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Using real-time fluorescence PCR, we quantitated the numbers of copies of latent varicella-zoster virus
(VZV) and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) genomes in 15 human trigeminal ganglia.
Eight (53%) and 1 (7%) of 15 ganglia were PCR positive for HSV-1 or -2 glycoprotein G genes, with means of
2,902 + 1,082 (standard error of the mean) or 109 genomes/10° cells, respectively. Eleven of 14 (79%) to 13 of
15 (87%) of the ganglia were PCR positive for VZV gene 29, 31, or 62. Pooling of the results for the three VZV
genes yielded a mean of 258 + 38 genomes/10° ganglion cells. These levels of latent viral genome loads have
implications for virus distribution in and reactivation from human sensory ganglia.

Herpes simplex virus types 1 and 2 (HSV-1 and -2) and
varicella-zoster virus (VZV) are alphaherpesviruses that infect,
establish latency in, and subsequently reactivate from human
sensory nerve ganglia (1, 36). Following reactivation from la-
tent ganglia reservoirs, each of these herpesviruses may cause
significant clinical disease in the individual and may spread to
uninfected persons. Symptomatic VZV reactivation is an in-
frequent, usually once-in-a-lifetime event that results in zoster
(shingles), while HSV-1 and -2 reactivation occurs frequently
and results in numerous symptomatic and asymptomatic recur-
rences of oral and genital herpes.

Little is known regarding the mechanism underlying the
particular patterns of latency and reactivation that distinguish
HSV-1 and -2 infection from that with VZV. Abundant data
from both human studies and animal models confirm that
HSV-1 and -2 persist in sensory neurons but that satellite glial
cells are spared from harboring latent HSV (7, 29, 30). Data
regarding the site of VZV latency have been controversial,
with various reports indicating it to be neurons, nonneuronal
cells, or both (7, 9, 17, 22, 26). Moreover, estimates of the
proportions of cells harboring HSV and VZV and the quantity
of latent viral DNA in ganglia have varied widely (7, 17, 22, 25,
30). Recent animal studies show that latent viral genome levels
in sensory ganglia influence the reactivation frequency of
HSV-1 and -2, suggesting that the quantity of latent viral ge-
nome copies per ganglion—the latent viral load—may be a
significant determinant of herpesvirus reactivation from the
nervous system (21, 31, 32). To further clarify the nature and
distribution of latent HSV and VZV genomes in human gan-
glia, we developed and used several sensitive and specific PCR
assays.

Human tissue samples. Human trigeminal ganglia were har-
vested within 24 h postmortem, frozen in dry ice, and stored at
—70°C until DNA extraction. The general clinical histories and
causes of death are summarized in Table 1.

DNA was extracted by the protocol described in the instruc-
tions for a Puregene DNA isolation kit (D-5000A; Gentra
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Systems, Minneapolis, Minn.) with a few modifications. Gan-
glia were pulverized to a fine powder on dry ice and incubated
in cell lysis buffer and 10 mg of proteinase K per ml for 3 days
to ensure complete homogenization. Following protein precip-
itation, DNA was ethanol precipitated and resuspended in
water. DNA concentration was estimated by spectrophotome-
try, and purity was determined from the ratios of the optical
density at 260 nm to that at 280 nm. On average, the ganglia
yielded 478 = 46 (mean = standard error of the mean [SEM])
pg of DNA.

QF-PCR assays. Quantitative fluorescent (QF) PCR was
performed with a Prism 7700 sequence detector (PE Applied
Biosystems, Foster City, Calif.) according to supplied guide-
lines for real-time DNA amplification. Real-time PCR relies
on a quantitative increase in fluorescence due to cleavage of a
5’ reporter dye from a dually labeled fluorogenic probe oligo-
nucleotide by the 5'—3" nuclease activity of 7ag DNA poly-
merase.

The genes encoding VZV glycoprotein B (gB; open reading
frame [ORF] 31), ORF 62 (which encodes the major immedi-
ate early transactivator), ORF 29 (which encodes a putative
early major DNA-binding protein), HSV-1 glycoprotein G
(gG1), and HSV-2 glycoprotein G (gG2) were selected for
quantification. The forward and reverse primers and probe for
the VZV gB gene were described by Kimura et al. (18) (Table
2). The forward and reverse primers and probes for VZV ORF
29 and ORF 62 and for the gG genes of HSV-1 and HSV-2
were designed with the Primer Express program (PE Applied
Biosystems) (Table 2) and synthesized by Bioserve Biotechnol-
ogies (Laurel, Md.). QF PCR was also performed with the
primers and the probe (Table 2) provided with the Tagman
B-actin reagent kit (PE Applied Biosystems) to normalize each
of the ganglion extracts for amplifiable human DNA.

All PCRs were performed in triplicate on two separate oc-
casions with a Tagman PCR kit (PE Applied Biosystems) in
the absence of reverse transcriptase, so that only DNA was
amplified. Each 50-pl PCR mixture contained 500 ng of human
trigeminal ganglion DNA with final concentrations of each
primer of 1,000 nM and of each probe sequence of 200 nM.
Multiple human trigeminal DNA samples were run together
on a plate in parallel with duplicate sets of DNA standards.
Each primer set mixture was run on a separate plate. Standard
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TABLE 1. Demographic data on subjects from whom trigeminal ganglia were recovered
Subject Gender” ‘g]gs Immediate cause of death Underlying and/or contributing disease
669 M 65 Alcohol abuse None known
671 M 27 Motor vehicle accident None known
672 M 25 Drug overdose HIV infected
673 M 34 Gunshot wound None known
674 F 35 Unknown None known
675 M 40 Gunshot wounds None known
676 M 73 Drug overdose Systemic lupus erythmatosus
677 M 45 Unknown None known
678 M 18 Drug overdose None known
679 F 43 Drug overdose None known
680 F 62 Drug overdose None known
681 F 30 Respiratory failure Aplastic anemia
682 M 41 Sepsis Large granular lymphocytic leukemia
683 M 23 Pneumonia Multiple myeloma, bone marrow transplant
684 M 18 Diffuse alveolar damage Graft vs host disease, organ transplant recipient

“M, male; F, female.

curves for each targeted viral gene were generated by mixing
serial 10-fold dilutions of plasmids containing 10° to 10° copies
of the desired genes. Additional dilutions within that range
were analyzed for plasmids bearing the genes for gB, ORF 62,
and gGl to better delineate the sensitivity limits at the low
ends of the standard curves. Uninfected BALB/c mouse tri-
geminal DNA (500 ng) was added to all plasmid standards to
compensate for the potential inhibition of amplification reac-
tions by added DNA. For VZV gB, the gB gene contained in
the pUC19 vector, a gift of Liyanage Perera, was used. For
OREF 29 and ORF 62, their respective EcoRI-B and EcoRI-A
fragments from the VZV strain Ellen contained in the pPGEM
vector were used. Plasmids containing the HSV-1 and HSV-2
gG genes were obtained from Mark Challberg and Philip
Krause, respectively. In addition, no template control reaction
mixtures containing the appropriate probe and primer system
without DNA were run on all plates in triplicate. PCR mixtures
were subjected to 2 min at 50°C (reaction of AmpErase uracil-
N-glycosylase), 10 min at 95°C (activation of AmpliTaq Gold),
and 55 cycles of 15 s at 95°C and 1 min at 60°C. For B-actin
amplification, 40 cycles were performed.

For each reaction, real-time fluorescence values were mea-
sured as a function of the quantity of a reporter dye (6-carboxy-
fluorescein [FAM]) released during amplification. A threshold
cycle (C,) value for each sample was determined as the number
of the first cycle at which the measured fluorescence exceeded
the threshold limit (10 times the standard deviation of the
baseline). C, values observed for human trigeminal DNA sam-
ples were used to calculate the viral genome copy number for
each sequence amplified based on the standard curves for
plasmids containing test sequence.

Standard curves for three VZV-containing plasmids are
shown in Fig. 1 as examples. No cross-reactivity was observed
between any of the viral DNA assays. The limits of sensitivity
of the QF PCRs for all of the viral genes were estimated as the
lowest plasmid dilutions that yielded comparable C, values in
replicate samples: they were all <10 copies/500 ng of input
DNA. The human B-actin standards were not evaluated below
100 copies/500 ng of DNA. All standard curves were fit by
linear regression, with correlation coefficients of >0.92.

C, values for plasmid dilutions in these standard curves were
compared with C, values of human trigeminal ganglia samples
to estimate the number of copies of each viral gene present in
the approximately 500 ng of extracted DNA analyzed for each

reaction. To more accurately estimate the amount of human
genomic DNA in each trigeminal ganglion extract, we quanti-
tated the number of copies of B-actin genes in that sample
volume and normalized the number of DNA copies observed
to the number of copies per 2 X 10° B-actin copies, i.e., per 10°
cells. Because the mean number of copies of 3-actin quantified
in 500 ng of DNA was 6.4 X 10* = 0.8 X 10*, we calculated that
each cell contained 15.6 pg of DNA.

VZV and HSV latent DNA load. The numbers of copies of
the various VZV and HSV genes per 10° cells are displayed in
Fig. 2 along with tabulations of their mean numbers (= SEM)
for ganglia that yielded positive results (=10 copies/500 ng of
DNA). By these criteria, the proportions (and percentages) of
ganglia positive for each viral gene were as follows: 11 of 14
were positive (79%) for the ORF 29 gene, 12 of 15 were
positive (80%) for the gB gene, 13 of 15 were positive (87%)
for the ORF 62 gene, 8 of 15 were positive (53%) for the gG1
gene, and 1 of 14 were (7%) positive for the gG2 gene.

By the Spearman rank test, the numbers of copies of all
three VZV genes correlated highly significantly with each
other (P < 0.001). There were no statistical associations be-
tween HSV gene copy numbers and VZV gene numbers.
Moreover, the mean number of VZV ORF 62 genes, 2.7 = 0.4
times the numbers of the gB and ORF 29 genes, was not
dissimilar from the expected ratio of 2.0 for this diploid viral
gene. With the numbers obtained for gB and ORF 29 and
one-half of the number obtained for the diploid ORF 62 gene
being pooled, the QF-PCR assay revealed that PCR-positive
ganglia contained a mean of 258 * 38 VZV genome copies/10°
cells. This value was significantly less than the 2,902 + 1,082
HSV-1 genomes per 10° cells in positive ganglia (P = 0.02;
Wilcoxon rank sum test) but comparable to the copy number
of genomes in the one ganglion containing detectable HSV-2
DNA, 109 genomes/10° cells. Latent viral DNA loads were not
grossly different for ganglia obtained from individuals known
to be immunocompromised and those presumed to be immu-
nocompetent.

Implications of the data. The detection of VZV DNA in 79
to 87% of ganglia is in concordance with the very high pro-
portion of American adults who are seropositive for VZV and
with data obtained from prior standard nonquantitative PCR
assays and in situ hybridization (1, 13, 27). Slightly more than
half of the ganglia were HSV-1 DNA positive, also commen-
surate with the seroprevalence of 50 to 70% reported for this
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FIG. 2. Copies of VZV, HSV-1, and HSV-2 genes in human trigeminal
ganglia. The mean = SEM number of copies per 10° cells for each gene in the
PCR-positive ganglia are tabulated below the figure. The filled circles show the
gene copy numbers for samples that exceeded the assay limit of detection (=10
copies/500 ng of total DNA). Open circles represent values for samples for which
gene copy numbers may have been extrapolated from the QF-PCR results but
were below the threshold of reliable DNA detection (<10 copies/500 ng of
DNA). The inability to define a precise threshold for positive ganglia on the
per-10°-cell basis used here reflects the variability in B-actin gene number per
500 ng of total DNA from the individual ganglia.

onstrated that 3 to 10 times that percentage are positive (6-8,
29-32, 34, 35). These data indicate that latently infected tri-
geminal neurons contain an average of 28 or more HSV-1
genomes, a copy number similar to those of Epstein-Barr virus
episomes carried in B cell lines (12, 28) and papillomavirus
episomes in human cervical cancer cells (3, 4, 15, 16).

The low copy number of detectable HSV-2 DNA in trigem-
inal ganglia may parallel the very low frequency with which this
virus recurs following initial infection in the mouth (20). Since
the latent viral load correlates well with recurrence rates in
infected animals, if further studies confirm the low HSV-2 copy
number in human ganglia, these data suggest that the same is
also true for humans (21, 24, 31, 32). If so, some obstacle must
impede infection and establishment of latency of HSV-2 in
human trigeminal ganglia.

Although our initial data suggested that VZV persists only
in nonneuronal cells (7), recent data compel us to conclude
that both neurons and nonneuronal cells are infected by VZV
both during productive infection (7, 22) and during latency (7,
9, 14, 17, 22, 25). Were VZV to persist exclusively in neurons,
the average of 7.7 X 10* genome copies we detected could be
distributed among nearly all of the estimated 8.1 X 10* neu-
rons; however, they are not distributed in this way (17, 22).
While we found no published estimates of the numbers of
satellite and other nonneuronal cell populations in human
ganglia, sensory neurons are very large (50 to 100 pm in di-
ameter) and are encircled and contacted by about 10 nucleated
satellite cells each in most thin (6 to 8-wm) histologic sections
(unpublished data and references 6, 10, and 19), which implies
that there are at least 100 satellite cells surrounding every
neuron or at least 8 X 10° satellite cells per human trigeminal
ganglion.
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If we were to assume that VZV persisted in the same pro-
portions of neurons and nonneuronal cells and at roughly the
same copy number per cell as that of HSV-1 (=28), fewer than
1 in 1,000 total cells would prove positive. Lungu et al. (22, 23)
estimated that 5 to 30% of both neurons and satellite cells are
positive for VZV DNA or VZV proteins, an estimate that is
far higher than that permitted by these data. Kennedy et al.
(17), however, estimated by in situ PCR that 2% of neurons
(~1,600 cells according to the estimate of Ball et al. [2]) and
0.1% of satellite cells (~8,000 cells according to our estimate)
are VZV DNA positive. If the estimate of Kennedy et al. is
correct, the 7.7 X 10* VZV genomes could persist in this
number of cells at a density of eight copies/cell, not dissimilar
from that for HSV-1. We are currently testing the validity of
these extrapolations from our QF-PCR data by analyzing sec-
tions microdissected from human ganglia (33).

The present data provide refined estimates of the proportion
of human trigeminal ganglia containing VZV, HSV-1, and
HSV-2 DNAs and the latent DNA loads for each of these
neurotropic viruses. Moreover, they have implications regard-
ing the distribution of these three viruses in human ganglia and
the pathogenesis of reactivation infections associated with
them.

We thank Jeffrey Cohen, Philip Krause, and Nancy Tresser for
advice and assistance in this project, Peter Kennedy for additional
comments on the manuscript, and Uri Lopatin for help with statistical
analyses.
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