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Abstract

Viral genomes are poorly annotated in metagenomic samples, representing an obstacle to 

understanding viral diversity and function. Current annotation approaches rely on alignment-

based sequence homology methods, which are limited by the paucity of characterized viral 

proteins and divergence among viral sequences. Here, we show that protein language models 

can capture prokaryotic viral protein function, enabling new portions of viral sequence space 

to be assigned biologically meaningful labels. When applied to global ocean virome data, our 

classifier expanded the annotated fraction of viral protein families by 29%. Among previously 

unannotated sequences, we highlight the identification of an integrase defining a mobile 

element in marine picocyanobacteria, and a capsid protein that anchors globally widespread 

viral elements. Furthermore, improved high-level functional annotation provides a means to 

characterize similarities in genomic organization among diverse viral sequences. Protein language 

models thus enhance remote homology detection of viral proteins, serving as a useful complement 

to existing approaches.

Introduction

Viruses of microbes, hereafter, ‘viruses’, are abundant in the environment and have wide-

ranging impacts on microbial communities. Much of what we know about viral diversity, 

ecology, and function comes from analysis of sequences obtained from environmental 
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samples, yet viruses are difficult to identify, classify, and annotate. Thus, we make 

statements about viral biology and their impacts on microbial community structure and 

function based on a tiny fraction of viral sequences with sufficient similarity to existing 

references. In recent years, next-generation sequencing and increasing computational 

resources have been applied to catalogue the world’s virome1–7. While there has been 

substantial methodological progress in identifying viral DNA in whole community 

metagenomic sequence data8–16, sequence feature annotation and overall taxonomic 

assignment of identified uncultivated virus genomes (UViGs) has lagged considerably. 

Viruses have no universal conserved marker genes to enable broad, unified, taxonomic 

analysis and thus most of the hundreds of thousands of new viruses uncovered in viral 

catalogue studies remain unclassified1–7. Viral taxonomic classification is generally based 

on using predicted UViG proteins as features for clustering-based17–19 or machine learning-

based20 taxonomic classification. Yet, as many as 86% of environmental viral protein 

clusters match uncharacterized protein families or have no hits at all6,7,16,21,22. Though 

detailed manual investigation of these sequence clusters may be able to yield hints of 

potential functions in some cases, such labor-intensive efforts do not readily scale to the 

amount of data being generated. Improved annotation of viral protein families (VPFs) is 

thus a necessary, unrealized step towards understanding the roles of viruses in microbial 

ecology.

Viral protein annotation currently relies on sequence homology using state-of-the-art profile 

Hidden Markov Model (pHMM)-based approaches. For viral metagenomics, sequence 

homology methods suffer from two fundamental limitations: (1) the limited library of 

annotated viral protein sequences from which to construct probabilistic sequence models 

and (2) the rate at which viral proteins change, quickly diverging beyond recognition by 

traditional sequence homology metrics. An alignment-free method that does not depend 

on constructing sequence profiles for statistical sequence homology and that can leverage 

functional homology between proteins could overcome both challenges.

Advances in the field of natural language processing have increasingly been utilized 

to identify viral sequences in whole community sequencing data, including k-mer 

frequency9,11 and learned vector representation10,16,23,24 methods. In natural language 

processing, current state-of-the-art large language models are trained in an unsupervised 

manner on gigantic corpora of text to predict sequences of words. Recently, this approach 

has been used to train protein language models (PLMs) on billions of protein sequences. 

PLMs capture physico-chemical properties of amino acids and can resolve protein structural 

and functional information from sequence input alone25–32. Unlike sequence, structure and 

function of viral proteins are better maintained over evolutionary time due to biochemical 

and fitness constraints33,34. We hypothesized that annotating VPFs based on functional 

homology captured in PLM-based protein representations, rather than strict protein sequence 

homology, would improve VPF annotation. Therefore, we developed a PLM-based viral 

protein function classifier and asked if it could improve the viral protein annotation problem.

Using curated VPF databases and recently published PLMs, we show that PLM-based 

representations of viral protein sequences can capture viral functional homology beyond 

remote sequence homology. Our analysis focuses on two aspects of viral sequence 
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annotation: systematic labeling of protein families, and specific function identification for 

biologic discovery. First, we utilize our PLM-based classifier to expand the annotated 

fraction of VPFs collected from the ocean virome by 29%. To highlight the utility 

of this approach in biological discovery, we use the classifier to identify previously 

unannotated and globally widespread viral-like integrases and major capsid proteins 

(MCPs). Additionally, we demonstrate that the PLM-based representations capture function 

groupings specific to viral biology. Finally, we show that a high-level functional 

classification approach enables the discovery of shared organizations in diverse sequences 

from the global oceans, patterns that are obscured by detailed annotations and lost to 

sequence homology-based approaches due to sequence diversity of viral proteins. PLMs 

capture features of viral proteins that aid in detecting remote homology and are thus a 

powerful discovery tool and a complementary method to alignment-based approaches for 

understanding the functions of viral populations across the world.

Results

Protein language models capture viral protein function

We first asked whether PLMs can capture properties of viral protein function that are 

invisible to state-of-the-art approaches such as pHMMs. Given the extensive resources 

required to train PLMs, we based our work upon existing resources, including VPF 

databases and pre-trained PLMs (Figure 1). Our reference annotations were based on the 

Prokaryotic virus Remote Homologous Groups (PHROGs) database, a curated library of 

VPFs constructed to capture remote sequence homology and manually annotated to high-

level functional categories21. PHROGs contains 868,340 protein sequences clustered into 

38,880 families, of which 5,088 are annotated to 9 functional classes (Figure 2a). The 

database was constructed to maximize remote sequence homology captured by each family, 

though intra-category profile similarities differed between functions (Figure 2b). To evaluate 

the performance of PLM-based representations for function annotation, PHROGs sequences 

were embedded with a PLM and a multi-class function classifier was trained on VPFs 

to predict the functional category of sequences from held out VPFs. We then carried out 

five-fold cross validation over the entire annotated set with proteins embedded using four 

pre-trained PLMs28–30 (Supplemental Table 1). The PLM trained on the largest protein 

dataset (Transformer BFD28) performed the best of the PLMs evaluated (Extended Data 

Figure 1), with an average area under the receiver operating characteristic curve of 0.90 

(Figure 2c) and average area under the precision-recall curve of 0.62 across all classes and 

folds (Figure 2d). The Transformer BFD model was used for all subsequent analyses.

A second multi-class classification model, which we used for subsequent analyses, was 

then trained on all annotated families as well as families of the unknown function category 

in order to capture sequences that do not match the functional categories. After classifier 

training, a new version of the PHROGs database (v4) was released, in which 57 PHROG 

families were reclassified. The classifier correctly predicted the re-annotation of 38/57 

families (66.6%) despite being trained on the previous incorrect annotation for those families 

(Supplemental Table 2). The performance on the re-annotated families serves as a validation 

of the classifier’s ability to capture function.
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Language model protein embeddings capture viral biology

Having determined that PLM-based representations of viral proteins can predict function, 

we investigated the viral protein embeddings to understand what enables the PLM to detect 

differences between functions. Because a PLM can produce a dense vector representation 

for any protein sequence, VPFs were represented as the centroid of sequence embeddings 

for constituent proteins, and were visualized for the functionally annotated PHROGs subset 

(Figure 3a). We first interrogated the similarity of sequences in a family, and families in a 

functional category, using vector similarity. While the sequence-sequence vector similarity 

in families across all categories is high (Extended Data Figure 2a), the intra-category family-

family similarity varied between functional categories (Extended Data Figure 2b) but higher 

similarity did not correspond to better classification performance. We then asked if there 

are groupings of categories in the embedding space. We measured the category-category 

similarity as the average of the family-family vector similarity for all pairs of families 

between two categories (Extended Data Figure 3). We spectrally clustered the category-

category distance matrix (Figure 3b), revealing a biologically meaningful partition of 

functional categories into those relating to virion structure and infection (cluster1) and those 

relating to viral genome replication and other host derived genes (cluster2). The partition 

was apparent when the embedding space is relabeled with cluster assignment (Figure 3c). 

We grouped functional categories into the two clusters identified and trained a binary 

classifier using five-fold cross validation (Figure 3d) that resulted in better performance 

compared to random partitions of the categories into groups of two (Figure 3e).

The ability to classify structural proteins, termed phage virion proteins (PVPs) in 

bacteriophages, is important for identifying and grouping viral sequences, and several 

methods have recently been developed to tackle this problem35,36. We compared PLM-based 

classification with existing methods for PVP prediction. Using a PVP identification task 

designed previously36,37, our method achieved performance on par with state-of-the-art 

approaches (Supplemental Table 3). Thus, the clustering of functions in the embedding 

space, and partitioning of viral protein sequences among different functional groupings 

(whether due to primary sequence, structure, or other properties) may reflect some of the 

types of information captured in PLM pre-training which enables function prediction from 

PLM-based representations of viral proteins.

Improved classification of proteins from the ocean virome

To further test the capabilities of the trained function classifier, we evaluated its performance 

against pHMMbased annotation of the largest pan-ecosystem viral protein family database, 

EFAM, which was curated from uncultivated virus genomes identified in the global 

oceans22. Viral genomes in EFAM are not present in the PHROGs training sequences, 

making this dataset well-suited for an external validation of our classifier. To assign ‘true’ 

functional categories to the EFAM VPFs, we first used profile-profile HMM matching 

based on HMMs provided by the PHROGs database. 88,605/240,311 (36.9%) of EFAM 

VPFs matched PHROGs VPFs, of which 66,137 (74.7%) had functional annotation. These 

PHROGs-annotated EFAM VPFs were also predicted using our PLM-based functional 

classifier. We used the F1-score, a measure of classification performance that combines 

precision and recall, to evaluate our predictions. A F1-score of 1 indicates perfect recall and 
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precision, and a score of 0 means either precision or recall is 0. All categories had strong 

performance (Figure 4a) and the weighted F1-score across all functional categories was 

0.85. Using the validation set, we performed a per-class calibration analysis (Extended Data 

Figure 4) and determined a classification decision boundary for each class with a maximum 

false discovery rate (FDR) of 10% (Supplemental Table 4, Extended Data Figure 5). Next, 

we used the calibrated classifier to predict the functional category of EFAM VPFs not 

captured by the PHROGs HMMs (Figure 4b). In total we expanded the annotated fraction 

of EFAM by 26,770 families, a 29.4% increase over the number annotated within the 

EFAM database supplemented with annotation by PHROGs (91,156 families). The largest 

increases in annotated functions were for the ‘head and packaging’ and ‘tail’ categories, 

which contain VPFs that retain pairwise sequence embedding similarity for lower pairwise 

sequence identity in the PHROGs database (Extended Data Figure 6). This result indicates 

that PLM-based classification can supplement pHMM representations for remote homology 

detection.

PLMs enable identification of a tyrosine integrase family

To determine whether PLM-based functional classifications can accurately identify genes of 

biological interest from large datasets, we first examined predictions from the ‘integration 

and excision’ category. This group was chosen for having the best prediction performance, 

and detection of viral integrases within host genomes is of biological interest for identifying 

temperate bacteriophage. EFAM VPFs predicted in this category can be stratified based on 

their annotation in the EFAM database itself, with VPFs having average protein lengths 

>120 matching annotation to known integrase/recombinase proteins and VPFs with average 

protein lengths <120 matching known excisionases (Figure 4c). We validated our integration 

and excision prediction for EFAM VPFs that were not annotated in EFAM or by PHROGs 

HMM matching using both structure and domain predictions (Supplemental Table 5). 

Further investigation of predicted EFAM integrase families led to the annotation of an 

integrase (EFAM cluster86903) on a previously reported putative prophage in uncultured 

Alphaproteobacteria38, supporting the utility of this approach.

Our method was also able to annotate related genes in non-viral contexts. The PLM model 

predicted a previously unannotated VPF, EFAM cluster158946, as a putative integrase. This 

cluster caught our attention as the sequences were located not within viral sequences but 

rather marine picocyanobacterial genomes, including members of the globally abundant 

cyanobacteria Prochlorococcus and Synechococcus. Phylogenetic analysis revealed these 

enzymes as an unidentified subgroup within the tyrosine integrase/recombinase family of 

sitespecific integrases. Cyanobacterial integrases in this sequence cluster are distinct from 

others commonly seen in bacteriophages and bacterial mobile genetic elements, or those 

associated with Tycheposon mobile elements in Prochlorococcus39; their closest relatives 

were to a few members of the diverse group of tyrosine recombinases associated with 

VEIME bacteriophage satellites40 (Figure 5a). The predicted integrases have a different 

domain structure than is typical of many tyrosine integrases41, yet structural modeling 

confirmed that this enzyme retains the key catalytic residues required for activity42 

(Extended Data Figure 7). These enzymes are only found within a subset of available 

Prochlorococcus and Synechococcus genomes, where they are typically located upstream of 

Flamholz et al. Page 5

Nat Microbiol. Author manuscript; available in PMC 2024 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



one of two specific tRNAs, either tRNA-Phe or tRNA-Cys. tRNAs are frequent integration 

sites for mobile genetic elements43 and phylogenetic groupings of these enzymes correlate 

with their respective tRNA (Figure 5b), suggesting that these may represent the integration 

site. The integrases are located within genomic islands of variable genetic content and are 

also frequently, though not exclusively, found near a small serine recombinase (Figure 5c–

d). Together, these properties suggest that this enzyme defines a mobile genetic element 

within marine picocyanobacteria.

PLM-based annotation uncovers dispersed major capsid protein

As a further demonstration of using the PLM-based classifier to uncover biologically 

informative annotations, we next turned to viral MCPs. MCPs serve as the core element 

of the virion capsid and are frequently used to define viral lineages. To showcase the power 

of our approach to annotate unexplored regions of viral sequence space, we utilized the 

function classifier to identify unannotated MCPs. The classifier predicted 8,398 unannotated 

VPFs in the EFAM database as belonging to the ‘head and packaging’ category. We 

manually investigated one high confidence cluster (EFAM cluster41798) using structural 

homology and found evidence that it is a HK97-like MCP. The VPF has high sequence 

homology to sequences found throughout the oceans, and their global diversity is broadly 

divided into two clades (Figure 6a). This MCP is also found in other environments such as 

aquatic sediments and freshwater lakes, where it was also unannotated (Supplemental Table 

6). The putative MCP is consistently found near other ‘head and packaging’ proteins (Figure 

6b), a pattern that is widely observed among known MCPs in bacteriophage genomes44. 

Despite the sequence divergence among the MCP-containing genome scaffolds, the high-

level functional annotations provided by the classifier revealed similarities in the genome 

organization of this viral element (Figure 6c). Together, these data are consistent with the 

identification of a previously unannotated MCP by the PLM classifier, and further highlight 

the potential for using patterns in high-level functional annotation as a tool for viral genome 

identification and/or characterization.

Discussion

While large-scale environmental metagenomic data have revealed an astounding amount 

of viral diversity, current approaches annotate on average less than 30% of viral 

protein families6,7,16,21,22. This limited understanding of global viral sequence space 

represents a clear barrier to our understanding of viral biology, restricting interpretation 

to those sequences with sufficient similarity to the small fraction of well-characterized 

viral genomes. Annotating viral proteins is also key to studies of viral evolution45, 

characterization of isolate genomes46, and to understand the role of viruses as disseminators 

of DNA in microbial populations47. Here, we demonstrate the utility of PLMs to improve 

classification of sequences within large-scale metagenomic datasets. Our work provides 

a proof of concept that high-level viral functions can be learned with PLM-based 

representations and extends existing capabilities for remote homology detection. These 

models thus represent a useful complement to widely used, state-of-the-art, alignment-based 

methods to provide novel insights into viral biology. The utility of incorporating PLM-based 

models into bioinformatic discovery workflows is highlighted by the above identifications 
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of unannotated viral-like proteins from large-scale ocean datasets. The PLM classifier 

enabled the characterization of a previously unrecognized integrase that may define a mobile 

element in abundant marine picocyanobacteria, as well as that of an unannotated, HK97-like 

MCP found throughout the global oceans. These preliminary identifications, supported by 

contextual bioinformatic data, represent only two of thousands of annotations provided by 

this approach. Thus, high-level functional annotations can serve a useful role in biological 

discovery by helping to identify candidate proteins of interest for detailed study from vast 

sequence datasets.

As with all classifiers, the PLM model used here is highly dependent on the nature of the 

training data. PHROGs functional categories are aggregations that differ in their granularity 

and specificity, as well as in the number of VPFs and total sequences they contain. We have 

relied on the database category definitions and chosen to include all categories to maintain 

fidelity to their characterization of the functional space as a whole, as well as the relevance 

of all categories in our applied classifier. While the categories ‘other’ and ‘moron, auxiliary 

metabolic gene and host takeover’ are not functional descriptions, they contain groups of 

functions that make up substantial fractions of the categories that could be learned by the 

classifier, including transferases in the former and membrane proteins in the latter.

We show that across all nine categories in PHROGs, a single multi-class classifier was able 

to learn viral protein function across the annotated PHROG VPFs. ‘Tail’ and ‘DNA, RNA, 

and nucleotide metabolism’ had the highest predictive performance and the largest number 

of families. The heterogeneity of the ‘other’ and ‘moron, auxiliary metabolic gene and host 

takeover’ did result in worse performance for these classes, though both could be predicted. 

Even with total sequences and number of VPFs in the bottom third of categories, ‘lysis’ 

and ‘integration and excision’ both had high predictive capacity. ‘Head and packaging’ 

has similar counts to the highest performing classes but did not perform as well. Taken 

together, the number and diversity of sequences in a function are factors in the predictability 

of the function but do not fully explain the performance, highlighting an area for further 

investigation.

Of the PHROGs categories, the classifier was able to achieve the largest increase in 

annotations in the EFAM dataset for the ‘head and packaging’ and ‘tail’ categories. These 

groups had greater intra-family embedding similarity compared to other categories for 

families with low average sequence identity. These categories describe functions related 

to virion physical structure and represent one axis of the diversity of viruses. PLMs are 

hypothesized to perform best at capturing structural similarity in protein sequences27,28; that 

‘head and packaging’ and ‘tail’ have VPFs that are relatively better captured by the PLM 

could indicate that strongly conserved structural features are a defining characteristic of 

these VPFs. The ability to better annotate proteins with these functions that are foundational 

for viral biology will contribute to cataloging viruses across environments.

PLM model training is computationally expensive, and one motivation of this work was 

to determine whether pre-trained PLMs can be effectively leveraged for challenges in 

metagenomics through transfer learning, or the application of knowledge learned in one task 

to another task. We evaluated four PLMs with different training corpora, architectures, and 
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objectives. Utilization of a PLM trained on the largest existing protein sequence database48, 

including sequences from uncultivated genomes in metagenomic sequencing data, resulted 

in the best function classifier performance. Interestingly, supplemental supervision tasks 

in PLM training related to structure30 or function29 did not result in better classification 

performance. It is possible that this is due to the dearth of viral protein representation 

in protein structure and knowledge databases, and future work is necessary to determine 

if there are viral-specific supervised tasks that can enhance PLM training. However, our 

work demonstrates that transfer learning with pre-trained PLMs can be utilized for targeted 

biologic problems by researchers who cannot access the computational resources necessary 

to train large language models. We note that our classifier was trained on PHROGs and 

then calibrated on viral metagenomes from the EFAM global oceans database, thus making 

the final model particularly well-suited for discovery in marine metagenomes. For other 

ecosystems, such as soils or host-associated microbial communities, the initial PHROGs 

training could be augmented by calibrating on ground-truth datasets from the ecosystem 

under study.

As part of our efforts to explore and validate the classifier predictions, we bioinformatically 

identified a mobile genetic element defined by a previously unrecognized integrase related to 

the tyrosine integrase/recombinase family. The genomic context of these integrases indicates 

that their activity contributes to generating genomic diversity among globally abundant 

marine picocyanobacteria. We identified representative sequences of this integrase in 

cultured isolate and single-cell genomes of Prochlorococcus and Synechococcus and found 

that the region immediately surrounding the integrase represents a genomic island whose 

length, gene content, and gene orientation varies among individual genomes. Variable genes 

found near the integrase include putative restriction/modification systems, biosynthetic 

enzymes, and nutrient acquisition genes, indicating that the integraseassociated element 

can move genetic cargo of ecological relevance in the ocean. The consistent proximity 

of the integrase to two specific tRNAs suggests these as likely integration sites for the 

element. The integrases are also frequently, though not exclusively, found near a small serine 

recombinase which might contribute to resolving mobile element insertion into a target 

molecule49. However, the specific mechanism through which this element is mobilized 

or integrated is not yet known. Mobile genetic elements, frequently defined in part by 

their associated integrases, are widespread in environmental samples and are still being 

discovered and characterized39,40. As such, expanding the ability to rapidly identify such 

enzymes represents an important step in understanding the origins and dynamics of these 

elements. While not specifically investigated here, other proteins classified as being in 

the ‘integration and excision’ functional category may be of particular interest in viral 

profiling studies, where they are used to distinguish between lytic and temperate viral 

life-cycles13,16,50.

We next mined EFAM predictions in the ‘head and packaging’ category to seek unidentified 

capsid proteins, a key calling card of viral genomes. The high-throughput classifier 

annotations identified a strong hit with structural similarity to a HK97-like MCP and that 

appears to be widespread in the global oceans. With contigs containing the MCP in hand, 

we utilized our classifier to reveal conserved genomic organization across these sequence 

diverse contigs. A major benefit of the high-level functional annotations that is particularly 
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important for viral sequences is their ability to highlight functional conservation that spans 

sequence-diverse proteins. We find that our newlyidentified MCP is in the neighborhood 

of other predicted ‘head and packaging’ proteins, as would be expected for capsid genes. 

In one of the two architectures we identified, this neighborhood is flanked on one side by 

‘tail’ proteins and on the other side by ‘DNA, RNA, and nucleotide metabolism’ proteins, 

which are in turn flanked by ‘transcription regulation’ proteins and host-associated proteins. 

Together, this high-level functional annotation begins to paint a picture of what this viral 

element ‘looks’ like genomically in different ocean regions at a level of abstraction that 

may be appropriate for examining features of genome architecture that would be difficult to 

resolve from sequence similarity alone.

Our study must acknowledge several limitations. In attempting to systematically annotate 

VPF function and highlight the ability to label individual VPFs, we note that for 

experimentalists interested in annotating UViGs there are a plethora of methods, parameters, 

and thresholds to decide, and they may arrive at an annotation for a specific gene 

not annotated in large-scale approaches by thorough investigation. Annotation goals are 

projectspecific and may require different levels of annotation granularity; here we have 

focused on protein family level annotations. In selecting the PHROGs database for training 

the function classifier, we benefited from the highlevel functional category annotation 

which collapses a wide array of annotation terms into defined categories. However, the 

categories vary in their scope and while some are relatively narrow (e.g., ‘integration and 

excision’ and ‘lysis’) and their prediction can be relevant to experimentalists, the ones that 

are comparatively broad are limited in their ability to provide specific information when 

predicted.

In conclusion, our PLM-based classifier is trained on the same data that underlies the 

PHROG pHMMs yet can detect homology across a larger sequence space, identifying 

proteins that the original pHMMs and other annotation tools did not. This suggests that 

PLMs are accessing features of sequence space that alignment-based methods cannot and 

are thus a complementary approach to these existing, widely-used, methods. Using our 

approach, targeted hypotheses about protein function can be gleamed from PLM-based 

classification and then tested experimentally, providing a powerful method for directing 

study into currently hidden functions of interest.

Methods

Viral protein sequence data

The PHROGs VPF database v321 (https://phrogs.lmge.uca.fr/) was downloaded on 

01/26/2022. Re-annotation data was downloaded after the v4 release. The EFAM VPF 

database was downloaded from its project repository on the CyVerse Data Commons 

on 09/07/202251. PHANNs protein sequences and annotations37 (https://phanns.com/

downloads) was downloaded on 01/17/2023.
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PHROGs intra-category family sequence similarity

PHROG VPF similarity was measured using hhsearch52 for each family against a HMM 

database of all families in a category and the average score was collected for each VPF. 

Category HMM databases were constructed by converting all category families multiple 

sequence files downloaded from PHROGs to a3m format and then constructing a hhm 

database using ffindex build, ffindex apply, and cstranslate as described in hhsuite v3.3.052.

Protein language models

Protein sequences were embedded to vectors using trained PLMs. The Transformer BFD 

PLM from the Prot-Trans28 project was used via the DeepChainBio/BioTransformers python 

package (https://github.com/DeepChainBio/biotransformers). Sequences were embedded 

with pool mode=‘mean’ and batch size=2. Sequences were cut off at 5,096 amino acids 

which is the limit of the Transformer BFD PLM. LSTM Uniref90 and LSTM Uniref90 MT 

from the ProSE30 project were download from the project GitHub repository and protein 

sequences were embedded with the embed sequences.py script with –pool avg. Transformer 

Uniref90 MT from the ProteinBERT29 project was downloaded from the project GitHub 

repository and protein sequences were embedded using the get model with hidden layers 

as outputs function in the proteinbert python package. All protein sequence embedding was 

performed on 2 NVIDIA TITAN V GPUs.

Classifier training and evaluation

To test the ability of a model to predict a functional category for a test sequence, all labeled 

PHROG families were split into five stratified sets for five-fold cross-validation. In each 

split, training was done on all sequences in the training families while testing was performed 

on a single randomly selected sequence from the testing families. Data preparation for 

model training was done using scikit-learn53 methods StratifiedKFold and LabelBinarizer. 

The same training-validation procedure was used for the five-fold cross-validation of virion 

structure and infection (cluster1) vs viral genome replication and other host derived genes 

proteins (cluster2).

The classifier architecture is a dense, feed-forward neural network, which has been shown 

to perform well with protein embeddings as input26, and was trained with tensorflow54. 

The network has three hidden layers of dimensions 512, 256, and 128 trained with 20% 

dropout and ReLU activation. The output layer is of dimension equal to the number of 

functional categories being predicted and has a softmax activation. Input dimension is 

equal to the embedding vector length output from the PLM. For PLMs with embedding 

dimension greater than 1,024, an additional hidden layer of dimension 1,024 was added 

as the first hidden layer. The model was fit with the following parameters: n _epoch=20, 

loss=categorical crossentropy, opt=Adam(0.0001), batch size=60. Class prediction is 

assigned based on the highest probability of the softmax layer. We did not perform 

hyper-parameter optimization, which could result in a higher performing model. For binary 

classifiers based on clusters of PHROGs functional categories and for the EFAM classifier, 

the same architecture and training parameters are used with the exception of n epochs=5.
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For training the PHROGs function classifier used in the EFAM classification experiment, 

families from the ‘unknown function’ category were included as an additional functional 

category. However, because the unknown families may be missing annotation, any family 

that was predicted by the model trained without the unknown function category with a score 

>0.8 was removed from training (n=9,080), leaving 24,712 families for training.

Evaluation for the classifier was measured per-functional category using area under 

the receiver operating characteristic curve (AUROC), area under precision-recall curve 

(AUPRC), and the F1-score: F1 = 2 ⋅ TP
TP + 1

2 FP + FN
, where TP, FP, and FN are the number 

of true positive, false positive, and false negatives predicted, respectively. ROC and PRC 

curves, AUC, and F1-score were all calculated using scikit-learn53 methods roc curve, 

precision recall curve, and auc. In the case of PHROGs five-fold cross-validation, true 

labels are known for holdout families. In the case of EFAM, true labels are assigned 

based on HMM matching of EFAM families to PHROG families. EFAM families were 

aligned using clustal omega v1.2.455 and searched against the PHROG HMM database using 

hhsearch52. PHROGs functional label assignment was made if an EFAM family matched a 

PHROGs HMM with e-value < 1E-10. The label of the PHROGs family with the lowest 

e-value is considered the true label unless that label is unknown function in which case 

the next lowest family label is assigned. For predicting EFAM category in the absence 

of PHROGs HMM hits, the decision threshold probability for category assignment in 

EFAM was identified by calculating the per-category maximum F1-score with FDR <= 0.1. 

Model calibration analysis was performed with scikit-learn53 calibration curve method and 

n bins=10. Our trained classifier is available for download (https://github.com/kellylab/viral-

protein-function-plm). For EFAM VPFs with annotation in the EFAM database, annotation 

terms present > 10 times in families predicted by the classifier as ‘integration and excision’ 

are shown to highlight the split around proteins of length 120 in the category.

Viral protein family embedding space

PHROGs v4 annotation were used for interrogation of the embedding space. PHROGs 

families were collapsed to centroid vectors by taking the column average of the vector 

representation of all proteins in a family. Uniform Manifold Approximation and Projection 

for Dimension Reduction (UMAP) in python56 was used to visualize embedded VPFs. 

Cosine similarity is a measure of similarity between two vectors and is calculated:

similarity = Pni = 1uiPni = 1vi

where u and v are vectors of length n and xi is the i-th element of each vector. It is used 

to measure sequencesequence similarity and family-family similarity from protein vectors 

and family centroid vectors, respectively, and calculated using scikit-learn53. Families with 

vector similarities > 0.999 (n=312) were excluded from category median family mean 

sequence-sequence similarity calculation as some families have only duplicate sequences 

as PHROGs did not de-duplicate protein sequences. For intra-category similarity, pairwise 

similarity was calculated for all category families. For inter-category similarity, each family 

in one category was compared to each family in another category with the mean across 
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all pairwise comparisons constituting the category-category similarity. Differences in the 

distribution of similarities between categories were evaluated with the independent student 

t-test with Bonferroni correction using statannotations57. The category-category similarity 

matrix was converted to a network using networkx58 and displayed with spectral layout. The 

distance matrix was clustered using scikitlearn53 SpectralClustering with n clusters=2.

PHROGs intra-family sequence similarity

Sequence identity was calculated using the Bio.Align.PairwiseAligner59 method to find the 

global alignment score with default scores: match score = 1, mismatch score = 0, and gap 

score = 0. Sequence identity was calculated for all pairwise sequence combinations in a 

family and averaged for a single family score. A linear regression for family sequence 

identity and embedding similarity was calculated using scipy60.

Phage virion protein classification

To compare the performance of PLM representations for PVP identification, we used the 

PHANNs37 database.

PHANNs protein sequences were embedded using the Transformer BFD PLM and a PVP 

vs ‘other’ classifier was trained with the same architecture and parameters as the cluster1 

vs. cluster2 classifier. Training and testing sequence split is as described previously36. All 

sequences in the 10 PHANNs validation splits for all PVP classes are combined to a single 

PVP training set (n=154,183) and all 10 ‘other’ validation splits were combined to a single 

‘other’ training set (n=336,151). Testing was done on the held PVP sequences for all classes 

(n=14,477) and the held out ‘other’ sequences (n=33,402).

Viral protein sequence annotation validation tools

Viral sequence predictions were manually validated using existing sequence and structural 

homology software. Individual sequence homology was performed with NCBI-hosted 

blastp61 using the nr database and default parameters. Domain prediction was performed 

using InterPro62. MPI bioinformatics suite63 was used for searching protein sequences 

against HMM databases using hhpred64 with default databases (PDB mmCIF30 10 Jan, 

UniProt-SwissProt-viral70 3 Nov 2021, COG KOG v1.0, PHROGs v4) and parameters and 

for searching sequence databases (nr30 17 jan) for HMM hits using HMMER v3.3.265 with 

default parameters. Phyre2 was used for protein structural fold prediction and 3D model 

prediction66.

Investigation of predicted integrase protein families

A putative integrase protein sequence (MAK08069.1) from cluster158946 was used to 

search MGniFY67 for similar sequences in metagenomic datasets. We took the first MGnify 

hit, MGYP000503484273 (e-value 3.3E-257), and used it as a seed to search for additional 

sequences using the IMG/VR68,69 Viral Protein Database using default cutoffs (1E-5). The 

search uncovered putative integrase homologs from Prochlorococcus and Synechococcus 
genomes, which were interrogated further.
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Integrase family sequences originally identified in IMG/VR were used to query a custom 

database of Prochlorococcus genomes from cultured isolates and single cell genomes39 and 

additional sequences, such as those from Synechococcus, were retrieved through blastp 

searches of the NCBI nr database. The tyrosine integrase phylogeny was constructed from a 

set of tyrosine recombinases extracted from the UniRef50 database (http://www.uniprot.org/

uniref) using HMM models from ref41; a set of integrases associated with Prochlorococcus 
Tycheposons and cryptic elements39; and representative sequences of VEIME-associated 

integrases40 (based on 40% identity clusters as generated by MMSeqs270). Sequences were 

aligned with Mafft v7.520 (options –maxiterate 1000 –genafpair)71, a maximum likelihood 

phylogeny was generated using FastTree v2.1.11 using default settings72, and the tree was 

plotted using iTOL73. Genome regions surrounding the integrases were plotted in R using 

gggenomes 0.9.7.9000 (https://github.com/thackl/gggenomes).

Major capsid protein analysis

EFAM VPFs classified as belonging to the ‘head and packaging’ category, and that were 

unannotated, were investigated for putative MCPs. Using structure homology searching 

with the aligned cluster proteins in hhpred64 as above and individual cluster members 

in foldseek74, we found that EFAM cluster41798, while most similar to unannotated 

proteins, also contained hits to HK97-like MCPs. We next looked for similar proteins 

encoded within the GOV2.0 dataset3, as predicted by prodigal75 v2.6.3 (options -p meta 

–c). The cluster41798 HMM was used with hmmsearch65 v3.3.2 to identify sequences at 

a 1E-100 cutoff, yielding a total of 2,203 candidate MCP sequences. Capsid sequence 

alignments and phylogeny were computed as above for the integrases. We use the best 

hhpred hit for an experimentally determined structure (PDB: 6WKK D, e-value=6E-7) as an 

out-group for the MCP sequence tree. To see if the MCP is found in other environments, 

cluster41798 was used to query the geNomad database (v1.3)76 of viral protein marker 

families using hmmscan65 v3.3.2 to identify families at a 1E-100 cutoff, yielding one family 

(GENOMAD.062939, e-value=9.7E-122). Genome and ecosystem annotation was pulled 

from IMG/VR68 where available.

All contigs containing the MCP were used to construct gene neighbor networks. Contigs 

were de-replicated at 95% identity and protein clusters (PCs) were constructed at 50% 

identity for all proteins on de-replicated contigs using MMSeqs2 v14.7e28470 (respective 

parameters: contig: -c 1.0 –cluster-mode 2 –cov-mode 1 –min-seq-id 0.95; protein: -s 6 -e 

1e-5 -c 0.8 –cov-mode 0 –cluster-mode 2 –min-seq-id 0.5 –cluster-reassign 1). The number 

of times two PCs are immediately adjacent on contigs is used to construct a network 

where nodes represent PCs and edges represent instances of PCs being adjacent. Network 

visualization was done in cytoscape77. PC functional classification was assigned using the 

EFAM-calibrated function classifier. If two classes were predicted for a PC, the higher 

probability assignment was used for labeling. Genome regions surrounding the MCPs were 

plotted as above for integrase genomes.

Protein structure modeling of identified integrase sequence

Protein structure can be conserved among very distantly related sequences. We previously 

utilized homology modeling approaches to identify distantly related structural homologs 
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to novel viral capsid protein sequences78. Here, we took a similar approach to identify 

structures related to sequences in our putative integrase family. We utilized the fully 

automated protein structure homology-modelling server SWISS-MODEL via the Expasy 

web server79 for template selection, target/template alignment, and model generation using 

default parameters for an integrase sequence from the Prochlorococcus PAC1 genome 

(WP 052038630). The top template, as identified by the Global Model Quality Estimate 

score, was PDB ID 1Z1B, the phage lambda integrase80. The target/template alignment 

has 13% sequence identity, consistent with our sequences not previously being identified 

as integrases. The MolProbity protein quality score, provided by SWISS-MODEL, which 

combines protein structure quality features that together reflect crystallographic resolution, 

was 2.281. The lambda integrase is a tyrosine recombinase with defined active site residues 

Arg 212, Lys 235, His 308, Arg 311, His 333, and Tyr 34280. In a study of catalysis 

requirements for tyrosine recombinases, the key residues strictly required for function were 

identified as the Tyr (Y) and Lys (K) residues42. The target/template alignment demonstrates 

that residues Arg 212, Lys 235, Arg 311, and Tyr 342 are conserved in our target sequence 

(Extended Data 4, panel A). The sequence is modeled as a homo-tetramer, consistent with 

the quaternary structure of the template (Extended Data Figure 4, panel B).

Study code, data, and visualizations

The trained classifier is available for download82 as well as PLM representations for 

PHROGs and EFAM protein sequences used in this study. Python packages numpy83 

and pandas84 were used for analysis, matplotlib85 and seaborn86 were used for data 

visualization, and jupyter notebooks87 was used for analysis.
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Extended Data

Extended Data Figure 1: Performance of four different PLM-based representations for viral 
VPF functional classification.
Embedded proteins were used to train and evaluate PHROGs functional annotation 

classification. Performance is measured as F1-score over five-fold training-testing splits 

of PHROGs VPFs (n=5). Study is described by the model architecture, protein source, and 

whether the PLM is trained with a multi-task training objective (MT). Boxes represent 

interquartile range; whiskers represent the entire distribution with the exception of outliers 

(diamonds); horizontal line indicates median. BFD-Big Fantastic Database; LSTM-long 

short-term memory.
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Extended Data Figure 2: Evaluation of embedding similarities of constituent families between 
functional categories.
(a) Distribution of family average sequence-sequence similarity. (b) Distribution 

of family-family centroid similarity. (a-b: DNA- n=1,065; connector- n=133; head- 

n=946; integration- n=105; lysis- n=299; moronn=458; other- n=560; tail- n=1,219; 

transcription- n=303) (c) Significance of pairwise category distribution comparison using 

a two-sided independent t-test with Bonferroni correction (left-lysis vs. integration- 

p=1.493e-02; head vs. other- p=1.014e-11; head vs. lysis- p=1.096e-02; head vs. DNA- 

p=2.098e-10; head vs. transcriptionp=4.978e-07; head vs. connector- p=1.207e-05; head vs. 

integration- p=2.085e-09; moron vs. other- p=1.205e04; moron vs. DNA- p=2.084e-03; 

moron vs. transcription- p=9.269e-03; moron vs. connector- p=1.484e-02; moron vs. 

integration- p=5.970e-05; tail vs. other- p=4.449e-16; tail vs. lysis- p=4.479e-04; tail vs. 

DNAp=3.759e-15; tail vs. transcription- p=1.814e-09; tail vs. connector- p=3.121e-07; 

tail vs. integration- p=1.482e11, right-transcription vs. DNA- p=1.010e-111; transcription 

vs. connector- p=4.416e-22; transcription vs. tailp=7.299e-260; transcription vs. head- 

p=0.000e+00; transcription vs. other- p=0.000e+00; transcription vs. lysis- p=0.000e+00; 

transcription vs. moron- p=0.000e+00; transcription vs. integration- p=0.000e+00; DNA 

Flamholz et al. Page 16

Nat Microbiol. Author manuscript; available in PMC 2024 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vs. tail- p=1.943e-208; DNA vs. head- p=0.000e+00; DNA vs. other- p=0.000e+00; 

DNA vs. lysis- p=0.000e+00; DNA vs. moron- p=0.000e+00; DNA vs. integration- 

p=0.000e+00; connector vs. tail- p=4.234e-06; connector vs. head- p=7.253e-30; connector 

vs. other- p=2.294e-228; connector vs. lysis- p=1.662e-196; connector vs. moron- 

p=0.000e+00; connector vs. integration- p=2.827e-271; tail vs. head- p=1.145e-243; tail 

vs. otherp=0.000e+00; tail vs. lysis- p=0.000e+00; tail vs. moron- p=0.000e+00; tail vs. 

integration- p=0.000e+00; head vs. other- p=0.000e+00; head vs. lysis- p=0.000e+00; head 

vs. moron- p=0.000e+00; head vs. integrationp=0.000e+00; other vs. lysis- p=9.303e-21; 

other vs. moron- p=1.099e-188; other vs. integration- p=6.600e-87; lysis vs. moron- 

p=4.171e-204; lysis vs. integration- p=5.199e-138; moron vs. integration- p=1.478e-25). 

Boxes represent interquartile range; whiskers represent the entire distribution with the 

exception of outliers (diamonds); horizontal line indicates median.

Extended Data Figure 3: Inter-category similarity for PHROGs functional categories.
Pairwise family centroid similarities were calculated for every combination of families 

between the two categories. Score is the average over all comparisons.
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Extended Data Figure 4: EFAM function classifier calibration analysis.
(a) EFAM VPFs that have hits to annotated PHROG HMMs (test set) are used to evaluate 

the model calibration for each category. For each class, probabilities across all VPFs in 

the test set are binned into 10 partitions and the fraction of true positives for each bin 

is calculated. A perfectly calibrated model (dotted line) has a true positive proportion 

equal to the mean predicted probability for each bin. Below the perfect model indicates 

overconfidence and under the perfect model indicates under confidence. (b) Histogram of 

the number of predictions across the test set for each probability bin.
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Extended Data Figure 5: Decision threshold evaluation for function classifier predictions on 
EFAM VPFs.
EFAM VPFs with PHROG hits were used as ground truth for prediction with the function 

classifier. Classifier thresholds are determined by considering false discovery rate (FDR) 

and F1-score (F1). The final decision threshold for each class is the decision boundary with 

maximal F1 with FDR <= 0.1.
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Extended Data Figure 6: Comparison of PLM embedding similarity and sequence identity for 
PHROG VPFs.
(a) The intra-family pairwise sequence embedding similarity, measured using cosine 

similarity, and sequence identity, measured using global alignment identity, were calculated 

for all annotated PHROG VPFs. Families are colored by functional category annotation. 

Solid line represents a linear regression for each function with shading representing a 95% 

bootstrapped confidence interval for the regression estimation. (b) Linear regression results 

for each category. R-value is measured using Pearson correlation coefficient. P-value is 

calculated using the Wald Test.
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Extended Data Figure 7: Comparative protein structure modelling of an integrase family 
sequence supports annotation as a tyrosine recombinase.
(a) Target/template alignment between the Prochlorococcus PAC1 sequence (indicated as 

Model _01), and the template sequence 1Z1B, the phage lambda integrase. Red arrows point 

to active site residues Arg 212, Lys 235, His 308, Arg 311, His 333, and Tyr 342. Boxed 

amino acid regions represent secondary structure. (b) Homology model of Prochlorococcus 
PAC1 sequence based on template 1Z1B. Colors indicate individual monomers of the homo-

tetramer template protein structure in both a and b.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

The PHROGs VPF database v3 (https://phrogs.lmge.uca.fr/) was downloaded on 

01/26/2022. Reannotation data was downloaded after v4 release. EFAM VPF database was 

downloaded from project repository on CyVerse Data Commons on 09/07/2022. PHANNs 

protein sequences and annotations (https://phanns.com/downloads) were downloaded on 

01/17/2023. geNomad HMM database and annotations (v1.3) were downloaded from 

zenodo (https://zenodo.org/record/7793532) on 08/10/2023. Protein sequences used for 

integrase and major capsid protein investigation were collected from the following 

databases: MGniFY, IMG-VR, NCBI nr, UniRef50. Protein sequence embeddings generated 

for PHROGs and EFAM sequences are available at https://doi.org/10.5281/zenodo.8339381. 

Additional data generated for this study is available in a public Google Cloud 

Platform bucket (http://storage.googleapis.com/viral protein family plm embeddings). See 

the README on the project repository https://github.com/kellylab/viral-protein-function-

annotation-with-protein-language-model for details on downloading the data.
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Figure 1: Viral protein family (VPF) function prediction using protein language models (PLMs) 
uncovers novel biology.
(a) VPFs were collected from the curated databases Prokaryotic Virus Remote Homologous 

Groups (PHROGs) and EFAM. (b) Protein sequences are embedded using pre-trained 

PLMs. (c) Embeddings are used as input to a multi-class classifier for high-level function 

prediction. (d) Classifier predictions of unannotated VPFs lead to biologic discovery. HMM-

hidden Markov model; BFD-Big Fantastic Database.
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Figure 2: Functional category classification of PHROG VPFs with PLM-based protein 
embeddings.
(a) PHROG category family and total protein numbers. (b) Distribution of pairwise profile 

similarity of families in a functional category (DNA, RNA, and nucleotide metabolism- 

n=1,065; connector- n=133; head and packaging=946; integration and excision- n=105; 

lysis- n=299; moron, auxiliary metabolic gene and host takeover- n=458; other- n=560; 

tail- n=1,219; transcription regulation- n=303). Boxes represent interquartile range; whiskers 

represent the entire distribution with the exception of outliers (diamonds); horizontal line 

indicates median. (c-d) Multi-class function classifier performance for five-fold stratified 

splits of annotated PHROGs families. (c) Receiver operating characteristic curve with 

average area under curve (AUC) and standard deviation (SD) over five folds. (d) Precision-

recall curve with AUC and SD over five folds. Per fold, training is performed over all 

proteins in a family and testing is performed on a random single sequence from test families. 
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Protein sequences were embedded using the Transformer BFD PLM and the classifier 

consists of a three hidden layer dense neural network and an output layer with softmax 

activation.
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Figure 3: Investigation of PLM-based embedding of PHROG VPFs.
(a) umap projection of PHROG VPFs. VPFs were represented as the centroid of sequence 

vectors. (b) Spectral network visualization of the inter-category family-family similarity 

(edge weight), which is measured as the mean family-family centroid similarity across all 

family pairs between two categories. The category-category similarity matrix is clustered 

with n=2 into two groups (black and yellow). (c) Spectral clusters are used to color PHROGs 

VPF umap projection. (d) Clusters are used as binary classes for PHROGs VPF classifier as 

in 2B. (e) Classifier performance on 10 random two group splits with AUPRC averaged over 

groups and splits. (d-e) Performance is reported as average AUC over five folds and error 

represents one standard deviation.
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Figure 4: Functional category classifier validation and discovery with the EFAM database of 
VPFs curated from the ocean virome.
(a) Precision-recall curve for EFAM VPFs labeled with PHROGs HMMs and predicted with 

the PLM-based function classifier. Performance is measured with AUPRC and F1-score. 

(b) Number of VPFs in EFAM that are labeled to each functional category based on the 

category-specific optimal threshold and not captured by PHROGs HMMs. (c) EFAM VPFs 

predicted ”integration and excision” class probability by average protein length in the VPF. 

Annotation of excisionase (pink) and integrase/recombinase (purple) terms are for VPFs 

annotated in EFAM (°§). Structural prediction for two EFAM VPFs that do not match 

PHROGs HMMs and are unannotated in EFAM (x) are shown with predicted structure, one 

excisionase (cluster122519) and one integrase (cluster86903). Decision probability is the 

FDR-based threshold for ”integration and excision”.
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Figure 5: Identification of an integrase/recombinase within marine picocyanobacteria.
(a) Phylogenetic relationship of the identified integrases (blue) in comparison with tyrosine 

recombinases described in marine viral parasites (VEIMES; yellow), cyanobacterial mobile 

element integrases (green) and classes commonly found among well-described phage 

and mobile elements (e.g. IS, PICIs, ICEs). (b) Phylogenetic groupings of full length 

(>350aa) integrases in Prochlorococcus and Synechococcus, in relationship to the closest 

downstream tRNA (outer ring) and genome taxonomy (inner ring). Gaps reflect unknown 

tRNA associations from limitations of genome assemblies. Purple dots indicate branch 

supports of 0.5 or greater. (c and d) Genomic context of the integrase in selected marine 

Prochlorococcus and Synechococcus genomes, respectively. Colored genes indicate the 

integrase (blue), a small serine recombinase frequently found near the integrase (red) and the 

downstream tRNA (purple or yellow). Shaded regions connect orthologous genes.
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Figure 6: Discovery of a major capsid protein (MCP).
(a) Phylogenetic relationship of the MCP and distribution across the global oceans. The 

MCP has two major clades (red and blue). Purple dots indicate branch supports of 0.5 

or greater. (b) Network depiction of MCP containing contigs where protein clusters (PCs, 

depicted as nodes) are constructed from all contigs that contain the MCP and the number of 

times two PCs are adjacent on a contig is counted (depicted as edges). For visualization, PCs 

are filtered for size >= 10 members. Node size reflects the number of proteins in the PC; 

edge width reflects the number of times PCs are adjacent; and black halo on node indicates 

the PC is a cluster of the MCP. (c) Genomic context of the MCP in selected contigs from 

the two MCP clades. Color of nodes (b) and genes (c) are predicted functional class by the 

PLM-based function classifier. Networks and genome maps represent the two clades from 

(a), top (red) and bottom (blue).
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