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Factor analytic selection 
tools and environmental 
feature‑integration enable holistic 
decision‑making in Eucalyptus 
breeding
Saulo F. S. Chaves 1, Michelle B. Damacena 2, Kaio Olimpio G. Dias 3, 
Caio Varonill de Almada Oliveira 4 & Leonardo L. Bhering 3*

Understanding the genotype‑by‑environment interaction (GEI) and considering it in the selection 
process is a sine qua non condition for the expansion of Brazilian eucalyptus silviculture. This study’s 
objective is to select high‑performance and stable eucalyptus clones based on a novel selection index 
that considers the Factor Analytic Selection Tools (FAST) and the clone’s reliability. The investigation 
explores the nuances interplay of GEI and extends its insights by scrutinizing the relationship between 
latent factors and real environmental features. The analysis, conducted across seven trials in five 
Brazilian states involving 78 clones, employs FAST. The clonal selection was performed using an 
extended FAST index weighted by the clone’s reliability. Further insights about GEI emerge from the 
integration of factor loadings with 25 environmental features through a principal component analysis. 
Ten clones, distinguished by high performance, stability, and reliability, have been selected across 
the target population of environments. The environmental features most closely associated with 
factor loadings, encompassing air temperature, radiation, and soil characteristics, emerge as pivotal 
drivers of GEI within this dataset. This study contributes insights to eucalyptus breeders, equipping 
them to enhance decision‑making by harnessing a holistic understanding‑from the genotypes under 
evaluation to the diverse environments anticipated in commercial plantations.

Keywords Genotype-by-environment interaction, Factor analytic mixed models, tree breeding, reliability, 
environmental features

Brazilian silviculture is continuously growing. In 2022, the production value in silviculture increased by 14.9%, 
setting new national records, as reported by the Brazilian Institute of Geography and Statistics (IBGE). IBGE 
data also revealed that the planted forests’ total area exceeds 9.5 million hectares, with a substantial 77% of this 
area dedicated to species from the Eucalyptus genus. Ensuring a sustainable and secure expansion of eucalyptus-
planted forests necessitates the identification of clones adapted to environmental changes. These clones must be 
capable of withstanding various challenges posed by marginal environments, including factors such as drought, 
frost, poor soil quality (whether chemical or physical), and unfavourable weather conditions for optimal tree 
 growth1,2. This crucial task is typically achieved through rigorous testing of selection candidates in multi-envi-
ronment trials (MET). These trials must be strategically installed in environments that accurately represent the 
conditions that clones may encounter in commercial plantations. In other words, MET should properly sample 
the genotype-by-environment interaction (GEI), the phenomenon that dictates the differential behavior of clones 
in response to different environmental  stimuli3.

There are two main types of GEI: Scale-type, also known as simple or non-crossover, where changes in per-
formance do not affect genotype ranking; and Rank-type, also called complex or crossover, where the opposite 
is  true4,5. Managing GEI is crucial, especially in situations where it is rank-type, as it requires statistical solutions 
that not only isolate these effects but also incorporate them into the selection process. Factor Analytic (FA) 
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mixed models provide these solutions. This method was developed as an alternative to multivariate models and a 
mixed model counterpart to AMMI (Additive Main Effects and Multiplicative Interaction)6–9. The core idea is to 
reduce dimensionality to a certain number of latent covariates (the factors) by leveraging the covariance between 
environments intrinsic to these  factors10. FA considers genotypic heteroscedasticity and predicts a candidate’s 
performance in an untested environment. For its mixed model framework, it successfully deals with unbal-
anced data and can leverage kinship or molecular  information11. Furthermore, Factor Analytic Selection Tools 
(FAST)12 provide straightforward alternatives for precise decision-making in the search for high-performance 
and/or stable genotypes.

Factor analytic models primarily focus on understanding the “genotype” portion of GEI. However, an alter-
native approach to explore interaction dynamics is to examine the “environment” portion using data from 
environmental features. This paradigm has been evolving since the early ’70s but gained significant traction in 
the last decade due to improved computational  resources13–17. The comprehensive approach involves integrating 
FA models with environmental information, bridging the “genotype” and “environment” aspects of GEI. This 
integration combines real environmental covariates with latent environmental covariates (the factors), offering 
a powerful tool for both prediction and  inference2,18,19. This integrated approach has proven beneficial in vari-
ous contexts, such as defining breeding zones, studying genotypic responses to climatic changes, exploring the 
intricate relationship between genomics and environmental data and predicting the genotypic performance to 
new, untested  environments18,19. In the specific case of eucalyptus breeding, studies like that of Callister et al.2 
used FA models integrated with genomics and environmental data to delineate breeding zones for Eucalyptus 
globulus Labill. Another example of usage is reported by Costa e Silva et al.20, who investigated how eucalyptus 
genotypes are influenced by changes in weather-related environmental features by regressing genotypic values 
onto climatic variables. Such integrated approaches hold promise for advancing our understanding of the complex 
interplay between genetics and environmental factors in tree breeding programs.

This study presents a unique application of the FAST methodology in the context of eucalyptus breeding. 
Notably, we extended FAST by integrating it with a candidate’s reliability. This enhancement aimed to select 
eucalyptus clones with high performance, stability, and high-quality information, facilitating targeted recom-
mendations across diverse environments and decreasing the risk of a flawed decision. Additionally, we delved 
into the dynamics of GEI by examining the relationship between known and latent environmental covariates. To 
achieve this, we adapted the methodology outlined by Bakare et al.21, integrating the outcomes of the FA model 
with environmental features in a single partial least squares regression.

Results
Single‑environment trial analyses
The genotypic variance constituted the major portion of the total variance in all environments but E1 and E5 
(Fig. 1A). Furthermore, the genotypic effects were significant in all analysed environments. Thirty-three distinct 
clones were among the top ten selections in individual environments, with clones C04 and C13 being the only 
ones consistently chosen across all environments (Fig. 1B).

FA outcomes
Model selection
The Akaike Information Criterion (AIC) exhibits minimal changes with the number of factors. Subtle increases 
in explanatory power are observed from FA3 onward. FA3, with an explanatory power of 87%, was selected as 
the model for further analysis (Fig. 2A). In this model, the first factor predominantly explained the variance in 
all environments except E6, where the second factor played a more prominent role. The contribution of the third 
factor was minor across all environments except E1 and E7 (Fig. 2B). The factor loadings of each environment 
in each of the chosen model’s three factors are in the Supplementary Material (Table S1)

Heritability and pairwise genotypic correlations
The heritability varied from 0.65 to 0.72, and the coefficient of variation (CV) ranged from 0.04 to 0.12 (Fig. 3A), 
indicating good experimental precision. Genotypic correlations between environments ranged from 0.33 to 0.92, 
with E6 showing the most significant deviation from its peers. The closest relationship was observed between 
E5 and E3 (Fig. 3B).

Selection
Using the selection index, we selected the top ten clones for global performance and stability across environ-
ments (Fig. 4A), namely C13, C04, C03, C34, C16, C22, C27, C02, C33, and C17. These clones meet the three 
criteria considered for building the index: they have high global performance, can keep it acceptably high across 
environments, and have trustworthy information. Note that all selected clones beat the two commercial checks. 
The two clones that were consistently selected in all individual analyses were also selected by the index (C13 
and C04). Notably, C13 is more stable than C04, as evidenced by the lower RMSD of C13, and the steeper slope 
of C04 in the latent regression plots of the second and third factors (Fig. 4B). The selection of these clones will 
provide an expected gain of 8.30%.

Environmental drivers of the GEI
Five components were selected for the partial least squares regression (PLSR) model, which explained over 90% 
of the total variance. The PLSR biplot (considering the first two components) revealed that features like TMAX, 
TMEAN, SPV, and HIRI are highly associated with the first factor, while PH, BDOD, ALT, TRANGE and CLAY 
are linked to the second factor (Fig. 5A). Notably, FA3 does not show substantial influence from any specific 
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environmental feature, despite being closer to RH2M. Among the tested features, VPD, RH2M, CLAY, SAND, 
SPV and temperature-related features play crucial roles in driving GEI in the dataset. The spatial arrangement 
of environments in Fig. 5B shows how they are related based on the GEI and the environmental features. E6 and 
E5 seem to be the most different environments. In fact, E5 is the most geographically distant (see Fig. 7), and 
E6 has a marked drought period and was the most different regarding explanation dynamics in the FA models.

Discussion
This study establishes the efficacy of FAST for the selection and recommendation of eucalyptus clones across 
diverse environments. A novel aspect of this approach is the integration of FAST with the clone’s reliability, 
introducing an additional criterion-information quality-in the decision-making process. Moreover, our investiga-
tion focuses on the environmental determinants of GEI by exploring the relationship between latent factors and 
actual environmental features, identifying the most influential factors driving differential phenotypic expression 
across environments.

When addressing GEI, two approaches come into play. The first entails an environment-specific strategy, 
focusing on recommendations to each environment based on individual analyses’ outcomes, as depicted in 
Fig. 1. While optimal, this approach is often impractical due to financial constraints, making it challenging to 
run breeding programs for each environment separately. The second option involves leveraging biometrical 
solutions to consider data from all environments simultaneously and incorporate GEI into the decision-making 
process. Here, the objective is to identify candidates with consistently high and stable performance across all 
trials, as illustrated in Fig. 4. Factor analytic models are a gold standard method for implementing the latter 
 alternative7,8,22. This study outlines a recommended pipeline for eucalyptus breeders utilizing FA models: (1) 
initiate the process by selecting an appropriate model, determining the optimal number of factors based on 
explicative power (Fig. 2); (2) employ the selected model to explore experimental precision and the nature of 
GEI within the dataset (Fig. 3); and (3) utilize FAST for clonal selection, enabling a comprehensive assessment 
of high-performance and stability across diverse environments. Furthermore, breeders can compare selected 
clones’ behaviour across environments with commercial checks using latent regression plots (Fig. 4).

Figure 1.  Results of the individual analyses per environment: (A) percentage of each variance component 
attributed to the total variance; and (B) performance of the top ten clones in each environment. In (A), the 
genotypic variance was significant in all environments. In (B), a blank cell indicates that the clone in the y-axis 
was not selected in the x-environment.
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The variability observed in genotypic correlations between environments underscores the nuanced nature of 
GEI in the dataset. While many correlations are positive and high ( > 0.7 ), suggesting subtle changes in clonal 
performance in terms of genotypic value, breeders must not overlook the presence of GEI. The information 
provided in Fig. 1 emphasizes that the majority of selected clones differ across environments. This highlights 
that even subtle changes can impact clonal selection, and recommending suboptimal candidates may result in 
financial setbacks in eucalyptus silviculture. Selecting a low-performing clone over a promising one can have 
repercussions for at least seven years, the number of years to reach rotation age in commercial plantations. 
Environment E6 (Bocaiúva-MG) stood out as the location where clones exhibited the most divergent responses. 
Notably, it was the only environment in which the second factor held the highest explicative power (Fig. 2) and 
was somewhat poorly related to the other environments in the partial least squares regression (Fig. 5B). This 
specific site is characterized by a substantial temperature range and a distinct period with minimal precipitation, 
making it a preferred choice for testing clones for drought  tolerance23,24. The unique conditions of E6 likely con-
tribute to the distinct behaviour observed in the second factor and the heightened variability in clonal responses.

The relationship illustrated in Fig. 3B represents the manifestation of genotypic responses to environmental 
influences. We integrated these responses with the actual environmental features of each environment to evaluate 
the environmental drivers of GEI in the dataset and establish a comprehensive relationship between environ-
ments (Fig. 5). Some crucial environmental features have been extensively discussed in the literature. Queiroz 
et al.24 in Brazil found that temperatures between 6 ◦ C and 31 ◦ C are generally favourable for tree growth, but 
the optimum temperature range varies depending on the species or hybrid. For example, the most planted hybrid 

Figure 2.  Selection of the proper number of factors for the FA model: (A) Akaike information criterion 
(AIC, left plot) and average semivariances ratio (ASVR, right plot), and (B) explained variance per factor and 
environment of the selected model (FA3).
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in Brazil, E. grandis × E. urophylla, thrives in tropical conditions and requires higher temperatures for optimal 
growth. Mean temperature values outside this range can potentially damage eucalyptus through impacts on the 
photosynthetic apparatus and alterations in internal water relations, often associated with heatwaves, droughts, 
or  frosts25–27. Temperature changes are also correlated with shifts in latitude—approaching zero latitude tends 
to increase mean temperatures; and altitude—higher altitudes usually have lower temperatures. In the context 
of climate change, Elli et al.1 identified temperature as a critical factor, projecting potential reductions in tree 
growth for plantations in the Brazilian Center-North region (latitudes closer to zero). Figure 5A also revealed an 
important role of features related to water relations (VPD and RH2M) and soil-related features. The relevance of 
these features evidences the susceptibility of eucalyptus forests to changes in water availability in both soil and 
 atmosphere28–30. It justifies the ongoing efforts in breeding eucalyptus for drought tolerance. It is noteworthy that 
the PLSR-FA integration, although recent, has been contributing significantly to understanding the relationship 
between GEI and real environmental variables, as outlined in Bakare et al.21 and Araújo et al.19.

The discussion addressed in the previous paragraph alert to a concerning scenario for plant breeding. Accord-
ing to the last report of the Intergovernmental Panel on Climate Change, the last fifty years had the most steep 
increase in temperatures in the last 2000  years31. Particularly in Brazil, droughts and heat waves are becoming 
more  frequent32,33. Given this fact, plant breeders should focus on developing genotypes that can keep performing 
acceptably whilst enduring extreme conditions. This is specially important for forest species, which stay in the 
field for several years (even decades). Breeding efforts are a must for reaching sustainable forestry. In this sense, 
enviromics initiatives are an important ally to appropriately address the genotype-by-environment interaction 
from both “genotype” and “environment” frameworks, instead of focusing only on the “genotype” as it is usually 
 done2,19,34.

The complexities arising from genotype-environment interactions underscore the importance of selecting 
stable candidates to mitigate financial risks. Poor decisions can lead to substantial investments in low-performing 
clones, making the selection of stable, high-performing candidates crucial for forestry companies operating in 
diverse environments. By opting for stable candidates, the number of clones needed for clonal seedling produc-
tion is reduced, streamlining nursery processes and enhancing efficiency in large-scale projects. This not only 

Figure 3.  (A) The biplot illustrates the heritability (x-axis) and coefficient of experimental variation (in decimal 
scale, y-axis) for each environment. (B) The heatmap displays the pairwise correlation between environments. 
In the upper triangle, genotypic correlations are presented, while the lower triangle exhibits correlations derived 
from the relationship between environments based solely on environmental features.
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optimizes resource utilization but also facilitates a more adaptive response to climate change, a key element for 
sustainability and long-term success in the forestry sector. The selection process resulted in the identification of 
10 high-performing clones with acceptable stability potential, outperforming both commercial checks. Notably, 
the clones outperformed I144, the most planted clone in Brazil, which validates their potential. With reliability 
exceeding 0.8 for all clones except C34, the selection was based on high-quality information.

Considering reliability becomes crucial due to the varied sampling of each clone across the trial network, as 
illustrated in Fig. 6. For instance, consider clone C50, which was only tested in environment E5. Since we did 
not have kinship information, the FA model will predict the performance of this clone in environments where it 
was not tested based on its performance in E5 and the covariance between this environments and the  others35,36. 
In a scenario where C50 performed exceptionally well, it would probably be selected in the FAST index. How-
ever, relying on C50 for recommendations to other environments entails risks. These environments might lack 
the specific factors present in E5 that contributed to C50’s superior performance. In contrast, clone C13, tested 
and selected in all environments, exhibited consistent performance superior to commercial checks. With high 
reliability, the risk of C13 performing poorly in other environments is minimized. By incorporating the clones’ 
reliability into the FAST index, the decision-making process is more robust, accounting for potential risks and 
ensuring informed  selections37. Enhancing the reliability of clone per se sampling is not solely dependent on 
direct evaluations. Utilizing kinship matrices, whether derived from pedigree or genomics, offers an avenue 
to capitalize on information from related clones, thereby refining allele  sampling38. Additionally, employing 
models that account for genetic interactions within the trial contributes to isolating a pure genotypic value, 
unburdened by indirect genetic  effects39. It is noteworthy that various methods are available to address risk in 

Figure 4.  Overall performance vs root mean squared deviation (A), and latent regression plots comparing two 
top performers (C04 and C13) and two commercial checks (I144 and IPB2) (B). In (A), the higher the overall 
performance (or the more distant from zero in the y-axis), the better. Stable clones have low root mean squared 
deviation (global) (or closer to zero in the x-axis).
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plant breeding. For instance, the approach proposed by Dias et al.40 harnesses the probabilistic foundation of 
the Bayesian framework, providing a comprehensive strategy to navigate uncertainties in the breeding process.

Methods
The dataset encompasses seven advanced clonal tests conducted in five Brazilian states (see Fig. 7). The clones 
used in these trials originate from breeding programs of various pulp companies located in different regions of 
Brazil, meaning they were tested and selected for a specific environmental range.  ArborGen®, the owner of the 
analyzed dataset, is a company that sells genetic material from both its own breeding program and partner com-
panies. The objective of these trials was to evaluate the adaptation of tested clones to environmental conditions 
different from those in which they were initially tested. For confidentiality reasons, the clones’ identifications 
have been coded. Only the two commercial checks, IPB2 and I144, retained their original identification as they 
are public domain. Most of the clones were E. grandis × E. urophylla hybrids, with some being pure E. grandis or 
E. urophylla (see Supplementary Material Table S2). The trials serve as representatives of diverse environmental 
conditions that clones may encounter in commercial plantations. Some environments are particularly critical: E1 
and E6 are more prone to drought, while E2 is characterized by high heat and humidity. E5 uniquely represents 
the Northeastern region, and E3 the Northern region. Furthermore, four out of six biomes are represented in 
our dataset. Installed between February 2019 and February 2020, each trial was laid out in a randomized com-
plete blocks design, featuring four repetitions and thirty-six plants per plot. Eight clones are consistent across 
all trials. The dataset exhibits a 46% connectivity (see Fig. 6). In this study, “trial” and “environment” are used 
interchangeably.

We measured the diameter at breast height (DBH) when the trees were 20 ∼ 30 months old. It is important to 
note that all trees within a specific trial were measured at the same age, although the ages varied among different 
trials. The DBH was measured using a diametric tape.

Figure 5.  Results of partial least squares regression: (A) relationship between real (features) and latent 
(factors) environmental covariates (biplot of the predictors’ and responses’ loadings considering the first two 
components); and (B) relationship between environments based on both environmental features and factors 
(biplot of predictors’ scores considering the first two components). FA1, FA2 and FA3 are the first, second and 
third factors, respectively. For the environmental features’ acronyms, see Table 1. In (A), colour scale represents 
the variable importance in projection (VIP), in percentage, of each environmental feature.
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Environmental features
Utilizing coordinates (latitude and longitude) and information on sowing and data collection dates, we gathered 
data on 25 environmental features (refer to Table 1). Features pertaining to weather and climate throughout the 
established period (daily records) were obtained using the EnvRtype  package41 in the R software environ-
ment version 4.3.242. This package serves as a user-friendly tool for retrieving features from the NASAPOWER 
 database43. Additionally, soil-related features were acquired as rasters from SoilGrids44 and processed using 
the raster package in R45.

Statistical analyses
We used the mean DBH across plants within plots. In the mathematical notation below, V is the number of clones 
( v = 1, 2, . . . ,V ), J is the number of environments ( j = 1, 2, . . . , J ), R is the number of replicates ( r = 1, 2, . . . ,R ), 
and N is the number of phenotypic observations, with N =

∑J
j=1 Nj , with Nj being the number of observations 

per environment. This distinction is necessary since the trials have different sizes. We performed all analyses 
under the linear mixed model framework, where the residual maximum  likelihood46 is used to estimate the 
variance components. These are necessary for predicting the best linear unbiased predictions (BLUPs) using 
Henderson’s mixed model  equation47,48. These analyses were performed in the ASReml-R  package49.

Single‑trial analyses
First, we fitted the following linear mixed model for single-trial analysis:

where y is a Nj × 1 vector of phenotypic records, µ is the model intercept, connected to y by a Nj × 1 vector of 
ones; b is the vector of block random effects [ b ∼ N(0, σ 2

b IR) ], accompanied by its Nj × R incidence matrix Z1 ; 
g is the Vj × 1 vector of random genotypic effects [ g ∼ N(0, σ 2

g IVj ) ], connected to y by its Nj × Vj design matrix 
Z2 ; and ε is the Nj × 1 vector of random residual effects [ ε ∼ N(0, σ 2

ε INj )].

(1)y = µ1+ Z1b+ Z2g + ε

Figure 6.  Heatmap depicting the connectivity in the dataset. Intense-coloured cells indicate the presence of the 
clone of the y-axis in the trial of the x-axis, and light-coloured cells, the absence. This heatmap was generated 
using the ggplot2 package, v. 3.5.1 (https:// ggplo t2. tidyv erse. org/ artic les/ ggplo t2. html)..

https://ggplot2.tidyverse.org/articles/ggplot2.html
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The individual analyses were conducted to assess the significance of genotypic effects in each trial using the 
likelihood ratio test. Additionally, we identified the top ten clones in each environment for subsequent compari-
son with the FAST outcomes (described in the following section).

Factor analytic linear mixed models
The FA model is described as follows:

where a is a J × 1 vector of fixed environment effects, connected to y by its N × J incidence matrix X . a contains 
the effects due to differences in geographical location, temporal variation and tree ages. The other terms, previ-
ously described in Eq. (1), have new dimensions: Nj is changed by N, and Vj is substituted by V. In addition, b 
and g are nested effects, so their dimensions are RJ × 1 and VJ × 1 . Their incidence matrix changed accordingly. 
The conditional distribution of the random effects of Eq. (2) is:

where I are identity matrices whose order is indicated by their subscripts, ��� is the J × K matrix of factor loadings 
(

��� = {�kj}
)

 , D is the K × K diagonal matrix of factor scores variances (D = {dk}) , ��� is the J × J diagonal matrix 
of specific variances 

(

��� = {ψj}
)

 , ⊗ is the Kronecker product and ⊕ is the direct sum.
In Eq. (2), the eBLUPs are obtained using the following multiple regression:

(2)y = µ1+ Xa + Z1b+ Z2g + ε

(3)

�

b
g
ε

�

∼ MVN





�

0
0
0

�

,





σ 2
b IJ ⊗ IR 0 0

0 ���D���+��� ⊗ IV 0

0 0 ⊕J
j=1 σ

2
εj
INj









(4)g = (���⊗ IV )f + δδδ

Figure 7.  The map illustrates the locations of trials across Brazil. State borders are depicted by contours, with 
each colour signifying a distinct Brazilian biome. On the right, the legend provides details on the corresponding 
municipalities for each trial, while the map labels utilize codes specific to this study. This map was generated 
using the ggplot2 package, v. 3.5.1 (https:// ggplo t2. tidyv erse. org/ artic les/ ggplo t2. html), and the files publicly 
available at the Brazi lian Insti tute of Geogr aphy and Stati stics  websi te.

https://ggplot2.tidyverse.org/articles/ggplot2.html
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html
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where f  is the VK × 1 vector of factor scores and δδδ is the VJ × 1 vector of lack-of-fit effects, associated to ���.
Factors need to be rotated when k > 1 . We performed the rotation process based on the singular value 

decomposition, described by Smith et al.22. Henceforth, the matrix of rotated loadings will be represented by 
���⋆ (���⋆ = {�⋆kj}) , and the vector of rotated scores will be represented by f⋆ (f⋆ = {f ⋆kv}) . These replace ��� and f  at 
Eqs. (4) and (3).

We selected the number of factors of the FA model based on its explicative power. Since parsimony tends 
to decrease as explicative power increases, we selected the model with more than 85% of explicative power that 
had the smaller K. For that, we used the average semivariances  ratio50. As an addendum for complementing 
information on the models’ explicative power and parsimony, we computed the Akaike Information Criterion 
(AIC)51 and the percentage of explained variance per factor and per environment ( %vjk ), given by, respectively:

where LogL is the logarithm of the maximum point of the residual likelihood function, and t is the number of 
parameters.

After defining the number of factors of the FA model, we computed the pairwise genotypic correlation 
between environments as  follows52:

where ϒϒϒ is a J × J matrix of pairwise genotypic correlations and ��� is a J × J diagonal matrix whose elements 
are the inverse of the square roots of the diagonal elements of ���⋆

D���⋆
+���.

Using the chosen model, we also computed the generalized  heritability53 and the experimental coefficient of 
experimental variation, given by, respectively:

(5)AIC =− 2LogL + 2t

(6)%vjk =
�
⋆2

kj
∑K

k=1 �
⋆2

kj + ψj

(7)ϒϒϒ =���(���⋆D���⋆ +���)���

Table 1.  Environmental features considered in the analyses, and their respective minimum, 25% quartile, 
mean, 75% quartile and maximum values.

Feature Acronym Unit Minimum 25% quartile Mean 75% quartile Maximum

Longitude LON ◦ − 57.8919 − 56.1094 − 49.5761 − 43.8150 − 35.6094

Latitude LAT ◦ − 20.4428 − 19.1983 − 14.6973 − 13.6750 − 6.0432

Altitude ALT m 102.00 389.00 511.72 670.00 993.00

Mean air temperature TMEAN ◦C 9.70 23.27 24.98 27.01 34.92

Maximum air temperature TMAX ◦C 14.33 28.26 30.73 32.95 42.49

Minimum air temperature TMIN ◦C 3.24 17.91 20.09 22.88 28.58

Dew point T2MDEW ◦C − 7.08 14.03 17.62 21.47 24.87

Daily temperature range TRANGE ◦C/day 1.61 7.43 10.64 13.80 23.73

Wind speed WS m/s 0.18 0.89 1.84 2.50 5.91

Relative humidity RH2M % 17.56 57.44 68.02 80.81 94.44

Precipitation PREC mm/day 0.00 0.00 3.07 3.48 66.86

Horizontal infrared radiation intensity HIRI MJ/m2/day 255.18 371.52 388.17 410.41 453.37

Insolation incidence on a horizontal 
surface IIHS MJ/m2/day 1.97 16.88 19.51 22.55 32.21

Extraterrestial radiation RTA MJ/m2/day 23.74 30.38 34.85 39.32 42.27

Vapour pressure deficit VPD kPa 0.10 0.76 1.37 1.75 4.68

Slope of saturation vapour pressure curve SPV kPa◦C 0.08 0.18 0.20 0.21 0.31

Potential evapotranspiration ETP mm/day 0.87 7.66 8.94 10.38 14.79

Deficit by precipitation PETP mm/day − 14.79 − 9.78 − 5.87 − 4.61 61.76

Effect of temperature on radiation use 
efficiency FRUE – 0.00 0.83 0.88 0.98 1.00

Soil organic content SOC g/kg 13.30 14.20 19.32 23.80 24.70

Silt content SILT % 14.00 15.00 21.37 28.00 36.00

Sand content SAND % 30.00 43.00 46.69 52.00 59.00

Clay content CLAY % 26.00 27.00 32.11 35.00 41.00

pH PH – 4.90 5.10 5.22 5.40 5.70

Bulk density of the fine earth fraction BDOD kg/dm3 1.20 1.30 1.31 1.40 1.40
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where V(�) is the pairwise prediction error variance. The parameters described above are indexed by environ-
ment, for Eq. (2) provides environment-wise variances.

The extraction of outputs from the FA model was performed using a homemade function (fa.outs), avail-
able from https:// github. com/ saulo- chaves/ May_b_ useful/ blob/ main/ fa. outs.R.

Factor analytic selection tools
To facilitate the selection process, we used the  FAST12. From the premise that the first factor resumes the geno-
typic main  effect54, we computed the overall performance of each clone as follows:

Using the same premise previously mentioned, one may assume that the other factors represent stability. Assum-
ing that a stable clone is the one that can have its performance easily predicted across environments, we measured 
the stability of a clone using the root mean squared deviation from a fictitious latent regression, given by:

where e is the portion of g (Eq. 4) without �⋆1jf
⋆
1v.

We associated these metrics with the reliability of the clone, given by:

where PEVv is the prediction error variance of the v genotype, and σ̄ 2
g  is the mean genotypic variance across 

environments. Reliability is useful in the context of unbalanced data, a scenario that can be applied in this study.
We used OPv , RMSDv and rv in an index to perform the  selection50:

note that the FAST metrics are weighted by reliability. This additional consideration enhances confidence in 
the selection process, as it incorporates not only the performance itself but also the quality of the information.

After identifying the top-performing clones, we conducted a comparative analysis with the two commercial 
checks using latent regression  plots55. The number of plots corresponds to the number of factors, which is contin-
gent on the selected model. The initial plot illustrates the latent regression between the eBLUPs ( g ) and the first 
factor loadings. Subsequent plots feature g −

∑K−1
k=1 �

⋆
kjf

⋆
kv on the y-axis and the kth factor loadings on the x-axis.

Linking FA to environmental features
We computed the mean of each feature for each environment and compiled them into W , the J × P matrix repre-
senting environmental features, with P denoting the number of features. Then, we performed a partial least square 
regression (PLSR)—using the kernel  algorithm56,57—of the environmental features on the rotated factor loadings:

where BBB⋆ is a matrix of coefficients and EEE is a matrix of residuals. The PLSR was fitted using the pls  package58. 
This analysis served the dual purpose of understanding the connection between factors and environmental fea-
tures and inferring the relationship between environments using both real and latent environmental covariates. 
We also assessed the relative importance of each environmental feature to the underlying GEI variation in the 
dataset. For this purpose, we computed the variable importance in projection (VIP)59, given by:

where SSa is the sum of squares explained by the a-th PLS component ( a = 1, 2, . . . ,A , and A is defined via 
leave-one-out cross-validation), ωap is the loading weight of the p-th feature in the a-th component, and ωωωa is a 
vector of loading weights in the a-th component. We transformed the VIPs to a percentage scale using 
VIPp(%) = VIP2p

∑P
p VIP

2
p
× 100 . The VIP was computed using the plsVarSel  package60.

(8)H2
j =1−

V(�)

2σ 2
gj

(9)CVj =

√

σ 2
ej

µj

(10)OPv =
1

J

J
∑

j=1

�
⋆
1j f

⋆
1v

(11)RMSDv =

√

√

√

√

1

J

J
∑

j=1

e2vj

(12)rv = 1−
PEVv

σ̄ 2
g

(13)IDv =
(

2
OPv − OP
√
Var(OP)

−
RMSDv − RMSD
√
Var(RMSD)

)

× rv

(14)���⋆ =WWWBBB⋆ + EEE

(15)VIPp =

√

√

√

√

P
∑A

a=1

[

SSa

(

ωap

||ωωωa||2

)]

∑A
a=1 SSa

https://github.com/saulo-chaves/May_b_useful/blob/main/fa.outs.R
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