response prediction model training
We implemented a machine learning framework using the scikit-learn
package (V 1.1.0) built on Python (V 3.9.1)92. To generate the training
(70%) and test (30%) datasets, we partitioned the dataset using the
train_test_split function, which randomly divides the dataset into
training and test subsets using the test_size = 0.3 parameter. The model
features were used as discrete values (cancer type and drug class) or
continuous values (median expression levels of pro-inflam and pro-
tumor TAM signatures). In one-hot encoding, we used the get_dum-
mies function to create dummy variables of the discrete values. Patients
were categorized into responders, defined as CR, PR, or SD, with
OS > 12 months, and non-responders, defined as PD or SD, with
OS ≤ 12 months. We trained the ICI response classification model with
model features using five common machine learning (ML) algorithms,
namely the support vector machine, RF, logistic regressions, k-nearest
neighbors, and decision trees. Fivefold CV was adopted for hyper-
parameter tuning using GridSearchCV to optimize the performance of
the model derived from the training dataset, and the RF classification
model (hyperparameters: max_depth = 5, n_estimators = 200, and
min_samples_split = 2) with the best performance was chosen as the
final model.

Evaluating machine learning classifiers
We used the precrec package (V 0.14.1) to generate the AUC and area
under the precision-recall curve (AUPRC) values for RF models with
three feature types, namely integrated pro-inflam and pro-tumor TAMs
and clinical data; pro-inflam TAMs and clinical data; and pro-tumor
TAMs and clinical data. The optimal thresholds for the response
probability calculated with the RF model were determined using You-
den’s index method with the coords function from the pROC package
(V 0.18.0).

Comparing TAM signatures with other published signatures
To further evaluate the predictive value of TAM signatures, we com-
pared the TAM signatures with previously reported ICI response sig-
natures, including IFN-γ93, GCScore3, EMT94, and TME-basedmarkers
(Treg95, T.cell.inflamed93, cancer-associated fibroblast96, and
M1 TAM60).

Machine learning explainability
To enhance the interpretability of our model, we used the SHAP (V 0.41.0)
and PDPbox (V 0.2.1) packages built on Python, which offer insights into
the importance of each variable in the interpretation of data. Shapley values
were computed to measure the contribution of each parameter to the per-
formance of the prediction model.

ICI response survival analysis model
Next, we constructed our machine learning-based survival models,
including theCoxproportional hazards andRSF.Model discriminationwas
assessed using the concordance index (C-index), and calibration was eval-
uated using Brier scores calculated using the pec package (V 2.5.4). The
Kaplan–Meier plot and log-rank p values were generated using the surv-
miner package.

Pan‑cancer scRNA‑Seq datasets
ScRNA-seq datasets containing monocytes/macrophages from
BRCA60, ESCC97, PDAC98, ESCA6, THCA6, RC6, and CRC99 were
downloaded from the gene expression omnibus (GEO; GSE114725,
GSE145370, GSE154778, GSE154763, and GSE146771,). The dataset
describing STAD100 was downloaded from https://dna-discovery.
stanford.edu/research/datasets/, while that describing LC101 was
downloaded under the BioProject accession number PRJNA591860.
The accession number for HCC102 is CNP0000650 (https://db.cngb.org/
search/project/CNP0000650).

Two other scRNA-seq cohorts, STAD78, and pan-cancer103, were used
to verify the macrophage-conserved nature of TAM signatures. The data of
these two cohorts were accessed through the GEO accession numbers
GSE183904 and GSE203612.

scRNA‑Seq and Bulk RNA-seq ICI cohorts
Data of independent scRNA-seq ICI cohorts were accessed through the
accession numbers phs002065.v1.p139 and GSE120575104 with compre-
hensive immunotherapy response information.

We retrospectively analyzed the gene expressionprofiles fromeight ICI
datasets. Transcriptomic datasets were obtained under accession numbers
IMvigor21017, PRJEB25780105, GSE100797106, GSE115821107, GSE135222108,
GSE91061109, MGSP110, and ERP105482111.

Pan‑cancer TCGA dataset
Transcriptomic data of the TCGA pan-cancer cohort were obtained
from UCSC Xena (https://xena.ucsc.edu/) to investigate pro-inflam and
pro-tumor TAM subtypes across 32 cancer types. Clinical, copy number
variation data, and mutation data (mc3.v0.2.8.PUBLIC.maf) were
downloaded from the GDC TCGA data portal (https://portal.gdc.
cancer.gov/). The TMB, neoantigen load, HRD, tumor purity/ploidy,
aneuploidy scores, and LOH, were obtained from the respective sup-
plemental materials112.
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Spatial transcriptomics datasets
Spatially resolved transcriptomics data from Alexander et al.113, Thomas
et al.114, and Chen et al.115 can be downloaded from the Zenodo data repo-
sitories https://doi.org/10.5281/zenodo.4739739, https://doi.org/10.17632/
g67bkbnhhg.1 and http://lifeome.net/supp/livercancer-st/data.htm, respec-
tively. All datasets used in the paper are stored in Supplementary Table 2.

Data availability
Theprocessedcountmatrices derived fromthe rawSTdata generated in this
study have been deposited in the GSA-Human (Genome SequenceArchive
for Human in BIG Data Center, Beijing Institute of Genomics, Chinese
Academy of Sciences, https://ngdc.cncb.ac.cn/gsa-human/) under the
accession code PRJCA024136. The data are available under controlled
access. Any additional information required to reanalyze the data reported
in this paper is available from the lead contact upon request.

Code availability
All code generated for analysis is available from the authors upon request.

Received: 24 November 2023; Accepted: 17 July 2024;

References
1. Whiteside, T. L. The tumor microenvironment and its role in

promoting tumor growth. Oncogene 27, 5904–12 (2008).
2. Cassetta, L. & Pollard, J. W. A timeline of tumour-associated

macrophage biology. Nat. Rev. Cancer 23, 238–57 (2023).
3. Wei, C. et al. Characterization of gastric cancer stem-like molecular

features, immune and pharmacogenomic landscapes. Brief
Bioinform. 23, bbab386 (2022).

4. Wei, C. et al. Crosstalk between cancer cells and tumor associated
macrophages is required for mesenchymal circulating tumor cell-
mediated colorectal cancer metastasis.Mol. Cancer 18, 64 (2019).

5. Yang, C. et al. Tumor-derived exosomal microRNA-106b-5p
activates EMT-cancer cell and M2-subtype TAM interaction to
facilitate CRC metastasis.Mol. Ther. J. Am. Soc. Gene Ther. 29,
2088–107 (2021).

6. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of
tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

7. Mulder, K. et al. Cross-tissue single-cell landscape of human
monocytes and macrophages in health and disease. Immunity 54,
1883–900.e5 (2021).

8. Combes, A. J. et al. Discovering dominant tumor immune
archetypes in a pan-cancer census. Cell 185,
184–203.e19 (2022).

9. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P.
Tumour-associatedmacrophages as treatment targets in oncology.
Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

10. Nixon, B. G. et al. Tumor-associated macrophages expressing the
transcription factor IRF8 promote T cell exhaustion in cancer.
Immunity 55, 2044–58.e5 (2022).

11. Fujiwara, Y. et al. Guanylate-binding protein 5 is a marker of
interferon-γ-induced classically activated macrophages. Clin.
Transl. Immunol. 5, e111 (2016).

12. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to
immunometabolism for immunologists. Nat. Rev. Immunol. 16,
553–65 (2016).

13. Xiong, D., Wang, Y. & You, M. A gene expression signature of
TREM2(hi) macrophages and γδ T cells predicts immunotherapy
response. Nat. Commun. 11, 5084 (2020).

14. Loftus, P. G. et al. Targeting stromal cell Syndecan-2 reduces breast
tumour growth,metastasis and limits immuneevasion. Int. J. Cancer
148, 1245–59 (2021).

15. House, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are
required for antitumor immune responses following immune

checkpoint blockade. Clin. Cancer Res. Off. J. Am. Assoc. Cancer
Res. 26, 487–504 (2020).

16. Yang, L. & Lin, P. C. Mechanisms that drive inflammatory tumor
microenvironment, tumor heterogeneity, and metastatic
progression. Semin. Cancer Biol. 47, 185–95 (2017).

17. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1
blockade by contributing to exclusion of T cells. Nature 554,
544–8 (2018).

18. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-
immunity cycle. Immunity 39, 1–10 (2013).

19. Zhang,Q. et al. Interrogationof themicroenvironmental landscape in
spinal ependymomas reveals dual functions of tumor-associated
macrophages. Nat. Commun. 12, 6867 (2021).

20. Xu, Y. et al. Twist1 promotes breast cancer invasion and metastasis
by silencing Foxa1 expression. Oncogene 36, 1157–66 (2017).

21. Zhang, Q. et al. Landscape and dynamics of single immune cells in
hepatocellular carcinoma. Cell 179, 829–45.e20 (2019).

22. Lu, Y. et al. A single-cell atlas of the multicellular ecosystem of
primaryandmetastatichepatocellular carcinoma.Nat.Commun.13,
4594 (2022).

23. Sica, A. & Mantovani, A. Macrophage plasticity and polarization:
in vivo veritas. J. Clin. Investig. 122, 787–95 (2012).

24. Assoun, S. et al. Association of TP53 mutations with response and
longer survival under immune checkpoint inhibitors in advanced
non-small-cell lung cancer. Lung Cancer 132, 65–71 (2019).

25. Jia Q, Wang J, He N, He J, & Zhu B. Titin mutation associated with
responsiveness to checkpoint blockades in solid tumors. JCI Insight
4, e127901 (2019).

26. Zhang, P. & Huang, Y. Genomic alterations in KMT2 family predict
outcome of immune checkpoint therapy in multiple cancers. J.
Hematol. Oncol. 14, 39 (2021).

27. Dorand, R. D. et al. Cdk5 disruption attenuates tumor PD-L1
expression and promotes antitumor immunity. Science 353,
399–403 (2016).

28. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a
mechanism of resistance to anti-CTLA-4 therapy. Cell 167,
397–404.e9 (2016).

29. Hedegaard, J. et al. Comprehensive transcriptional analysis of early-
stage urothelial carcinoma. Cancer Cell 30, 27–42 (2016).

30. Hugo, W. et al. Genomic and transcriptomic features of response to
anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

31. Hargadon, K. M. The role of interferons in melanoma resistance to
immune checkpoint blockade: mechanisms of escape and
therapeutic implications. Br. J. Dermatol 185, 1095–104 (2021).

32. Ma, R. Y., Black, A. & Qian, B. Z. Macrophage diversity in cancer
revisited in the era of single-cell omics. Trends Immunol. 43,
546–63 (2022).

33. Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor
microenvironment revealed by single-cell profiling. Cell Res. 30,
745–62 (2020).

34. Chen, X. et al. TREM2 promotes glioma progression and
angiogenesis mediated by microglia/brain macrophages. Glia 71,
2679–95 (2023).

35. Roumenina, L. T. et al. Tumor cells hijack macrophage-produced
complement C1q to promote tumor growth. Cancer Immunol. Res.
7, 1091–105 (2019).

36. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell
exhaustion during chronic viral infection and cancer. Annu. Rev.
Immunol. 37, 457–95 (2019).

37. Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical
implications of T cell exhaustion for cancer immunotherapy. Nat.
Rev. Clin. Oncol. 19, 775–90 (2022).

38. Tietscher, S. et al. A comprehensive single-cell map of T cell
exhaustion-associated immune environments in human breast
cancer. Nat. Commun. 14, 98 (2023).

https://doi.org/10.1038/s41698-024-00660-4 Article

npj Precision Oncology |           (2024) 8:176 17

https://doi.org/10.5281/zenodo.4739739
https://doi.org/10.17632/g67bkbnhhg.1
https://doi.org/10.17632/g67bkbnhhg.1
http://lifeome.net/supp/livercancer-st/data.htm
https://ngdc.cncb.ac.cn/gsa-human/


39. Bi, K. et al. Tumor and immune reprogramming during
immunotherapy in advanced renal cell carcinoma. Cancer Cell 39,
649–61.e5 (2021).

40. Bulle, A. & Lim, K. H. Beyond just a tight fortress: contribution of
stroma to epithelial-mesenchymal transition in pancreatic cancer.
Signal Transduct. Target. Ther. 5, 249 (2020).

41. Wilson,W. R. & Hay, M. P. Targeting hypoxia in cancer therapy.Nat.
Rev. Cancer 11, 393–410 (2011).

42. Denhardt, D. T., Noda,M., O’Regan, A.W., Pavlin, D. & Berman, J. S.
Osteopontin as a means to cope with environmental insults:
regulation of inflammation, tissue remodeling, and cell survival. J.
Clin. Investig. 107, 1055–61 (2001).

43. Wei, J. et al. Characterizing intercellular communication of pan-
cancer reveals SPP1+ tumor-associated macrophage expanded in
hypoxia and promoting cancermalignancy through single-cell RNA-
seq data. Front. Cell Dev. Biol. 9, 749210 (2021).

44. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in
glioblastoma across species and disease stage reveals
macrophage competition and specialization. Nat. Neurosci. 24,
595–610 (2021).

45. Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C.
Macrophages as tools and targets in cancer therapy.Nat. Rev. Drug
Discov. 21, 799–820 (2022).

46. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1
checkpoint blockade-based immunotherapy. Science 362,
eaar3593 (2018).

47. DiMarco, A. V. et al. APOBEC mutagenesis inhibits breast cancer
growth through induction of T cell-mediated antitumor immune
responses. Cancer Immunol. Res. 10, 70–86 (2022).

48. Aspeslagh, S., Chabanon, R. M., Champiat, S. & Postel-Vinay, S.
Understanding genetic determinants of resistance to immune
checkpoint blockers. Semin. Cancer Biol. 65, 123–39 (2020).

49. Kong, J. et al. Network-basedmachine learning approach to predict
immunotherapy response in cancer patients. Nat. Commun. 13,
3703 (2022).

50. Wiesweg, M. et al. Machine learning reveals a PD-L1–independent
prediction of response to immunotherapy of non-small cell lung
cancer by gene expression context. Eur. J. Cancer 140,
76–85 (2020).

51. Polano, M. et al. A pan-cancer approach to predict responsiveness
to immune checkpoint inhibitors by machine learning. Cancers 11,
1562 (2019).

52. Seitz, S. et al. CXCL9 inhibits tumour growth and drives anti-PD-L1
therapy in ovarian cancer. Br. J. Cancer 126, 1470–80 (2022).

53. Liang, Y. K. et al. CXCL9 is a potential biomarker of immune
infiltration associated with favorable prognosis in ER-negative
breast cancer. Front Oncol. 11, 710286 (2021).

54. Qi, J. et al. Single-cell and spatial analysis reveal interaction of
FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer.
Nat. Commun. 13, 1742 (2022).

55. Bill, R. et al. CXCL9:SPP1 macrophage polarity identifies a network
of cellular programs that control human cancers. Science 381,
515–24 (2023).

56. Qu, Y. et al. Baseline frequency of inflammatory Cxcl9-expressing
tumor-associated macrophages predicts response to avelumab
treatment. Cell Rep. 32, 107873 (2020).

57. Liu, Y. et al. Identification of a tumour immune barrier in the HCC
microenvironment that determines theefficacyof immunotherapy.J.
Hepatol. 78, 770–82 (2023).

58. Ozato, Y. et al. Spatial and single-cell transcriptomics decipher the
cellular environment containing HLA-G+ cancer cells and SPP1+
macrophages in colorectal cancer. Cell Rep. 42, 111929 (2023).

59. Zappia, L. & Oshlack, A. Clustering trees: a visualization for
evaluating clusterings at multiple resolutions. GigaScience 7,
giy083 (2018).

60. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the
breast tumor microenvironment. Cell 174, 1293–308.e36 (2018).

61. Zeng, D. et al. IOBR: multi-omics immuno-oncology biological
research to decode tumor microenvironment and signatures. Front.
Immunol. 12, 687975 (2021).

62. Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083–6 (2017).

63. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with
trajectory inference through a topology preserving map of single
cells. Genome Biol. 20, 59 (2019).

64. Street, K. et al. Slingshot: cell lineage and pseudotime inference for
single-cell transcriptomics. BMC Genom. 19, 477 (2018).

65. Suo,C. et al.Mapping thedevelopinghuman immunesystemacross
organs. Science 376, eabo0510 (2022).

66. Bassez, A. et al. A single-cell map of intratumoral changes during
anti-PD1 treatment of patients with breast cancer. Nat. Med. 27,
820–32 (2021).

67. Sun, D. et al. Identifying phenotype-associated subpopulations by
integrating bulk and single-cell sequencing data. Nat. Biotechnol.
40, 527–38 (2022).

68. Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B.
Genetic effects on gene expression across human tissues. Nature
550, 204–13 (2017).

69. Yoshihara, K. et al. Inferring tumour purity and stromal and
immune cell admixture from expression data. Nat. Commun. 4,
1–11 (2013).

70. Charoentong, P. et al. Pan-cancer Immunogenomic analyses reveal
genotype-immunophenotype relationships and predictors of
response to checkpoint blockade. Cell Rep. 18, 248–62 (2017).

71. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression
analysis of multifactor RNA-Seq experiments with respect to
biological variation. Nucleic Acids Res. 40, 4288–97 (2012).

72. Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. & Saez-
Rodriguez, J. Benchmark and integration of resources for the
estimation of human transcription factor activities.GenomeRes. 29,
1363–75 (2019).

73. Badia-i-Mompel, P. et al. decoupleR: ensemble of computational
methods to infer biological activities from omics data. Bioinforma.
Adv. 2, vbac016 (2022).

74. Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P.
Maftools: efficient and comprehensive analysis of somatic variants
in cancer. Genome Res. 28, 1747–56 (2018).

75. Li, N. et al. Efficacy and safety of neoadjuvant sintilimab in
combination with FLOT chemotherapy in patients with HER2-
negative locally advanced gastric or gastroesophageal junction
adenocarcinoma: an investigator-initiated, single-arm, open-label,
phase II study. Int J. Surg. 110, 2071–2084 (2024).

76. Ryan, R. et al. Pathological response following long-course
neoadjuvant chemoradiotherapy for locally advanced rectal cancer.
Histopathology 47, 141–6 (2005).

77. Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177, 1888–902.e21 (2019).

78. Kumar, V. et al. Single-cell atlas of lineage states, tumor
microenvironment, and subtype-specific expression programs in
gastric cancer. Cancer Discov. 12, 670–91 (2022).

79. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-
cell and spatial transcriptomics to elucidate intercellular tissue
dynamics. Nat. Rev. Genet. 22, 627–44 (2021).

80. Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics
of the human endometrium in vivo and in vitro. Nat. Genet. 53,
1698–711 (2021).

81. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for
spatial transcriptomics. Nat. Biotechnol. 40, 1349–59 (2022).

82. Cable, D. M. et al. Robust decomposition of cell type mixtures in
spatial transcriptomics. Nat. Biotechnol. 40, 517–26 (2022).

https://doi.org/10.1038/s41698-024-00660-4 Article

npj Precision Oncology |           (2024) 8:176 18



83. Biancalani, T. et al. Deep learning and alignment of spatially resolved
single-cell transcriptomes with Tangram. Nat. Methods 18,
1352–62 (2021).

84. Andersson, A. et al. Single-cell and spatial transcriptomics enables
probabilistic inference of cell type topography. Commun. Biol. 3,
565 (2020).

85. Beltra, J. C. et al. Developmental relationships of four exhausted
CD8(+) T cell subsets reveals underlying transcriptional and
epigenetic landscape control mechanisms. Immunity 52,
825–41.e8 (2020).

86. Hu, X. J. et al. The genome landscape of tibetan sheep reveals
adaptive introgression from argali and the history of early human
settlements on the Qinghai–Tibetan plateau.Mol. Biol. Evol. 36,
283–303 (2019).

87. Ye, Y. et al. Characterization of hypoxia-associated molecular
features to aid hypoxia-targeted therapy. Nat. Metab. 1,
431–44 (2019).

88. Shao, X. et al. CellTalkDB: a manually curated database of
ligand–receptor interactions in humans and mice. Brief. Bioinforma.
22, bbaa269 (2021).

89. Kaufmann, M. et al. Identification of early neurodegenerative
pathways in progressive multiple sclerosis. Nat. Neurosci. 25,
944–55 (2022).

90. Kueckelhaus, J et al. Inferring spatially transient gene expression
pattern from spatial transcriptomic studies. Preprint at bioRxiv
https://doi.org/10.1101/2020.10.20.346544.

91. Yu, G.,Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package
for comparing biological themes among gene clusters. Omics J.
Integr. Biol. 16, 284–7 (2012).

92. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J.
Mach. Learn. Res. 12, 2825–30 (2011).

93. Ayers,M. et al. IFN-γ-relatedmRNAprofile predicts clinical response
to PD-1 blockade. J. Clin. Investig. 127, 2930–40 (2017).

94. Tan, T. Z. et al. Epithelial-mesenchymal transition spectrum
quantification and its efficacy in deciphering survival and drug
responses of cancer patients. EMBO Mol. Med. 6,
1279–93 (2014).

95. Givechian, K. B. et al. Identification of an immune gene expression
signature associated with favorable clinical features in Treg-
enriched patient tumor samples. NPJ Genom. Med. 3, 14 (2018).

96. Nurmik, M., Ullmann, P., Rodriguez, F., Haan, S. & Letellier, E. In
search of definitions: Cancer-associated fibroblasts and their
markers. Int. J. Cancer 146, 895–905 (2020).

97. Zheng, Y. et al. Immune suppressive landscape in the human
esophageal squamous cell carcinoma microenvironment. Nat.
Commun. 11, 6268 (2020).

98. Lin,W. et al. Single-cell transcriptome analysis of tumor and stromal
compartments of pancreatic ductal adenocarcinoma primary
tumors and metastatic lesions. Genome Med. 12, 80 (2020).

99. Zhang, L. et al. Single-cell analyses informmechanisms of myeloid-
targeted therapies in colon cancer. Cell 181, 442–59.e29 (2020).

100. Sathe, A. et al. Single-cell genomic characterization reveals the
cellular reprogramming of the gastric tumormicroenvironment.Clin.
Cancer Res. 26, 2640–53 (2020).

101. Maynard, A. et al. Therapy-induced evolution of human lung cancer
revealed by single-cell RNA sequencing. Cell 182, 1232–51.e22
(2020).

102. Sun, Y. et al. Single-cell landscape of the ecosystem in early-relapse
hepatocellular carcinoma. Cell 184, 404–21.e16 (2021).

103. Barkley, D. et al. Cancer cell states recur across tumor types and
form specific interactions with the tumor microenvironment. Nat.
Genet. 54, 1192–201 (2022).

104. Sade-Feldman, M. et al. Defining T cell states associated with
response to checkpoint immunotherapy in melanoma. Cell 175,
998–1013.e20 (2018).

105. Kim,S. T. et al. Comprehensivemolecular characterization of clinical
responses to PD-1 inhibition in metastatic gastric cancer.Nat. Med.
24, 1449–58 (2018).

106. Lauss, M. et al. Mutational and putative neoantigen load predict
clinical benefit of adoptive T cell therapy in melanoma. Nat.
Commun. 8, 1738 (2017).

107. Auslander, N. et al. Robust prediction of response to immune
checkpoint blockade therapy inmetastaticmelanoma.Nat.Med.24,
1545–9 (2018).

108. Jung, H. et al. DNA methylation loss promotes immune evasion of
tumours with high mutation and copy number load. Nat. Commun.
10, 4278 (2019).

109. Riaz, N. et al. Tumor and microenvironment evolution during
Immunotherapy with Nivolumab. Cell 171, 934–49.e16
(2017).

110. Liu, D. et al. Integrative molecular and clinical modeling of clinical
outcomes to PD1 blockade in patients with metastatic melanoma.
Nat. Med. 25, 1916–27 (2019).

111. Gide, T. N. et al. Distinct immune cell populations define response to
anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined
therapy. Cancer cell 35, 238–55.e6 (2019).

112. Thorsson, V. et al. The immune landscape of cancer. Immunity 48,
812–30.e14 (2018).

113. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human
breast cancers. Nat. Genet. 53, 1334–47 (2021).

114. Li, R. et al. Mapping single-cell transcriptomes in the intra-tumoral
and associated territories of kidney cancer. Cancer Cell 40,
1583–99.e10 (2022).

115. Wu, R. et al. Comprehensive analysis of spatial architecture in
primary liver cancer. Sci. Adv. 7, eabg3750 (2021).

Acknowledgements
This work was supported by grants from the National Natural Science
Foundation of China (82373271), the National Natural Science Fund Youth
Fund of China (82003041); Joint Funds of the National Natural Science
Foundation of China (U2004132); the Key Scientific and Technological
Projects in Henan Province (222102310324); the Project of Tackling
Problems in Medical Science and Technology of Henan Province
(LHGJ20190631).

Author contributions
N.L. and C.W. planned and designed the study. C.W. wrote the manuscript
and carried out the data analysis. J.Y.M., Y.M.W., Y.S.W., and Y.W.Y.
conducted the sample preparation. X.Q.X. performed pathology
assessments. L.S.D., Y.W.D., Y.L.B., C.Z., and W.S. recruited patients,
gathered the clinical data for the study, and made conceptual contributions
to the study. N.L. and X.S.L. supervised the project. All authors read and
approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41698-024-00660-4.

Correspondence and requests for materials should be addressed to
Qingxin Xia, Suxia Luo or Ning Li.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41698-024-00660-4 Article

npj Precision Oncology |           (2024) 8:176 19

https://doi.org/10.1101/2020.10.20.346544
https://doi.org/10.1101/2020.10.20.346544
https://doi.org/10.1038/s41698-024-00660-4
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41698-024-00660-4 Article

npj Precision Oncology |           (2024) 8:176 20

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Tumor-associated macrophage clusters linked to immunotherapy in a pan-cancer census
	Result
	Identification and molecular characterization of monocyte/TAM clusters
	Four distinct subtypes based on pro-inflamed and pro-tumor TAMs across pan-cancer levels
	Tumor genomic profiles of the four distinct subtypes based on pro-inflam and pro-tumor TAMs
	Identifying pro-inflam and pro-tumor TAMs related to immunotherapy
	Spatially mapping pro-inflam and pro-tumor TAMs
	Pro-inflam and pro-tumor TAMs correlate with immunotherapy efficacy
	Performance of TAM predictors of response to immunotherapy
	Importance and interaction analysis of pro-inflam and pro-tumor TAMs

	Discussion
	Methods
	scRNA&#x02011;Seq data analysis
	SCENIC analysis
	Single-cell pseudo-time analysis
	Comparative analysis of cross-sectional studies using CellTypist
	Pro-inflam and pro-tumor TAM-specific signatures
	SCISSOR analysis
	Pan-TCGA: immune microenvironment characterization
	Pan-TCGA: survival analysis
	Pan-TCGA: consensus clustering
	Pan-TCGA: dimension reduction
	Pan-TCGA: differential expression
	Pan-TCGA: transcription factor activity
	Pan-TCGA: copy-number driver analysis, APOBEC enrichment estimation, and mutational signatures
	Spatial transcriptomics: patients and tissue acquisition
	Spatial transcriptomics: library construction and sequencing
	Spatial transcriptomics: spatial gene signatures and neighborhood expression profiles
	Spatial transcriptomics: deconvolution and integration of spatial transcriptomics spots
	Spatial transcriptomics: deciphering pro-inflam TAMs and CD8&#x0002B; T-cell interactions
	Spatial transcriptomics: spatial trajectory
	Multiplex immunofluorescence staining
	ICI response prediction model training
	Evaluating machine learning classifiers
	Comparing TAM signatures with other published signatures
	Machine learning explainability
	ICI response survival analysis model
	Pan&#x02011;cancer scRNA&#x02011;Seq datasets
	scRNA&#x02011;Seq and Bulk RNA-seq ICI cohorts
	Pan&#x02011;cancer TCGA dataset
	Spatial transcriptomics datasets

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




