Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Apr 15;283(Pt 2):531–535. doi: 10.1042/bj2830531

Comparative study of asparagine-linked glycans of plasma T-kininogen in normal rats and during acute inflammation.

T Baussant 1, C Alonso 1, J M Wieruszeski 1, G Strecker 1, J Montreuil 1, F Alhenc-Gelas 1, J C Michalski 1
PMCID: PMC1131068  PMID: 1575697

Abstract

Rat T-kininogen has been separated into two molecular variants by affinity chromatography on concanavalin A (ConA): a ConA-reactive (ConA+) and a ConA-non-reactive (ConA-) fraction, from which carbohydrate chains were quantitatively released by hydrazinolysis. On the basis of high-resolution 400 MHz 1H-n.m.r. spectroscopy of the re-N-acetylated hydrazinolysates, the carbohydrate structures of the two ConA molecular variants of rat T-kininogen were established. The ConA-non-reactive species contains a single type of carbohydrate chain with the following structure: [formula: see text] The ConA-reactive fraction contains the same structure and the following additional one: [formula: see text] The relative abundance of the two molecular forms is profoundly affected during inflammation (ratio ConA+/ConA-: 44% in normal and 95% in inflamed T-kininogen), but no structural modification of the carbohydrate chains was observed.

Full text

PDF
532

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. P., Heath E. C. The relationship between rat major acute phase protein and the kininogens. J Biol Chem. 1985 Oct 5;260(22):12065–12071. [PubMed] [Google Scholar]
  2. Anderson K. P., Martin A. D., Heath E. C. Rat major acute-phase protein: biosynthesis and characterization of cDNA clone. Arch Biochem Biophys. 1984 Sep;233(2):624–635. doi: 10.1016/0003-9861(84)90488-0. [DOI] [PubMed] [Google Scholar]
  3. Barlas A., Gao X. X., Greenbaum L. M. Isolation of a thiol-activated T-kininogenase from the rat submandibular gland. FEBS Lett. 1987 Jun 29;218(2):266–270. doi: 10.1016/0014-5793(87)81059-1. [DOI] [PubMed] [Google Scholar]
  4. Barlas A., Okamoto H., Greenbaum L. M. T-kininogen--the major plasma kininogen in rat adjuvant arthritis. Biochem Biophys Res Commun. 1985 May 31;129(1):280–286. doi: 10.1016/0006-291x(85)91434-2. [DOI] [PubMed] [Google Scholar]
  5. Bayard B., Fournet B. Hydrazinolysis and nitrous acid deamination of the carbohydrate moiety of alpha1-acid glycoprotein. Carbohydr Res. 1976 Jan;46(1):75–86. doi: 10.1016/s0008-6215(00)83532-6. [DOI] [PubMed] [Google Scholar]
  6. Bayard B., Kerckaert J. P. Evidence for uniformity of the carbohydrate chains in individual glycoprotein molecular variants. Biochem Biophys Res Commun. 1980 Jul 31;95(2):777–784. doi: 10.1016/0006-291x(80)90854-2. [DOI] [PubMed] [Google Scholar]
  7. Enjyoji K., Kato H., Hayashi I., Oh-ishi S., Iwanaga S. Purification and characterization of rat T-kininogens isolated from plasma of adjuvant-treated rats. Identification of three kinds of T-kininogens. J Biol Chem. 1988 Jan 15;263(2):973–979. [PubMed] [Google Scholar]
  8. Esnard F., Gauthier F. Rat alpha 1-cysteine proteinase inhibitor. An acute phase reactant identical with alpha 1 acute phase globulin. J Biol Chem. 1983 Oct 25;258(20):12443–12447. [PubMed] [Google Scholar]
  9. Furuto-Kato S., Matsumoto A., Kitamura N., Nakanishi S. Primary structures of the mRNAs encoding the rat precursors for bradykinin and T-kinin. Structural relationship of kininogens with major acute phase protein and alpha 1-cysteine proteinase inhibitor. J Biol Chem. 1985 Oct 5;260(22):12054–12059. [PubMed] [Google Scholar]
  10. Gutman N., Moreau T., Alhenc-Gelas F., Baussant T., el Moujahed A., Akpona S., Gauthier F. T-kinin release from T-kininogen by rat-submaxillary-gland endopeptidase K. Eur J Biochem. 1988 Feb 1;171(3):577–582. doi: 10.1111/j.1432-1033.1988.tb13827.x. [DOI] [PubMed] [Google Scholar]
  11. Jacob B., Thierry D., Françoise S., Alhenc-Gelas F., Francis G., Frédéric E. Direct radioimmunoassay for rat T-kininogen. Biochem Biophys Res Commun. 1987 Apr 29;144(2):1090–1097. doi: 10.1016/s0006-291x(87)80076-1. [DOI] [PubMed] [Google Scholar]
  12. Kitagawa H., Kitamura N., Hayashida H., Miyata T., Nakanishi S. Differing expression patterns and evolution of the rat kininogen gene family. J Biol Chem. 1987 Feb 15;262(5):2190–2198. [PubMed] [Google Scholar]
  13. Koj A., Dubin A., Kasperczyk H., Bereta J., Gordon A. H. Changes in the blood level and affinity to concanavalin A of rat plasma glycoproteins during acute inflammation and hepatoma growth. Biochem J. 1982 Sep 15;206(3):545–553. doi: 10.1042/bj2060545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Mizuochi T., Yamashita K., Fujikawa K., Kisiel W., Kobata A. The carbohydrate of bovine prothrombin. Occurrence of Gal beta 1 leads to 3GlcNAc grouping in asparagine-linked sugar chains. J Biol Chem. 1979 Jul 25;254(14):6419–6425. [PubMed] [Google Scholar]
  16. Nicollet I., Lebreton J. P., Fontaine M., Hiron M. Evidence for alpha-1-acid glycoprotein populations of different pI values after concanavalin A affinity chromatography. Study of their evolution during inflammation in man. Biochim Biophys Acta. 1981 Apr 28;668(2):235–245. doi: 10.1016/0005-2795(81)90031-3. [DOI] [PubMed] [Google Scholar]
  17. Okamoto H., Greenbaum L. M. Kininogen substrates for trypsin and cathepsin D in human, rabbit and rat plasmas. Life Sci. 1983 Apr 25;32(17):2007–2013. doi: 10.1016/0024-3205(83)90052-8. [DOI] [PubMed] [Google Scholar]
  18. Parente J. P., Leroy Y., Montreuil J., Fournet B. Separation of sialyl-oligosaccharides by high-performance liquid chromatography. Application to analysis of carbohydrate units of acidic oligosaccharides obtained by hydrazinolysis of hen ovomucoid. J Chromatogr. 1984 Apr 20;288(1):147–155. doi: 10.1016/s0021-9673(01)93689-1. [DOI] [PubMed] [Google Scholar]
  19. Spik G., Bayard B., Fournet B., Strecker G., Bouquelet S., Montreuil J. Studies on glycoconjugates. LXIV. Complete structure of two carbohydrate units of human serotransferrin. FEBS Lett. 1975 Feb 15;50(3):296–299. doi: 10.1016/0014-5793(75)80513-8. [DOI] [PubMed] [Google Scholar]
  20. Spik G., Coddeville B., Montreuil J. Comparative study of the primary structures of sero-, lacto- and ovotransferrin glycans from different species. Biochimie. 1988 Nov;70(11):1459–1469. doi: 10.1016/0300-9084(88)90283-0. [DOI] [PubMed] [Google Scholar]
  21. Spik G., Coddeville B., Strecker G., Montreuil J., Regoeczi E., Chindemi P. A., Rudolph J. R. Carbohydrate microheterogeneity of rat serotransferrin. Determination of glycan primary structures and characterization of a new type of trisialylated diantennary glycan. Eur J Biochem. 1991 Jan 30;195(2):397–405. doi: 10.1111/j.1432-1033.1991.tb15719.x. [DOI] [PubMed] [Google Scholar]
  22. Suzuki H., Alhenc-Gelas F., Bouhnik J., Corvol P., Ménard J. Differential effects of nephrectomy and surgery on plasma kininogens and angiotensinogen in the rat. Endocrinology. 1988 Jun;122(6):2809–2815. doi: 10.1210/endo-122-6-2809. [DOI] [PubMed] [Google Scholar]
  23. Zanetta J. P., Breckenridge W. C., Vincendon G. Analysis of monosaccharides by gas-liquid chromatography of the O-methyl glycosides as trifluoroacetate derivatives. Application to glycoproteins and glycolipids. J Chromatogr. 1972 Jul 5;69(2):291–304. doi: 10.1016/s0021-9673(00)92897-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES