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Abstract: Conventional rodent neuromyelitis optica spectrum disorder (NMOSD) models using
patient-derived immunoglobulin G (IgG) are potentially affected by the differences between the
human and rodent aquaporin-4 (AQP4) extracellular domains (ECDs). We hypothesized that the
humanization of AQP4 ECDs would make the rodent model lesions closer to human NMOSD pathol-
ogy. Humanized-AQP4-expressing (hAQP4) rats were generated using genome-editing technology,
and the human AQP4-specific monoclonal antibody (mAb) or six patient-derived IgGs were intro-
duced intraperitoneally into hAQP4 rats and wild-type Lewis (WT) rats after immunization with
myelin basic protein and complete Freund’s adjuvant. Human AQP4-specific mAb induced astrocyte
loss lesions specifically in hAQP4 rats. The patient-derived IgGs also induced NMOSD-like tissue-
destructive lesions with AQP4 loss, demyelination, axonal swelling, complement deposition, and
marked neutrophil and macrophage/microglia infiltration in hAQP4 rats; however, the difference
in AQP4 loss lesion size and infiltrating cells was not significant between hAQP4 and WT rats. The
patient-derived IgGs bound to both human and rat AQP4 M23, suggesting their binding to the shared
region of human and rat AQP4 ECDs. Anti-AQP4 titers positively correlated with AQP4 loss lesion
size and neutrophil and macrophage/microglia infiltration. Considering that patient-derived IgGs
vary in binding sites and affinities and some of them may not bind to rodent AQP4, our hAQP4 rat is
expected to reproduce NMOSD-like pathology more accurately than WT rats.

Keywords: neuromyelitis optica spectrum disorder; aquaporin-4; NMO-IgG; extracellular domain;
humanized-AQP4-expressing rat model; CRISPR/Cas9 genome editing

1. Introduction

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the
central nervous system clinically characterized by relapsing optic neuritis and myelitis [1].
Clinically, the acute attacks are often severe and relapsing, causing residual disabilities [2].
Despite acute treatment for NMOSD attacks, such as high-dose intravenous methylpred-
nisolone therapy and/or plasma exchange, most patients experience severe residual symp-
toms, and only 21.6% showed complete remission [3]. Recently, several high-efficacy
treatments for relapse prevention have become available [4,5]; however, some cases still
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break through those therapies. Therefore, NMOSD animal models are needed to better
elucidate the pathogenesis of NMOSD and develop more effective treatments.

NMO-IgG, the autoantibody in NMOSD, was identified as a pathogenic autoantibody
against aquaporin-4 (AQP4) [6]. Intraperitoneal injection of NMO-IgGs induced astrocyte
injury associated with complement deposition in rat models of experimental autoimmune
encephalomyelitis (EAE) immunized with myelin basic protein (MBP) [7–9], which estab-
lished the pathogenicity of anti-AQP4 antibodies. Subsequently, several rodent models
have been developed in which anti-AQP4 antibody is injected into the blood or directly
into the central nervous system (CNS) [10–14]. However, the lesion caused by the injection
of patient-derived IgGs only showed mild perivascular loss of AQP4.

AQP4 is a six-transmembrane water channel protein with extracellular (loop A/C/E)
and intracellular (loop B/D) domains, mainly expressed on astrocyte end-feet and ependy-
mal cells in the CNS [15–19]. AQP4 has two dominant isoforms, namely, M1 and
M23 [16,20–22], that form tetramers in the membrane. M23-AQP4 tetramers form an
orthogonal array of particles (OAPs) [23–27]. NMO-IgGs bind to AQP4 extracellular do-
mains (ECDs) [28,29]; however, they are polyclonal [9,30], and the binding sites in AQP4
ECDs differ among patients [31–33]. Three amino acids in the rat AQP4 ECDs, namely,
Ser62, Asn64, and Thr149, are different from those of human AQP4; this difference can affect
the binding capacity of NMO-IgGs in vitro [31,32]. Previously, we reported that three out
of five NMOSD patient-derived IgGs failed to recognize mouse AQP4 which contains four
different amino acids (Ser62, Asn64, Thr149, and Ala228) in the ECDs compared to human
AQP4 [34]. Another study suggested that the binding to A228E mouse AQP4, which has
the same amino acid sequence in ECDs as rat AQP4, was weaker in five and unclear in one
out of 10 NMOSD patient-derived IgGs than binding to human AQP4 [31]. These findings
suggest that some NMOSD patient-derived IgGs might bind less to rodent AQP4 than to
human AQP4. However, the relationship between species-associated structural differences
of AQP4 and in vivo pathogenicity of NMO-IgGs is unknown. We hypothesized that the
difference in these amino acids across species would affect the in vivo pathogenicity of
NMO-IgGs and that humanizing the AQP4 ECDs of rat AQP4 might increase the affinity
and pathogenicity of patient-derived IgGs to induce severe lesions comparable to the
human pathology of NMOSD.

This study aimed to generate the humanized-AQP4-expressing (hAQP4) rat and
evaluate its utility as the NMOSD model. We employed our experimental NMOSD model
with MBP-EAE [35] and hAQP4 rats to reproduce NMOSD-like lesions by transferring
human AQP4-specific antibodies or NMOSD patient-derived IgGs.

2. Results
2.1. Human AQP4-Specific Antibody Induced Aastrocyte Injury in the CNS of hAQP4 Rats but
Not in WT Rats

First, we examined whether human AQP4-specific monoclonal antibody D15107 can
induce astrocyte injury in WT and hAQP4 rats (Figure 1a). The clinical disability scores were
not significantly different among WT rats without IgG injection (WT-w/o IgG), WT rats
transferred with D15107 (WT-D15107), hAQP4 rats without IgG injection (hAQP4-w/o IgG),
and hAQP4 rats transferred with D15107 (hAQP4-D15107) (Figure 1b). Histopathological
analysis revealed AQP4 loss lesions in the CNS of the hAQP4-D15107 group, whereas the
lesions were hardly found in the WT-D15107 group and were not detected in the WT-w/o
IgG and hAQP4-w/o IgG groups (Figure 1c–e). The hAQP4-D15107 group had significantly
larger lesions than the WT-D15107 group (Figure 1d,e).
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Figure 1. Human AQP4-specific monoclonal antibody D15107 induced astrocyte damage specifi-
cally in hAQP4 rats. (a) Summary of the experimental protocol. Created with BioRender.com. (b) 
Clinical disability scores of the wild-type Lewis (WT) rats transferred with D15107 (WT-D15107, 
blue), humanized-aquaporin-4-expressing (hAQP4) rats transferred with D15107 (hAQP4-D15107, 
red), WT rats without IgG injection (WT-w/o IgG, light blue), and hAQP4 rats without IgG injection 
(hAQP4-w/o IgG, light red) group on the day of IgG injection (day 0) and after 2 days. Values are 
mean ± SEM of each group. (c–e) Sizes of AQP4 loss lesions in the spinal cord induced by human 
AQP4-specific monoclonal antibody on the pathological examination. The percentage of the AQP4 
loss area was calculated for 12 slices per rat by dividing the AQP4 loss area by the whole section 
area. (c) AQP4 staining of the spinal cord sections in each group. Each scale bar = 1 mm. (d) Average 
of 12 slices per rat in the WT-D15107 and hAQP4-D15107 groups. Values are median ± IQR with 
individual points. (e) The average percentage of the AQP4 loss area in the slices with the three larg-
est lesions per rat in the WT-D15107 and hAQP4-D15107 groups. Values are median ± IQR with 
individual points. Statistical analyses were performed using the Wilcoxon test with GraphPad Prism 
8.4.3, and significance is indicated as ** p < 0.01. 

  

Figure 1. Human AQP4-specific monoclonal antibody D15107 induced astrocyte damage specifically
in hAQP4 rats. (a) Summary of the experimental protocol. Created with BioRender.com. (b) Clinical
disability scores of the wild-type Lewis (WT) rats transferred with D15107 (WT-D15107, blue),
humanized-aquaporin-4-expressing (hAQP4) rats transferred with D15107 (hAQP4-D15107, red),
WT rats without IgG injection (WT-w/o IgG, light blue), and hAQP4 rats without IgG injection
(hAQP4-w/o IgG, light red) group on the day of IgG injection (day 0) and after 2 days. Values are
mean ± SEM of each group. (c–e) Sizes of AQP4 loss lesions in the spinal cord induced by human
AQP4-specific monoclonal antibody on the pathological examination. The percentage of the AQP4
loss area was calculated for 12 slices per rat by dividing the AQP4 loss area by the whole section
area. (c) AQP4 staining of the spinal cord sections in each group. Each scale bar = 1 mm. (d) Average
of 12 slices per rat in the WT-D15107 and hAQP4-D15107 groups. Values are median ± IQR with
individual points. (e) The average percentage of the AQP4 loss area in the slices with the three
largest lesions per rat in the WT-D15107 and hAQP4-D15107 groups. Values are median ± IQR with
individual points. Statistical analyses were performed using the Wilcoxon test with GraphPad Prism
8.4.3, and significance is indicated as ** p < 0.01.

2.2. NMOSD Patient-Derived IgGs Induced Astrocyte Injury in the CNS of hAQP4 Rats and the
Lesion Size Was Dose-Related

Then, we investigated whether NMOSD patient-derived IgGs (Table 1) can induce
NMOSD-like lesions in hAQP4 rats and whether the lesion size is IgG dose-related.

The symptoms and extent of astrocyte injury in the spinal cords of the hAQP4-w/o IgG,
hAQP4 rats transferred with control-IgG (hAQP4-ctrl-IgG), and hAQP4 rats transferred
with 2 mg, 20 mg, and 40 mg of NMO1-IgG (hAQP4-NMO1-IgG) were analyzed (Figure 2a).
The clinical disability scores of hAQP4 rats after IgG injection were not significantly different
among these groups (Figure 2b). However, histological analysis revealed AQP4 loss
associated with glial fibrillary acidic protein (GFAP) loss in the CNS of the hAQP4-NMO1-
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IgG group, whereas no AQP4 loss was observed in the hAQP4-w/o IgG or hAQP4-ctrl-IgG
group (Figure 2c). Among the hAQP4-NMO1-IgG groups, the AQP4 loss lesions in the
spinal cord sections were larger in the 20 mg and 40 mg groups than in the 2 mg group, and
the difference between the 2 mg and 20 mg groups was significant (Figure 2d,e). hAQP4
rats transferred with NMO2-IgG (hAQP4-NMO2-IgG) 2 mg, 20 mg, and 40 mg were also
evaluated, and no significant difference in clinical symptoms was found between these
groups. Conversely, the 20 mg and 40 mg groups showed larger lesions than the 2 mg group,
and the difference between the 2 mg and 20 mg groups was significant in the comparison of
the top three sections in terms of AQP4 loss lesion size (Figure 2c,f,g). In the hAQP4 rats that
received 20 mg of NMO2-IgG, AQP4 loss lesions were associated with GFAP loss, tissue
destruction, activated-complement deposition (Figure 3a–d), demyelination (Figure 3e–g),
and axonal swelling (Figure 3h). Marked infiltration by myeloperoxidase (MPO)- and
CD68-positive cells was observed in these lesions, whereas few CD3- and CD20-positive
cells were detected (Figure 3i–l). Accordingly, we used 20 mg of patient-derived IgGs per
rat in subsequent experiments.
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Figure 2. AQP4 loss lesions in hAQP4 rats induced by NMOSD patient-derived IgGs were dose-
related. (a) Summary of the experimental protocol. Created with BioRender.com. (b) Clinical
courses of the rats after injection with patient-derived IgGs or ctrl-IgG. Clinical disability scores
of the hAQP4 rats without IgG injection (hAQP4-w/o IgG, blue), hAQP4 rats transferred with
ctrl-IgG (hAQP4-ctrl-IgG, red), hAQP4 rats transferred with NMO1-IgG (hAQP4-NMO1-IgG) 2 mg
(green), hAQP4-NMO1-IgG 20 mg (purple), and hAQP4-NMO1-IgG 40 mg (orange) on the day of
IgG injection (day 0) and after 2 days. Values are mean ± SEM of each group. (c) AQP4 staining of
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the spinal cord sections in each group. Each scale bar = 2.5 mm. (d–g) Size of AQP4 loss lesions in
the spinal cord induced by patient-derived IgGs on the pathological examination. The percentage
of AQP4 loss area was calculated in 12 slices per rat by dividing the AQP4 loss area by the whole
section area. (d,f) Average percentage of the AQP4 loss area in 12 slices per rat (d) in the hAQP4-
NMO1-IgG 2 mg, 20 mg, and 40 mg groups and (f) in the hAQP4 rats transferred with NMO2-IgG
(hAQP4-NMO2-IgG) 2 mg, 20 mg, and 40 mg groups. Values are median ± IQR with individual
points. (e,g) The average percentage of the AQP4 loss area in the slices with the three largest lesions
per rat (e) in the hAQP4-NMO1-IgG 2 mg, 20 mg, and 40 mg groups and (g) in the hAQP4-NMO2-IgG
2 mg, 20 mg, and 40 mg groups. Values are median ± IQR with individual points. Statistical analyses
were performed using Dunnett’s T3 test with GraphPad Prism 8.4.3. Significance is indicated as ns:
not significant, * p < 0.05, ** p < 0.01.

Table 1. Patients’ clinical profiles and anti-AQP4 titers.

Patient NMO1 NMO2 NMO3 NMO4 NMO5 NMO6

Age 64 62 52 28 49 59
Sex F F F F F M

Clinical phenotype C ON ON ON + C APS + My ON + APS + My
Relapse or
first attack Relapse Relapse Relapse First attack First attack First attack

EDSS on nadir 7.5 6 5 4 5 5
EDSS

after treatment 6 5 5 1.5 2.5 3

Anti-AQP4 titer
of serum at attack 1:524,288 1:32,768 1:131,072 1:4096 1:1024 1:1024

Anti-AQP4 titer
of purified-IgG 1:131,072 1:262,144 1:32,768 1:4096 1:1024 1:256

Abbreviations: APS, area postrema syndrome; C, cerebral lesion; EDSS, expanded disability status scale; My,
myelitis; ON, optic neuritis.
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Figure 3. NMOSD patient-derived IgGs induced severe NMOSD-like lesions in hAQP4 rats. Patho-
logical findings in the spinal cord of hAQP4 rats that received 20 mg of NMO2-IgG. (a) Hematoxylin
and eosin (HE) staining showed vasculocentric tissue-destructive lesions. (b,c) Immunohistochem-
istry (IHC) for AQP4 (b) and glial fibrillary acidic protein (GFAP) (c) revealed complete loss of
AQP4 and GFAP, indicating astrocyte damage. (d) IHC for C5b-9 showed vasculocentric comple-
ment depositions in the lesion. (e) Klüver–Barrera (KB) staining indicated obvious demyelination
in the center of the lesion. (f,g) The IHC for myelin-associated glycoprotein (MAG) (f) and myelin
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basic protein (MBP) (g) showed a decrease in staining. (h) The IHC for neurofilament (NF) showed
mild axonal swelling. (i,j) The IHC for myeloperoxidase (MPO) (i), expressed mostly in neutrophils,
and CD68 (j), expressed mainly in macrophage/microglia, revealed marked infiltration by these
cells in the lesion. (k,l) The IHC for T-cell marker CD3 (k) and B-cell marker CD20 (l) showed rare
infiltration by these cells in the lesion. All these staining procedures were performed using serial
sections. All these figures indicate the same lesion. Scale bar = 250 µm.

2.3. NMOSD Patient-Derived IgGs Induced AQP4 Loss Lesions in Both hAQP4 and
Wild-Type Rats

To compare the lesions induced by each patient-derived IgG in WT and hAQP4 rats,
experimental NMOSD was induced using 20 mg of IgGs for the remaining NMO3- to
NMO6-IgGs. All six patient-derived IgGs induced AQP4 losses in the CNS of both WT
and hAQP4 rats without significant difference (Figure 4, upper panel), although only slight
lesions were observed in the rats administered low-titer NMO-IgGs (Figure 4, lower panel).
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Figure 4. NMOSD patient-derived IgGs induced spinal cord lesions in both WT and hAQP4 rats
without significant difference. Percentage of the AQP4 loss area in the spinal cord sections induced by
six patient-derived IgGs. The percentage of the AQP4 loss area was calculated in 12 sections per rat
by dividing the AQP4 loss area by the whole section area, and the average in the slices with the three
largest lesions per rat was plotted on the graph, with median and IQR range indicated. Statistical
analyses were performed using the Wilcoxon test for NMO1- to NMO3-IgG and Welch’s t-test for
NMO4- to NMO6-IgG with GraphPad Prism 8.4.3, and significance is indicated as ns: not significant.

Complement activation and inflammatory cell infiltration in the AQP4 loss lesions
were also analyzed. All spinal cord lesions were classified into six types of NMOSD
lesions as previously described [36]. Regardless of which patient-derived IgGs were
transferred, most lesions in the spinal cords were type 1 lesions (activated complement-
induced astrocyte lysis) in both WT and hAQP4 rats. None of the patient-derived IgGs
showed a significant difference in the density of infiltrating cells, such as MPO-positive
neutrophil, CD68-positive macrophage/microglia, and CD3-positive T-cells in the AQP4
loss lesions, between WT and hAQP4 rats (Figure S1a–c).
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To check the binding affinity of patient-derived IgGs used, a stepwise-diluted affinity
assay of patient-derived IgGs to human and rat AQP4 was performed using enzyme-linked
immunosorbent assay (ELISA). NMO1-, NMO2-, and NMO3-IgGs bound to human AQP4
M23 and rat AQP4 M23 but not to human AQP4 M1 (Figure 5a–c). The binding of NMO1-,
NMO2-, and NMO3-IgG to human AQP4 M23 was detected in lower concentrations than
to rat AQP4 M23 (Figure 5a–c). NMO4-, NMO5-, and NMO6-IgGs could not be evaluated
because of the limit of detection.
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Figure 5. NMOSD patient-derived IgGs bound to both human AQP4 M23 and rat AQP4 M23 but did not
bind to human AQP4 M1. (a–c) Binding of NMO1-IgG (a), NMO2-IgG (b), and NMO3-IgG (c) to rat M23
(blue), human M23 (red), and human M1 (green) expressed in CHO-K1 cells evaluated by enzyme-linked
immunosorbent assay (ELISA). Values are mean ± SEM of four independent experiments.

2.4. The Clinical Manifestations of the Patients during Acute Attacks Did Not Correlate with the
Lesion Distribution of the Experimental NMOSD Model, Whereas the Anti-AQP4 Titers
Correlated with the Lesion Size and Infiltrating Cells

Patients’ clinical features and the pathological findings of hAQP4 rats in which patient-
derived IgGs were transferred were compared. The expanded disability status scale (EDSS)
of the patient at the nadir ranged from 4.0 to 7.5 (Table 1). Among the six patients with
NMOSD, three (NMO1, NMO2, and NMO3) poorly recovered clinically after acute treat-
ment, and the others (NMO4, NMO5, and NMO6) recovered well. Despite these variations,
the clinical symptoms of the hAQP4 NMOSD model rats were not significantly different
between each patient-derived IgG group (Table S1). The clinical phenotypes at the time of
attack in each patient varied (Table 1), whereas the distribution of lesions in the rats did not
correlate with the lesion distribution in the patients (Table S1). The AQP4 loss lesions in
hAQP4 rats were frequently distributed in the cerebrum, pons, medulla, and spinal cord,
but less frequently in the optic nerve, midbrain, and cerebellum (Table S1).

On the other hand, the extent of AQP4 loss lesions varied according to the IgGs
transferred, and a positive correlation was observed between the lesion size and anti-AQP4
titers of the purified IgG (Figure 6a). In addition, MPO-positive neutrophils and CD68-
positive macrophage/microglia infiltrating the AQP4 loss lesions were positively correlated
with the titers (Figure 6b,c), whereas CD3-positive T cells were negatively correlated with
the titers (Figure 6d). These correlations were found in both hAQP4 and WT rats. Type
1 lesions, characterized by astrocyte loss with C5b-9 deposition, occupied a certain portion
of the total lesions regardless of the patient-derived IgG transferred (Table S1).
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AQP4 loss lesions in the spinal cord of hAQP4 rats. The average percentage of the AQP4 loss area in
the slices with the three largest lesions per rat was plotted in the graph. (b–d) Relationship between
the titer of patient-derived IgGs and the density of MPO- (b), CD68- (c), and CD3-positive (d) cells
in the AQP4 loss lesions. Statistical analysis was performed using Spearman’s rank correlation
coefficient with GraphPad Prism 8.4.3.

3. Discussion
3.1. Establishment of a New NMOSD Model Using hAQP4 Rats
3.1.1. Reproduction of NMOSD-Like Pathology

A novel NMOSD rat model that expresses AQP4 with humanized ECDs was devel-
oped. This rat model can reproduce severe astrocytopathy in the CNS comparable to human
NMOSD pathology in the acute phase [36–38] after the transfer of human AQP4-specific
antibodies or NMOSD patient-derived IgGs. The variations in expressed proteins between
animal species often hinder the development of disease models. Recently, gene-editing
techniques have advanced considerably, allowing for the precise modification of the target
gene to align with specific research purposes. In practice, rodent models with human
gene sequences knocked in using gene-editing technology, such as the mouse model of
hypertrophic cardiomyopathy [39] and cardiovascular disease [40], have been applied to
the research for novel therapies. Regarding research on NMOSD, the differences in AQP4
ECDs between species can affect antibody binding [31,32], and some patient-derived IgGs
cannot bind to rodent AQP4 [34], potentially affecting lesion formation in conventional
rat models.

We overcame this limitation using gene editing to humanize rat AQP4 ECDs and
established a novel NMOSD model that can induce human AQP4-specific antibody binding
and subsequent astrocytic lesion formation (Figure 1). Moreover, tissue-destructive lesions
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with marked astrocyte injury, complement deposition, demyelination, mild axonal swelling,
and significant infiltration of MPO-positive cells were found in the CNS of hAQP4 rats
in which NMOSD patient-derived IgGs were injected in the blood (Figure 3). These
pathological features are comparable to those observed in human NMO pathology [36–38].
Additionally, compared to mouse models, the use of rats has several advantages: they have
a complement system that can be activated by human IgG [41], thus not requiring the co-
injection of human complements; their relatively large size allows for evaluating biomarkers
such as GFAP, neurofilament light chain, and cytokines/chemokines in sera and CSF [42];
and they can be investigated using magnetic resonance imaging and somatosensory evoked
potentials [14]. As above, the hAQP4 rats can contribute to the comprehensive analyses of
NMOSD pathophysiology induced by patient-derived IgGs.

3.1.2. Anti-AQP4 Titer and Lesion Formation

Our pathological analyses revealed that antibody titer evaluated with live cell-based
assay correlated with the lesion size in the NMOSD model rats (Figure 6a). The antibody
titer reflects several parameters of patient-derived IgGs, such as the amount and affinity
of anti-AQP4-IgGs contained in patient-derived IgGs. The dose of the injected IgGs was
also related to the lesion size (Figure 2d–g). Although the clinical significance of serum
anti-AQP4 titer is controversial, some studies have linked it to the number of involved
spinal cord segments [43,44] in the acute phase of NMOSD. Our results support the finding
that a high titer of anti-AQP4 antibodies during an acute attack may be a risk factor for the
emergence of extensive lesions.

Moreover, the density of lesional neutrophils and macrophage/microglia were pos-
itively correlated; however, T cells were negatively correlated with the anti-AQP4 titer
of the transferred IgGs (Figure 6b–d). Marked neutrophil infiltration is seen in acute le-
sions of NMOSD autopsy cases [36–38] and in a biopsy of acute AQP4-antibody-positive
NMOSD brain lesions [45]. In vitro experiments showed that neutrophils can damage AQP4-
expressing CHO cells in the presence of AQP4 antibodies [46]. In a previously reported
mouse model, neutrophil elastase inhibitors prevented the expansion of NMOSD lesions [47].
Moreover, a recent study showed that neutrophils release cell-free DNA in patients with
NMOSD, which can induce type 1 interferons [48]. These findings indicate that neutrophils
exacerbate astrocyte injury during acute NMOSD attacks. Macrophage/microglia infiltra-
tion is also one of the pathological features of acute NMOSD lesions [36–38]. A previous
study suggested that T cells were not required for lesion expansion [49], which is consistent
with our results. Thus, our findings suggest that high-titer IgGs quantitatively activate more
complements, produce more chemoattractants such as C5a than the low-titer IgGs, and then
induce infiltration of numerous neutrophils.

3.1.3. Lesion Distribution

The lesion distribution observed in our model did not correspond to the clinical
presentation of each patient (Table S1). Although the factors that determine the lesion
site during acute NMOSD attacks remain unclear, previous studies have shown that anti-
AQP4 antibody seropositivity alone would not be sufficient to induce the lesions [12] and
increased blood–brain barrier (BBB) permeability would also be needed [13]. Some previous
studies have noted the potential role of the availability of AQP4 in antigen presentation
and CNS antigen-specific T cells [50,51]. A previous study of a rat model using AQP4-
specific T cells showed that, in the presence of NMO-IgGs, a low number of T cells induced
lesions exclusively in the spinal cords, whereas a higher number of T cells induced brain
lesions in addition to affecting the spinal cords [52]. On the other hand, MBP-EAE shows
mononuclear cell infiltrations in the cerebrum, pons, and brainstem including the midbrain,
and, particularly, the spinal cord [53,54]. The lesion distribution in our rat model resembles
that of MBP-EAE, supporting the finding that pathogenic T cells contribute to determining
the lesion location. The difference in the factors increasing BBB permeability might have
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caused the inconsistency in the lesion distribution between NMOSD patients and our
rat model.

3.2. Influence of Differences between Human and Rat AQP4 ECDs on the NMOSD Model

Human AQP4-specific antibody D15107 recognized human and humanized rat AQP4
equally in the ELISA (Figure S2e) and induced significantly larger astrocyte loss lesions
in hAQP4 rats than in WT rats (Figure 1d,e), which is consistent with our hypothesis of
the superiority of hAQP4 rats in the induction of NMOSD-like lesions by autoantibodies
against human AQP4 ECDs. In this context, the hAQP4 rats could potentially contribute
to the development of novel treatments that block the binding of anti-AQP4 antibodies to
human AQP4, such as “aquaporumab” [55]. However, in this study, patient-derived IgGs
induced NMOSD-like lesions in both WT and hAQP4 rats without significant differences
in lesion size, complement activation, and inflammatory cell infiltration (Figure 4 and
Figure S1). Although the patient-derived IgGs used had slightly higher affinity to human
AQP4, they also bound to rat AQP4 M23 (Figure 5). In addition, the patient-derived
IgGs bound minimally to human AQP4 M1 but significantly to human M23 and rat M23
(Figure 5), suggesting that they bind mainly to OAPs in both hAQP4 and WT rats. The
binding of anti-AQP4 antibodies to AQP4 OAPs induces complement C1q activation and
activates the classical pathway, leading to the formation of a membrane attack complex
and eventually astrocyte lysis [56]. Meanwhile, anaphylatoxin C5a, which is produced
during the complement activation process, induces neutrophil infiltration, cooperating
with granulocyte colony-stimulating factor. In this study, both hAQP4 and WT rats showed
the deposition of C5b-9 and marked neutrophil infiltration in the lesions with astrocyte
lysis after NMOSD patient-derived IgG injection (Figures 3 and 4). Previous studies have
shown that patient-derived IgGs contain polyclonal anti-AQP4 antibodies, and each clone
has its own binding site to AQP4 and can mediate complement-dependent cytotoxicity
(CDC) and antibody-dependent cellular cytotoxicity [9,30,32]. Anti-AQP4 antibody clones
whose binding depends on His151 and Leu154, which are common in human and rat AQP4,
showed enhanced CDC compared with clones independent from these amino acids [57],
corresponding to our results. On the contrary, some anti-AQP4 antibody clones can even
be cytoprotective in the CDC assay [58]; however, such a cytoprotective effect was not
detected in this study.

3.3. Limitations

This study has some limitations. First, the difference between WT and hAQP4 rats
using NMOSD patient-derived IgGs could not be confirmed. In this study, patient-derived
IgGs bound to both rat and human AQP4, suggesting that the binding sites of pathogenic
anti-AQP4 antibody clones are independent of the difference between rat and human
AQP4 ECDs. Although we included only six patients with NMOSD, previous studies have
indicated that some NMOSD patient-derived IgGs cannot bind to rodent AQP4 [31,34];
thus, our hAQP4 rats would be appropriate for the evaluation of such IgGs detected in
a larger cohort. Second, we used MBP as an immunogen to induce EAE, which is not
involved in NMOSD pathology. Because T-cell responses to AQP4 have been reported [59]
and AQP4-specific T-cells can cause CNS inflammation in rats [52], our hAQP4 rats could
induce pathology closer to human NMOSD by transfer of AQP4-reactive T cells along with
NMOSD patient-derived IgGs or direct immunization with AQP4 peptides [60], instead
of inducing MBP-EAE. Third, although this model can reproduce acute NMOSD-like
pathology (Figures 1c and 2c), clinical exacerbation by IgG injection was hardly detectable
in our rat model (Figures 1b and 2b). Since previous NMOSD models without MBP-
EAE showed that early clinical exacerbation was induced by patient-derived IgGs [14,61],
perhaps MBP-EAE might have masked the symptoms caused by patient-derived IgGs in
this study. This limitation could affect the analysis of drug efficacy; however, it could
also be solved using the models described above, which eliminate the effects of MBP-EAE.
In addition, direct anti-AQP4 antibody injection to the optic nerve [61] and intrathecal
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patient-derived IgG injection [14] in our hAQP4 rats are expected to further clarify the
pathological and clinical implications of NMOSD patient-derived IgGs. Fourth, whether
our hAQP4 rats can be applied to the analysis of the outcomes of acute-phase therapeutic
interventions is still unclear. However, improvement of our model will accumulate basic
data to develop investigational new drugs for NMOSD.

4. Materials and Methods
4.1. Establishment of Humanized-AQP4-Expressing Rats
4.1.1. Plasmid Constructions

Polymerase chain reaction (PCR)-based mutagenesis was performed to introduce
V53L, S62T, N64K, T120A, and T149M mutations (Figure S2) for creating the “humanized”
rat AQP4 M23 isoform. All products were inserted into the pGEM-T vector (Promega,
Madison, WI, USA) for sequencing. cDNAs encoding human, rat, and humanized rat
AQP4 M23 and human AQP4 M1 were inserted into pEBMulti-Puro (FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan).

4.1.2. Cell Culture and Transfection

CHO-K1 cells (RCB0285) obtained from RIKEN BRC (Tsukuba, Japan) were maintained
in Ham’s F12 medium supplemented with 10% fetal bovine serum, 50 units/mL penicillin,
and 50 µg/mL streptomycin at 37 ◦C in a 5% CO2 incubator.

For ELISA, CHO-K1 cells were seeded onto 60 mm dishes at a density of 1 × 106 cells/dish
and transfected with each plasmid using Lipofectamine LTX with Plus Reagents (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Forty-eight
hours after transfection, the cells were selected with 10 µg/mL puromycin (InvivoGen, San
Diego, CA, USA).

4.1.3. ELISA

Specific binding of monoclonal antibodies and patient-derived IgGs to AQP4 was
evaluated with ELISA, as previously described [62], using CHO cells expressing human
AQP4 M1, human AQP4 M23, rat AQP4 M23, or humanized rat AQP4 M23. Cells were
amplified and seeded onto 96-well plates at a density of 1 × 105 cells/well and fixed with
4% paraformaldehyde (PFA) at 4 ◦C overnight. Fixed cells were washed with phosphate-
buffered saline (PBS) and blocked with 40% Block Ace (KAC Co., Ltd., Kyoto, Japan)
in PBS at room temperature for 1 h. After blocking, cells were incubated with various
concentrations of human-specific monoclonal antibodies against the ECDs of AQP4, C9401,
D12092, or D15107 [34,62], or patient-derived IgGs in 40% Block Ace/PBS at 4 ◦C overnight,
washed three times with PBS, and incubated with HRP-conjugated anti-mouse IgG (1:8000,
Sigma-Aldrich, St. Louis, MO, USA) for monoclonal antibodies or HRP-conjugated anti-
human IgG (1:20,000, abcam, Cambridge, UK) for patient-derived IgGs in 10% Block
Ace/PBS for 1 h. After washing five times with PBS, signals were visualized by incubation
with 50 µL of 3, 3’, 5, 5’ tetramethylbenzidine (Sigma-Aldrich, St. Louis, MO, USA) for
30 min and added with 50 µL of Stop Reagent (Sigma-Aldrich, St. Louis, MO, USA).
Absorbance at 450 nm was measured with SpectraMax i3x (Molecular Devices, Sunnyvale,
CA, USA). As patient-derived IgGs showed nonspecific binding, which was not negligible,
the absorbance of CHO cells transfected with an empty vector was also measured, as
described above, and specific binding of patient-derived IgGs to AQP4 was calculated.

All three human-specific monoclonal antibodies bound to humanized rat AQP4 M23
with affinities comparable to those for human AQP4 M23 (Figure S2c–e), showing that rat
AQP4 was certainly humanized by the introduced mutations (Figure S2a). Thus, genome
editing was used to generate hAQP4 rats.

4.1.4. Animals

LEW/CrlCrlj rats for donor embryos were obtained from The Jackson Laboratory
Japan, Inc. (Kanagawa, Japan). Iar: Wistar-Imamichi rats for transplant recipients of
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genome-edited zygotes were obtained from the Institute for Animal Reproduction (Ibaraki,
Japan). All animals were maintained at 23 ± 1.5 ◦C, 45 ± 15% humidity, and a 12 h
light/dark cycle. They were fed a standard pellet diet (MF, Oriental Yeast Co., Tokyo,
Japan) and tap water. All experiments in this study were approved by the Animal Research
Committee of Osaka University (Permission number: 24-006-042).

4.1.5. Preparation of CRISPR Components and Long Single-Stranded Donor DNAs

The gRNAs were designed using CRISPOR (http://crispor.tefor.net/ (accessed on
23 July 2024)) [63], which predicts unique target sites throughout the rat genome. The
target sequences selected for knock-in production were 5′-ATCTTTGTTCTGCTCAGCGT-3′

(left) and 5′-CGGTGAGAGCTCTTCTGTTC-3′ (right) (Figure S2f). These gRNAs were
prepared using the Precision gRNA Synthesis Kit (Thermo Fisher Scientific, Waltham,
MA, USA). Cas9 mRNA was transcribed in vitro using a mMESSAGE mMACHINE T7
Ultra Kit (Thermo Fisher Scientific) from a linearized plasmid (Addgene plasmid # 72602;
http://n2t.net/addgene:72602 (accessed on 23 July 2024); RRID:Addgene_72602) and was
purified using a MEGAClear kit (Thermo Fisher Scientific). As the knock-in donor, long
single-stranded DNAs (lssDNAs) (Figure S2b,f) were prepared using nicking endonucleases
(nickase) as previously reported [64].

4.1.6. Manipulation of Rat Embryos and Electroporation

Pronuclear-stage rat embryos were prepared from 12-week-old females that were
superovulated by administering 150 U/kg of pregnant mare serum gonadotropin (PMSG:
ASKA Animal Health Co., Tokyo, Japan) and then 75 U/kg of human chorionic go-
nadotropin (HCG: ASKA Animal Health Co.). After natural mating, pronuclear-stage
embryos were obtained from the oviducts of the females and cultured in a modified Krebs–
Ringer bicarbonate medium (ARK Resource, Kumamoto, Japan).

In the electroporation (EP), 203 LEW/CrlCrlj embryos 4–6 h after collection were
placed into a chamber with 40 µL of serum-free media (Opti-MEM, Thermo Fisher Sci-
entific) containing 400 ng/µL Cas9 mRNA, 200 ng/µL gRNAs, and 20 ng/µL lssDNA.
They were electroporated with a 5 mm gap electrode (CUY520P5 Nepa Gene, Chiba, Japan)
in a NEPA21 Super Electroporator (Nepa Gene, Chiba, Japan) [65]. Eighty embryos that
developed in the two-cell stage after EP of Cas9 mRNA, gRNA, and lssDNA were trans-
ferred into the oviducts of four female surrogates anesthetized with isoflurane (DS Pharma
Animal Health Co., Ltd., Osaka, Japan). Finally, 11 pups were born, one of which was
confirmed to be the knocked-in rat (LEW-Aqp4<em2 Mysi>).

Conventional PCR was used for genotyping using primer sets for WT AQP4 (310 bp),
5′-CATTAACTGGGGTGGCTCAGAGAACCCCCTACCTG-3′ and 5′-GCACAGAAATAAG
AACAGAAGAGCTCTCACCGTG-3′; and for humanized AQP4 (277 bp), 5′-CACCATTAA
CTGGGGTGGCACAGAGAAGCCTTTGC-3′ and 5′-CAGCTCCGATGATGGCCCCGAGGC
ACTGCGCTGCG-3′ (Figure S2f,g).

4.2. Experimental NMOSD Model
4.2.1. Animals

Female Lewis rats (LEW/Crlcrlj) obtained from The Jackson Laboratory Japan, Inc.
(Kanagawa, Japan) and hAQP4 rats established as above were housed in the Institute
for Animal Experimentation, Tohoku University School of Medicine, under standard-
ized conditions. This experiment was approved by the Ethics Committee of the Tohoku
University Graduate School of Medicine Committee on Animal Research (Permission no.
2019MdA-235).

4.2.2. Patients and Antibodies

Patient-derived IgGs were obtained from six patients with AQP4-antibody-positive
NMOSD fulfilling the 2015 NMOSD diagnostic criteria [66] in the acute phase. Table 1
shows each patient’s clinical symptoms, EDSS at nadir, EDSS post-treatment, and pre-
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treatment AQP4-antibody titer during the attack. Control IgGs were obtained from two
healthy controls.

IgGs were prepared as follows: patient-derived plasma and control sera were heated
at 56 ◦C in a water bath for 30 min. Each sample was subjected to caprylic acid precipita-
tion [67] to remove unwanted proteins such as fibrinogen. Supernatants were collected,
dialyzed with PBS, and filtered through a 0.45 µm filter. Samples were applied to HiTrap™
rProtein A FF columns (GE Healthcare, Chicago, IL, USA), eluted with 0.1 M sodium citrate
pH 3.0, and neutralized with 1 M Tris-HCl pH 9.0. Purified IgG underwent buffer exchange
with Amicon® Ultra-15 (50k NMWL; Merck, Darmstadt, Germany), and its concentration
was adjusted to 10 mg/mL. In this study, IgGs purified from the plasma of six patients
(NMO1–NMO6) were referred to as NMO1-IgG, NMO2-IgG, NMO3-IgG, NMO4-IgG,
NMO5-IgG, and NMO6-IgG, respectively.

The anti-AQP4 antibody assay for diagnosis and titer determination was performed
as previously described [28]. The use of patient plasma for this study was approved by the
Ethics Committee of Tohoku University Graduate School of Medicine (2021-1-1035).

4.2.3. Induction of Experimental NMOSD

This study included 48 WT and 69 hAQP4 rats. The number of rats included in each
experiment is shown in the figures. Experimental NMOSD was induced as previously de-
scribed [35]. Briefly, 8–9-week-old female rats were subcutaneously immunized with 200 µL
of an encephalitogenic mixture containing 100 µg of MBP from guinea pig brain (Sigma-
Aldrich, St. Louis, MO, USA) and complete Freund’s adjuvant (Chondrex Inc., Redmond,
WA, USA) containing 100 µg of heat-killed Mycobacterium tuberculosis H37Ra to stimulate
the disruption of the blood–brain barrier. The immunization was performed under general
anesthesia with isoflurane. After rats developed ascending paresis or body weight loss
9–11 days after immunization, they were injected with 3 mg of D15107, 2/20/40 mg of
patient-derived IgG, or 40 mg of control IgG. Their body weights were measured daily,
and clinical disability was scored as follows: 0 = no symptoms, 0.5 = dragging the tip
of tail, 1.0 = limp tail, 1.5 = limp tail with hindlimb inhibition, 2.0 = hindlimb weakness
with gait abnormality, 2.5 = hindlimb weakness with dragging, 3.0 = complete hindlimb
paralysis, 3.5 = complete hindlimb paralysis and unable to right posture, 4.0 = forelimb
weakness, 4.5 = complete forelimb paralysis or moribund, and 5.0 = dead. Two days after
IgG injection, rats were sacrificed with isoflurane overdose and perfused with 4% PFA. All
CNS tissues, including the brain, brainstem, optic nerves, and spinal cord, were dissected
(the whole spinal cord was divided into 12 equal parts), fixed for another 24–48 h in 4%
PFA, and embedded in paraffin for histological analysis.

4.2.4. Histology and Immunohistochemistry

Furthermore, 3 to 4 µm-thick serial sections were cut on a microtome. Each tissue was
stained with hematoxylin and eosin (HE) and Klüver–Barrera (KB). Immunohistochemical
staining was performed as previously described [35,37] using Histofine® Simple Stain
(Nichirei Bioscience, Tokyo, Japan) immunostaining systems. The detailed protocol is
provided in the Supplementary File (Table S2).

4.2.5. Histopathological Analyses

To quantify the AQP4 loss lesion area, 12 spinal cord sections (one section in each of
the 12 parts) in each rat were stained for AQP4 and analyzed. The percentage of AQP4 loss
was calculated for each section by dividing the AQP4 loss area by the whole section area
using Fiji [68].

Lesion classification and quantitation of MPO-, CD68-, and CD3-positive cells were
performed using NDP.view 2.9.29 (Hamamatsu Photonics, Hamamatsu, Japan). Three
spinal cord sections with the largest AQP4 loss lesions were picked per rat and used for
evaluation. The lesions were classified as previously described [36] using serial sections
stained for AQP4, GFAP, C5b-9, KB, and neurofilament (NF). The serial sections stained
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for AQP4, MPO, CD68, and CD3 were used to count positive cells. The density of each
positive cell population was determined by counting the number of positive cells in four
standardized microscopic fields of 50 µm square per section that were randomly placed
in the AQP4 loss lesions and calculating the average cell density in 1 mm square for
each section.

4.2.6. Statistical Analysis

Welch’s t-test, Wilcoxon test, or Dunnett’s T3 was used to compare the percentage of
AQP4 loss in the spinal cord sections and the density of MPO-, CD68-, and CD3-positive
cells in the lesions between the WT and hAQP4 rats. Welch’s analysis of variance was
used to compare the disability score, percentage of AQP4 loss in spinal cord sections,
percentage of type 1 lesion, and density of MPO-, CD68-, and CD3-positive cells in the
lesions among the six NMO-IgGs. Spearman’s rank correlation coefficient was used to
assess the relationship between antibody titer and lesion size. All statistical analyses were
performed with GraphPad Prism 8.4.3, and p < 0.05 was considered significant. Significance
is indicated as * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

5. Conclusions

The hAQP4 rat model we developed with gene-editing technology can successfully
reproduce the pathological changes induced by human AQP4-specific antibodies, which
were not observed in conventional WT rat models. Furthermore, NMOSD patient-derived
IgGs can induce NMOSD-like lesions in hAQP4 rats comparable to human pathology. The
comparison of hAQP4 and WT rat lesions suggests that a large proportion of anti-AQP4
antibodies derived from patients with NMOSD presumably bind to the AQP4 domains
shared by both human and rat AQP4 ECDs in AQP4 OAP. However, considering different
varieties of the binding sites, affinities, and pathogenicities of anti-AQP4 antibodies in
NMOSD patients, hAQP4 NMOSD rats may be superior to WT rats in reproducing human
NMOSD pathology. With improvements in the experimental protocol, our hAQP4 rat model
is expected to make an important contribution to the research for NMOSD pathophysiology
and the development of novel treatments.
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