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Abstract: Our study explores the role of cancer-derived extracellular exosomes (EXs), particularly
focusing on collagen alpha-3 (VI; COL6A3), in facilitating tumor dissemination and metastasis in
epithelial ovarian cancer (EOC). We found that COL6A3 is expressed in aggressive ES2 derivatives,
SKOV3 overexpressing COL6A3 (SKOV3/COL6A3), and mesenchymal-type ovarian carcinoma
stromal progenitor cells (MSC-OCSPCs), as well as their EXs, but not in less aggressive SKOV3
cells or ES2 cells with COL6A3 knockdown (ES2/shCOL6A3). High COL6A3 expression correlates
with worse overall survival among EOC patients, as evidenced by TCGA and GEO data analysis.
In vitro experiments showed that EXs from MSC-OCSPCs or SKOV3/COL6A3 cells significantly
enhance invasion ability in ES2 or SKOV3/COL6A3 cells, respectively (both, p <0.001). In contrast,
ES2 cells with ES2/shCOL6A3 EXs exhibited reduced invasion ability (p < 0.001). In vivo, the average
disseminated tumor numbers in the peritoneal cavity were significantly greater in mice receiving
intraperitoneally injected SKOV3/COL6A3 cells than in SKOV3 cells (p < 0.001). Furthermore,
mice intravenously (IV) injected with SKOV3/COL6A3 cells and SKOV3/COL6A3-EXs showed
increased lung colonization compared to mice injected with SKOV3 cells and PBS (p = 0.007) or
SKOV3/COL6A3 cells and PBS (p = 0.039). Knockdown of COL6A3 or treatment with EX inhibitor
GW4869 or rapamycin-abolished COL6A3-EXs may suppress the aggressiveness of EOC.

Keywords: exosomes; COL6A3; metastasis; epithelial ovarian cancer; aggressiveness; exosome
inhibitor

1. Introduction

Ovarian cancer has the highest mortality rate among gynecological cancers [1]. Due to
the lack of obvious symptoms and effective screening methods, most patients are diagnosed
at an advanced stage, and surgery cannot remove all tumors, resulting in a poor progno-
sis [2]. Advanced epithelial ovarian cancer (EOC) disseminates widely in the abdominal
cavity, featuring residual tumors after debulking surgery and resistance to chemotherapy
drugs [3–5]. Poor prognostic factors affect overall survival in advanced-stage EOC patients;
such factors include suboptimal debulking surgery, chemotherapy resistance, massive
ascites, histologic clear cell or mucinous carcinoma, and stage IV diseases. EOC metastasis
mainly occurs through peritoneal dissemination. At least one-third of patients with EOC
develop ascites with a poor prognosis, in which their five-year survival declines sharply [6].

Extracellular vesicles (EVs) play crucial roles in intercellular communication, tumor
progression and metastasis, immune modulation, drug resistance, and angiogenesis. The
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roles of extracellular vesicles in ovarian cancer have been studied in relation to chemore-
sistance, tumor microenvironment modulation, biomarkers for diagnosis and prognosis,
metastasis, and immune evasion. Recent studies have indicated that cancer cells secrete
extracellular vesicles (EVs), promoting cancer invasion, dissemination, and the develop-
ment of the cancer microenvironment [7]. EVs include exosomes (EXs) and microvesicles,
which are small membrane vesicles containing microRNAs (miRNAs), messenger RNAs,
and proteins [8,9]. EXs are small vesicles, ~30–150 nm in size, that develop within endo-
somes through membrane invaginations [8]. The cancer-derived EXs participate in the
promotion of dissemination and metastasis from the initial stages to the development of
secondary tumors [7,10–12]. EXs possess several unique advantages as biomarkers for the
early detection of dissemination because they are stable, abundant, and tumor-specific and
can be detected in the blood or ascites [9]. Recent evidence has demonstrated that cancer
EXs exert both autocrine and paracrine effects on the microenvironment [13]. A previous
study indicated that ovarian cancer EXs could transfer CD44 to the peritoneal mesothelium
to invade the physical barrier [14]. Ascites-derived EXs from ovarian cancer patients carry
MMP1 mRNA and induce apoptosis in mesothelial cells [14]. EXs released from EOC cells
promote and shift the conversion from normal fibroblasts and adipose-derived mesenchy-
mal stem cells to cancer-associated fibroblasts (CAFs) [15,16] and activate mesenchymal
phenotypes [17]. EOC primary tumors can create an advantageous microenvironment to
help tumors attach in distant organs through malignant ascites-derived EXs, which are
dynamically remodeling tumor stroma that form metastatic niches in the omentum from
CAF conversion [18].

Collagen type II secreted from stromal fibroblasts may promote tumor growth and
angiogenesis [19], while collagen type VI secreted from the base membrane directly affects
tumor growth, invasion, and metastasis in various neoplasms [20]. Our previous study
demonstrated that upregulation of collagen type VI α3 (COL6A3) may promote tumor
invasion and metastasis in EOC [21]. The invasiveness was enhanced up to 10-fold when
25 µg of COL6 protein was added to SKOV3 cells [21]. Furthermore, COL6A3 has been
reported to be associated with cisplatin resistance in an autocrine manner [22]. A recent
study disclosed that chemotherapy upregulated the expression of collagen type VI in the
omentum and peritoneum in EOC patients [23]. COL6 is primarily derived from tumor
stroma, and increased COL6 gene expression in solid tumors is associated with shortened
progression-free intervals and survival [24].

The EXs from more aggressive EOC cells strongly enhance aggressive behavior in less
aggressive tumors, which promotes aggressiveness without changing the properties of
EOC cells from non-aggressive to aggressive [14]. To further investigate which components
mainly affect the aggressiveness underlying EXs from more aggressive ovarian cancer
cells and the microenvironment of ascites, we used the ES2 cell line that was isolated from
the ovary of a female human with clear cell carcinoma as a more aggressive phenotype
exhibiting a fibroblast-like morphology and the SKOV3 cell line that was derived from the
ascites of a female human with serous cystadenocarcinoma as a less aggressive phenotype
exhibiting an epithelial-like morphology. Our recent study showed COL6A3 could be
detected in culture media and is abundant in primary ovarian cancer tissues, disseminated
metastatic omentum tissues, EOC spheroids, and MSC-OCSPCs, which appear to possess
the new function of promoting EOC in EMT, stemness, tumor growth, and metastasis [21].
COL6A3 belongs to an extracellular matrix (ECM) gene and is classified as a mesenchymal-
type-associated gene, which was determined to be the worst prognosis subtype in EOC via
TCGA molecular subtype analyses [21].

In this study, we elucidated for the first time COL6A3 transport via EXs from EOC
tissues and MSC-OCSPCs conferring invasiveness and metastasis in EOC cells. We evalu-
ated treatment strategies focusing on lysosomes, autophagy inhibition, and possible target
genes in EOC cells and EXs in in vitro experiments and in vivo live mouse models.
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2. Results
2.1. Characterization of Exosomes in EOC and Ascites-Derived Cell Lines

We first characterized the particle sizes of exosomes (EXs) from more aggressive
ES2 cells, ES2 paclitaxel-resistant cells (ES2TR), ES2-derived tumor spheres (ES2 TS), and
ES2 paclitaxel-resistant cells-derived tumor spheres (ES2TR TS), which were established
in our lab as previously described [21]. Using nanoparticle-tracking analysis, the mean
particle sizes of ES2 EXs, ES2TR EXs, ES2 TS EXs, and ES2TR TS EXs were determined
to be 102 nm, 96.8 nm, 134 nm, and 132 nm, respectively. The mean concentrations of
the number of particles (×106/mL) of ES2 EXs, ES2TR EXs, ES2 TS EXs, and ES2TR TS
EXs were 4.8, 7.3, 2.8, and 2.8, respectively (Figure 1). ES2 cells were maintained in a
humidified atmosphere containing 5% CO2 at 37 ◦C and grown in McCoy’s 5A medium
with 10% FBS. As previously described, we developed a paclitaxel-resistant ES2 cell line
by continuously exposing cells to paclitaxel [25]. The final paclitaxel concentrations that
induced paclitaxel-resistant subclones, called ES2TR, measured 160 nM. The ES2TR TS was
developed using ES2TR cells cultured in DMEM/F12 medium with 20 ng/mL of bFGF,
20 ng/mL of EGF, 10 ng/mL of IGF, and 2% B27 (Invitrogen, Carlsbad, CA, USA). The
dissociated single cells (1 × 105 cells/mL) were seeded into ultra-low attachment plates
(Corning 3262, Pittston, PA, USA). After 7 days, we counted the spheres formed with an
Olympus light microscope (Olympus, Tokyo, Japan). Then, the tumor spheres obtained
after 14 days were harvested and analyzed with flow cytometry.
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Figure 1. Characteristics of EV nanoparticle-tracking analyses of the particle sizes of ES2 EVs, ES2TR
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The percentages of positive staining in terms of pluripotent and drug-resistance-related
factors were substantially higher in ES2 TS and ES2TR160 TS than in ES2 and ES2 TR160,
respectively, as determined via flow cytometric analysis [26]. Two morphologically differ-
ent adherent cell populations of ovarian cancer stromal progenitor cells (OCSPCs) from
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two EOC patients’ ascites and tissues were cultured and isolated in selective conditional
media [27] (Figure 2, right panel). Epithelial-like OCSPCs (epi-OCSPCs) promoted tumori-
genesis; in contrast, mesenchymal-like OCSPCs (MSC-OCSPCs) enhanced the migration,
invasion, and spheroid aggregation of EOC [28]. High expression of vimentin with low
expression of CK18 and E-cadherin in MSC-OCSPCs and, in contrast, low expression of
vimentin with high expression of CK18 and E-cadherin in epi-OCSPCs were characteristic
in the two types of cells (Figure 2, left upper panel). The high CD133, CD117, SSEA4,
and CA125 expression in epi-OCSPCs and MSC-OCSPCs revealed that OCSPCs processed
stemness characteristics and malignance changes (Figure 2, left lower panel).
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Figure 2. Exosome characterization of cell lines. (right) These are phase-contrast images of #006 and
#007 human ovarian carcinoma ascites (upper and middle) and #007 human ovarian carcinoma tissue
(lower)-derived cells (P2). The adherent culture conditions were M199 + 10% FBS + 20 ng/mL of
EGF + 0.4 µg/mL of hydrocortisone. (left) These are surface expression markers of human ovarian
carcinoma ascites and tissue-derived cells with spindle-like mesenchymal-like (MSC-) (right upper
and middle) ovarian carcinoma stromal progenitor cells (OCSPCs) and roundish epithelial-like
(epi-) (right lower) ovarian-carcinoma-tissue-derived cells from 2 advanced ovarian cancer patients.
(left) High expressions of vimentin in MSC-OCSPCs and CK18 and E-cadherin in epi-OCSPCs were
noted. High expression of CD44, CD73, CD90, FLT4, CA125, and SSEA4 was noted in both cells.

We further characterized the particle sizes of ascites-derived EXs using nanoparticle-
tracking analysis. The mean particle sizes of the ascites-derived EXs from two advanced
EOC patients were 100 nm and 94 nm, respectively. The mean concentrations of ascites-
derived EX particles (×1010/mL) were 4.5 and 3.93, respectively, and the mentioned ascites
cases were abundant in EX particles. The consistent expression of positive stemness surface
expression markers of CD133, CD117, and CD34, as determined via flow cytometry in
EOC cells and MSC-OCSPCs, and those derived from EXs revealed that EOC cells and
MSC-OCSPC-derived EXs processed stemness characteristics as well as EOC cells and
MSC-OCSPCs (Figure 3).
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Figure 3. The percentage of positive stemness markers such as CD133, CD117, CD34, and CD105
was consistent in ES2, ES2-COL6A3 shRNA, MSC-OCSPCs, ES2TR160, SKOV3, and SKOV3-COL6A3
cells (upper) and exosomes (EXs) (lower). ES2TR160 and SKOV3-COL6A3 processed the highest
percentage of CD133, CD117, and CD34 stemness phenotypes in cells and exosomes.

2.2. Invasion Ability of EOC-Cell-Line-Derived Exosomes

We subsequently examined if EOC EXs promote EOC invasion. Our results indicated
their invasion ability was significantly greater in ES2 cells treated with ES2 EXs, ES2TR160
EXs, ES2 TS EXs, or ES2TR160TS EXs than those that were not treated with EXs (p < 0.01 for
ES2 EXs and ES2TR160 EXs and p < 0.001 for ES2 TS EXs and ES2TR160 TS EXs, respectively)
(Figure 2). We next asked if different EOC cells and MSC-OCSPC-derived EXs processed
different enhancements of invasion ability. We compared the invasion ability of EXs with
degrees of aggressive EOC cell lines, including SKOV3 (serous type, less aggressive); ES2,
ES2 TS, ES2TR160, and ES2TR TS (clear-cell-type-derived, more aggressive); and MSC-
OCSPCs (obtained from advanced EOC patients with massive ascites cultured in selective
conditional media). The invasion ability of ES2 was most enhanced by ES2TR TS EXs
compared to ES2, ES2 TS, or ES2TR EXs (Figure 4A). We further asked if the EXs from
more aggressive EOC cells have different degrees of invasiveness in more aggressive and
less aggressive EOC cells. Our results revealed that the invasion ability of ES2, ES2 TS,
ES2TR160, and ES2TR160 TS EXs was greater for ES2 (more aggressive) cells than for
SKOV3 cells (less aggressive) (Figure 4B).
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Figure 4. Invasion ability of EOC-cell-line-derived exosomes. Their invasion ability was examined
in ES2 (A) and SKOV3 (B) treated with ES2, ES2TR, ES2 tumor sphere, and ES2TR tumor sphere
exosomes and not treated with said exosomes. The invasion ability of exosomes from ES2, ES2 TS,
ES2TR, and ES2TR TS was more remarkably enhanced in ES2 than in SKOV3 (*** p < 0.001 for ES2
and ** p < 0.01 for SKOV3, respectively).

2.3. Invasion Ability of Autocrine and Paracrine Effects in EOC-Cell-Line-Derived Exosomes

We reasoned that the EOC EXs exert both autocrine and paracrine effects that enhance
invasiveness for EOC cells and MSC-OCSPCs in the microenvironment. We asked which
types of OCSPCs could be increased by highly aggressive EOC-cell-derived EXs. The
results showed that only MSC-OCSPCs could be enhanced by ES2-derived EXs (p < 0.01)
(Figure 5A). We next examined the paracrine effect of invasion ability in ES2 cells treated
with MSC-OCSPC EXs or MSC-OCSPCs treated with ES2 EXs. The invasion ability was
significantly greater in MSC-OCSPCs treated with ES2 EXs or ES2 cells treated with MSC-
OCSPCs EXs than in those without EXs (p < 0.001, p < 0.01, respectively). (Figure 5B).
This result implied that EXs from cancer cells or MSC-OCSPCs could reciprocally promote
invasiveness through the paracrine effect.
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tumor spheres, and ES2TR tumor sphere exosomes and not treated with said substances. The invasion
ability was only significantly enhanced in the MSC-OCSPCs (** p < 0.01) treated with ES2 exosomes,
not in epi-OCSPCs. (B) The invasion ability was substantially increased in the MSC-OCSPCs that
were treated with ES2 exosomes than in those that were not (* p < 0.05; *** p < 0.001). Simultaneously,
the invasion ability was greater in ES2 cells treated with MSC-OCSPC exosomes than in those without
MSC-OCSPC exosomes (** p < 0.01).

2.4. Heat Map of Differential Expression of EOC Exosomes

We further explored which components of EXs from more aggressive ES2 cells en-
hanced invasion in EOC cells and MSC-OCSPCs. Using LC-MS/MS analyses, we compared
the differential expression levels >2 among different groups in group 1—ES2 cells and
ES2 EXs versus ES2 cells; group 2—ES2 with ES2 TS EXs versus ES2 cells; and group
3—MSC-OCSPCs and ES2 EXs versus MSC-OCSPCs. The total number of differentially
expressed genes in EOC exosomes that exhibited significant changes in expression levels
was fifty. There were 26 upregulated and 24 downregulated DEGs in G3 and 27 upregulated
and 23 downregulated DEGs in G1. The results for the heat map are shown in Figure 6.
COL6A3 had one of the statistically differential expression levels between Log2 (group 1
versus group 3), with a value of 3.72, and Log2 (group 2 versus group 3), with a value
of 3.07. Our previous study showed that collagen VI can accelerate tumor growth and
metastasis in EOC [21]. Overexpression of COL6A3 in tumor cells can directly remodel
their extracellular matrices (ECMs). This change in the ECM helps develop drug resistance
and exacerbates metastasis in ovarian cancer [24]. Therefore, we speculated that COL6A3
transport through EXs may play a role in drug resistance and metastasis.
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MSC-OCSPCs, which were examined using LC-MS/MS analyses.
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2.5. COL6A3 Expression in EOC Cell Lines and Derived Exosomes

We first checked the expression levels of collagen VI in more aggressive ES2, ES2TR,
ES2 TS, and ES2TR TS and less aggressive SKOV3 cells and the EXs derived from them.
Our results showed collagen VI (collagen alpha-3 (VI; COL6A3)) was present in more
aggressive ES2, ES2TR, ES2 TS, and ES2TR TS cells and the EXs derived from ES2, ES2
TS, ES2TR, and ES2TR TS cells. In particular, the COL6A3 expressions were more promi-
nent in ES2TR160- and ES2TR160-TS-derived EXs than in ES2- and ES2-TS-derived EXs,
which suggested COL6A3 EXs might play a role in paclitaxel drug resistance. In contrast,
collagen VI was absent in less aggressive SKOV3 cells and EXs; only a single cell line of
this type was utilized (Figure 7A,B). We next overexpressed COL6A3 in less aggressive
SKOV3 cells (SKOV3/COL6A3) and knocked down COL6A3 in more aggressive ES2 cells
(ES2/shCOL6A3). The results showed that COL6A3 was expressed in ES2, ES2 TS, and
SKOV3/COL6A3 cells and the EXs derived from them; in contrast, COL6A3 was not ex-
pressed in SKOV3 and ES2/shCOL6A3 cells and their EXs as determined via Western blot
analysis (Figure 7C). This implies COL6A3 undergoes expression and secretion through
the EX route in more aggressive EOC cells and EOC TS cells but is not expressed and
secreted in less aggressive EOC cells or more aggressive EOC knockdown COL6A3 cells
and EXs. We further verified whether the COL6A3 protein showed staining in ovarian
tumor cells. COL6A3 showed strong staining in cancerous stromal cells but not in cancer
cells of high-grade serous ovarian carcinoma paraffin-embedded tissue (as determined via
immunohistochemistry) (Figure 7D). This result is consistent with the lack of expression of
COL6A3 in less aggressive SKOV3 cells (serous type). Our previous work showed that the
high expression of COL6A3 in an MSC-OCSPC culture medium enhanced the invasiveness
of SKOV3, while knockdown of COL6A3 in MSC-OCSPCs inhibited the invasiveness of
EOC and spheroids [21]. In this study, COL6A3 showed expression in more aggressive
ES2, ES2 TS, ES2TR, ES2TR TS (clear-cell-type), and MSC-OCSPC cells and their EXs
(Figure 7A,B).
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in ES2 derivatives, SKOV3/COL6A3, and MSC-OCSPC-derived-exosomes and lysates, while there
was no expression in SKOV3- and ES2/shRNA-derived exosomes and cell lysates. (C) The CD9
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and CD63 representative exosome markers were seen in ES2-derivative-, SKOV3/COL6A3-, and
MSC-OCSPCs-derived exosomes, but CD9 and CD63 were not detected in those cell lysates. (D) Im-
munostaining of COL6A3 was positive in ovarian serous carcinoma stromal cells, which surrounded
cancer cells with negative staining.

2.6. The Invasion Ability of Overexpressed and Knockdown COL6A3 Expression in EOC Cells
with Those Exosomes

We next examined the invasion ability of SKOV3 cells with or without SKOV3 EXs
and SKOV3/COL6A3 cells with or without SKOV3/COL6A3 EXs. The invasion ability
was significantly greater in SKOV3 cells with SKOV3 EXs and SKOV3/COL6A3 cells
with SKOV3/COL6A3 EXs than in those without EXs (both p < 0.001). Moreover, the
invasion ability was greater in SKOV3/COL6A3 EXs with SKOV3/COL6A3 cells than in
SKOV3/COL6A3 EXs with SKOV3 cells (Figure 8A). Our results indicate that the extent
to which invasion ability is enhanced by EOC-overexpressed COL6A3 EXs depends on
varying degrees of aggressive malignant potential EOC cells. In contrast, invasion ability
was significantly inhibited in ES2/shCOL6A3 cells with ES2/shCOL6A3 EXs compared
to that in ES2 cells with ES2 EXs (p < 0.05) (Figure 8A). However, invasion ability was not
significantly inhibited in ES2 cells with ES2/shCOL6A3 EXs when compared to that in ES2
cells with ES2 EXs (Figure 8B).
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Figure 8. The invasion ability of overexpressed and knockdown EOC cells with the exosomes derived
from them (A) was examined in SKOV3 and SKOV3-COL6A3 cells treated with and without these
respective EXs. The invasion ability was significantly greater in SKOV3 and SKOV3-COL6A3 cells
treated with the respective EXs than in those without EXs (** p < 0.01; *** p < 0.001). (B) Invasion
ability was examined in ES2 cells with ES2 EXs and ES2 knockdown COL6A3 cells (ES2-shCOL6A3)
with ES2-shCOL6A3 EXs. Invasion ability was significantly greater in ES2 cells with ES2 EXs than in
ES2/shCOL6A3 cells with ES2-shCOL6A3 EXs (both, * p < 0.05).

2.7. EOC-Derived EXs Accelerated Cancerous Peritoneal Dissemination

We reasoned that EOC-derived EXs could accelerate cancerous peritoneal dissemi-
nation and lung colonization. The data indicated that the EXs from ES2 cells, a rapidly
disseminated cell line, possessed greater invasion ability than the EXs from SKOV3 cells.
Therefore, we examined whether ES2 EXs enhanced less aggressive EOC cells’ peritoneal
dissemination in vivo. To this end, luciferase-expressing SKOV3 cells, which displayed
a less aggressive phenotype, were injected into the peritoneal cavity, and 10 µg of EXs
from more aggressive ES2 cells or phosphate-buffered saline (PBS) was intraperitoneally
injected twice weekly for 6 weeks. In total, 6 of the 7 mice intraperitoneally injected with
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1 × 106 SKOV3 cells and ES2 EXs had a significantly greater disseminated burden in the
peritoneal cavity compared with the 1 of 5 mice injected with 1 × 106 SKOV3 cells and PBS
(p = 0.023, as determined using Student’s t-test). The average disseminated tumor numbers
in the peritoneal cavity were greater in the mice receiving SKOV3 cells with ES2 EXs than
in those administered SKOV3 cells with PBS (p < 0.01, as determined via Student’s t-test)
(Figure 9).
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Figure 9. EOC-derived EXs accelerated cancerous peritoneal dissemination. (a) Representative
pictures of 6/7 mice IP injected with 1 × 106 SKOV3 cells with ES2 exosomes showing disseminated
tumors (red arrows) in the peritoneal cavity compared to the 1/3 mice injected with 1 × 106 SKOV3
cells with PBS (p = 0.097, as determined using Student’s t-test). The average disseminated tumor
numbers in the peritoneal cavity were significantly greater in mice receiving SKOV3 cells with
ES2-exosomes than in those administered SKOV3 cells with PBS (** p < 0.01, as determined using
Student’s t-test). (b) Representative histologic pictures of disseminated peritoneal tumors are shown
at microscopic scales of 40× and 200×.

2.8. Overexpressed COL6A3 in EOC-Derived EXs Accelerated Cancerous Peritoneal Dissemination

Because COL6A3 exhibits expression in ES2 EXs, which might enhance invasive-
ness and dissemination, we next explored whether COL6A3 is a key element for en-
hancing dissemination from ES2 EXs. We overexpressed COL6A3 in SKOV3 cells
(SKOV3/COL6A3) to see if COL6A3 accelerated peritoneal dissemination in vivo. To this
end, 1 × 106 SKOV3/COL6A3 cells, presumed to be more aggressive cells, or 1 × 106 less
aggressive SKOV3 cells were injected into the peritoneal cavity. Five of the six mice injected
with 1 × 106 SKOV3/COL6A3 cells had a greater disseminated burden in the peritoneal
cavity than one of the five mice injected with 1 × 106 SKOV3 cells (p = 0.036, as determined
using Student’s t-test). The average disseminated tumor numbers in the peritoneal cav-
ity were significantly greater in mice receiving SKOV3/COL6A3 cells than SKOV3 cells
(p < 0.001, as determined using Student’s t-test) (Figure 10).
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Figure 10. Overexpressed COL6A3 in EOC-derived EXs accelerated cancerous peritoneal dissemina-
tion. (a) Average disseminated tumor numbers in the peritoneal cavity were significantly greater in
mice receiving SKOV3-overexpressed COL6A3 (SKOV3/COL6A3) than in SKOV3 cells (*** p < 0.001,
as determined using Student’s t-test). Red arrows indicated disseminated tumors in the peritoneal
cavity. A total of 1/8 of the mice IV injected with 1 × 106 SKOV3/COL6A3 cells had colonization
in the lung, while this was only the case for 0/32 of the mice injected with 1 × 106 SKOV3 cells
only (p = 0.043, as determined using Student’s t-test). (b) Representative histologic pictures of the
peritoneal tumor and lung colonization are shown at microscopic scales of 40× and 200×. The right
lower panel shows the differential body weights of mice among the IP and IV groups treated with
SKOV3 cells, SKOV3 cells with ES2 exosomes, and SKOV3/COL6A3 cells.

2.9. Overexpressed COL6A3 in EOC-Derived EXs Accelerated Lung Colonization

We next examined whether SKOV3/COL6A3 cells also accelerated distant lung colo-
nization in vivo. To this end, 1 × 106 SKOV3/COL6A3 cells or 1 × 106 SKOV3 cells were
administered intravenously into the tail vein in mice. In total, 1 of the 8 mice intravenously
injected with 1 × 106 SKOV3/COL6A3 cells had colonization in the lung, while this was
only the case for 0 of the 32 mice injected with 1 × 106 SKOV3 cells (p = 0.043, as deter-
mined using Student’s t-test) (Figure 9). We next examined whether SKOV3/COL6A3 EXs
help accelerate lung colonization in vivo. To this end, SKOV3/COL6A3 cells were intra-
venously injected with 10 µg of EXs from SKOV3/COL6A3 cells or phosphate-buffered
saline (PBS) twice weekly for up to 10 weeks. A total of 5 of the 8 mice intravenously
injected with 1 × 106 SKOV3/COL6A3 cells and SKOV3/COL6A3 EXs had a significantly
greater colonization burden in the lung compared with the 1 of 8 mice injected with
1 × 106 SKOV3/COL6A3 cells (p = 0.039, as determined using Student’s t-test) (Figure 11).
These data suggest that COL6A3 and EXs have more aggressive characteristics, which pro-
mote EOC cell dissemination and colonization in the peritoneal cavity and lung. In contrast,
knockdown of COL6A3 in EOC spheroids inhibited COL6A3 expression in EOC spheroids,
which decreased EOC spheroid formation, invasion, tumor growth, and metastasis [28].
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2.11. GW4869 and Rampamycin Decreased Invasion Ability of EOC EXs 

Figure 11. Overexpressed COL6A3 in EOC-derived EXs accelerated lung colonization. In total,
5/8 mice IV injected with 1 × 106 SKOV3/COL6A3 cells and 10 µg of SKOV3/COL6A3 exosomes
had colonization in the lung, while this was the case for 0/8 mice injected with 1 × 106 SKOV3
cells and PBS (p = 0.007, as determined using Student’s t-test) and 1/8 mice IV injected with
1 × 106 SKOV3/COL6A3 cells (p = 0.039) (Figure 10b). Histologic pictures of lung colonization
tumors are shown at 40× and 200× microscope magnification.

2.10. The Overall Survival of COL6A3 Expression

The OS for all subtypes and serous-subtype EOC patients from GEO (n = 1656) and
TCGA (n = 1207) data with COL6A3 exhibited significantly worse outcomes in the high-
expression group than in the low-expression group (p = 0.0015 and p = 0.034, respectively)
(Figure 12).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 12 of 20 

 

 

 

Figure 11. Overexpressed COL6A3 in EOC-derived EXs accelerated lung colonization. In total, 5/8 

mice IV injected with 1 × 106 SKOV3/COL6A3 cells and 10 µg of SKOV3/COL6A3 exosomes had 

colonization in the lung, while this was the case for 0/8 mice injected with 1 × 106 SKOV3 cells and 

PBS (p = 0.007, as determined using Student’s t-test) and 1/8 mice IV injected with 1 × 106 

SKOV3/COL6A3 cells (p = 0.039) (Figure 10b). Histologic pictures of lung colonization tumors are 

shown at 40× and 200× microscope magnification. 

2.10. The Overall Survival of COL6A3 Expression 

The OS for all subtypes and serous-subtype EOC patients from GEO (n = 1656) and 

TCGA (n = 1207) data with COL6A3 exhibited significantly worse outcomes in the high-

expression group than in the low-expression group (p = 0.0015 and p = 0.034, respectively) 

(Figure 12). 

  

(a) (b) 

Figure 12. The overall survival regarding COL6A3 expression. The overall survival for high-

expression COL6A3 in tissue was significantly higher than that of low expression in (a) all subtypes 

and (b) serous subtypes of EOC patients from TCGA and GEO data. The best cut-off determined by 

spli�ing patients into high- and low-expression groups was used as an auto-selection method, 

which was used to evaluate all possible cut-off values between the lower and upper quartiles of 

COL6A3 expression levels. The threshold that provided the best separation between the groups 

regarding survival outcomes was selected. This approach ensured that the cut-off point maximized 

the statistical power for detecting differences in survival between the high- and low-expression 

groups. 

2.11. GW4869 and Rampamycin Decreased Invasion Ability of EOC EXs 

Figure 12. The overall survival regarding COL6A3 expression. The overall survival for high-
expression COL6A3 in tissue was significantly higher than that of low expression in (a) all subtypes
and (b) serous subtypes of EOC patients from TCGA and GEO data. The best cut-off determined by
splitting patients into high- and low-expression groups was used as an auto-selection method, which
was used to evaluate all possible cut-off values between the lower and upper quartiles of COL6A3
expression levels. The threshold that provided the best separation between the groups regarding
survival outcomes was selected. This approach ensured that the cut-off point maximized the statistical
power for detecting differences in survival between the high- and low-expression groups.

2.11. GW4869 and Rampamycin Decreased Invasion Ability of EOC EXs

We next examined if pharmacologic inhibition of exosome secretion could decrease
the invasion ability of EOC cells. The EX biogenesis inhibitor GW4869 is the most widely
used pharmacological agent for blocking EX generation, reducing EX release via nSMase
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inhibition, and reducing the number of EXs released. Additionally, inhibiting mTORC1
with rapamycin, a lysosome function enhancer and an autophagy inducer, can inhibit
exosomal release. The invasion ability of ES2 cells treated with (A and C) GW4869 (10 nM)
or (B and D) rapamycin (500 nM) was substantially lower than those treated with ES2
exosomes (p < 0.01 for GW4869 and p < 0.001 for rapamycin, respectively) (Figure 13).
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was inhibited more in ES2 with ES2-treated (A,C) GW4869 (* p < 0.05; ** p < 0.01, as determined
using Student’s t-test) or (B,D) rapamycin exosomes than in ES2 with ES2 exosomes (*** p < 0.001, as
determined using Student’s t-test).

3. Discussion

First, we found COL6A3 exosomes promoting tumor dissemination and metastasis in
epithelial ovarian cancer. Genetic knockdown of COL6A3 or pharmacological inhibition of
EX release can abolish invasion and metastasis in EOC. In this study, high expression of
COL6A3 in EOC tissues associated with patients’ survival statuses was associated with a
worse survival outcome than that for low expression based on the TCGA and GEO data.
The expression of COL6A3 was significantly higher in the ovarian tumor and metastatic
omentum tissues in the advanced stage than in the early stage in our EOC patients [21].
Importantly, COL6A3 was highly expressed in ES2 paclitaxel-resistant and ascites-derived
MSC-OCSPC cells and EXs. Ascites displays aggressiveness and chemoresistance in ovarian
cancer and leads to the dysregulation of lysosomal signaling, wherein lysosomes are critical
for nutrient sensing and frequently associated with rapamycin complex 1 (mTORC1) [29].
Lysosomal signaling involves an energy demand for cancer cells in nutrient sensing [29].
Lysosomes are involved in the secretion of EX, and changes in lysosomal signaling and
phenotype will also lead to changes in EX secretion [30], which has been implicated in
cisplatin resistance. Autophagy can transport proteins through unconventional secretory
pathways and carry cargo to lysosomes for the degradation of organelles via fusion with
lysosomes to the plasma membrane and secrete cargo from the cell [31]. Previous studies
have shown that cancer cells release more EXs than non-malignant cells, making the use of
autophagy inhibitors to decrease EX secretion a new anticancer therapy strategy [32]. The
EX biogenesis inhibitor GW4869 is the most widely used pharmacological agent for blocking
EX generation, reducing EX release via nSMase inhibition, and reducing the number of
EXs released. Inhibition of mTORC1 by rapamycin, a lysosome function enhancer and an
autophagy inducer, also inhibits exosomal release [33].

Our previous studies show that COL6A3 regulates the CDK4/6-pRb and AKT-mTOR
pathways and promotes EOC stemness, invasion, and metastasis [21,27]. The combination
of everolimus (a mTOR inhibitor) and 5-aza-2-deoxycytidine (a demethylating agent) can
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effectively inhibit the production of ovarian clear-cell cancer stem-like or spheroid cells by
inhibiting the COL6A3-AKT-mTOR pathway and exerting an anti-tumor effect [26]. An
inhibitor against the mammalian target of rapamycin, temsirolimus, has been reported
to be effective in patients with ovarian clear cell carcinoma [34]. However, the mTOR
inhibitor everolimus and bevacizumab in recurrent ovarian cancer patients did not improve
response compared to bevacizumab alone [35]. So far, mTOR inhibitor monotherapy or
combination therapy for EOC has not yielded statistical results suitable for testing in phase
III clinical trials. In this study, we confirmed that treatment with the EX inhibitor GW4869
or rapamycin abolished COL6A3-EXs and may have inhibited their aggressiveness in
EOC. Limiting lysosomal exocytosis to reduce EX secretion may be an effective therapeutic
strategy for reducing cancer cell invasiveness and chemoresistance [23]. Previous studies
showed higher exosome-derived miR-200b and miR-200c concentrations in stage III–IV
EOC patients with shortened OS [36]. In this study, we confirmed that treatment with the EX
inhibitor GW4869 or rapamycin-abolished COL6A3-EXs may inhibit the aggressiveness of
EOC. Limiting lysosomal exocytosis to reduce EX secretion may be an effective therapeutic
strategy for reducing cancer cell invasiveness and chemoresistance [33].

Higher exosome-derived miR-200b and miR-200c concentrations in stage III-IV EOC
patients are associated with shortened OS [36]. EXs from EOC patients have higher concen-
trations of TGFB1, melanoma-associated antigen 3 (MAGE3), and MAGE6 [37]. EXs from
EOC patients also have higher concentrations of Claudin 4 associated with tumor stage
and CA125 levels [38]. EXs isolated from EOC plasma samples had higher CD24 and Ep-
CAM levels [39]. Furthermore, over 2000 proteins in EXs secreted from the OVCAR-3 and
IGROV1 ovarian cancer cell lines have been identified and are involved in tumorigenesis
and metastasis, creating the predictive potential of exosomal profiling [40]. However, more
comprehensive clinical studies are needed to confirm the clinical value of this approach.

Cancer-associated fibroblasts (CAFs) can drive tumor proliferation, neo-vascularization,
and invasion [41,42]. The reciprocal interactions between tumors and the stroma establish a
local microenvironment that accelerates tumor progression [43]. ECM molecules signaling
to stromal and cancer cells increase or decrease cancer progression. Type VI collagen is
in the base membrane and interstitial matrix interface. During tumor progression, CAFs
are the major players in dysregulated-collagen-based tumor fibrosis and the excessive
deposition of collagen in tumors [44,45]. Collagen stiffens tissues through crosslinking and
linearization, becoming fibroblast-derived stromal collagens, and directly correlates with
poorer survival for cancer patients [46–50]. The exosomes from cancer cells, through repro-
gramming or signaling other cells, prolong tumor survival and promote metastasis [51,52].
However, exosomes from tumor microenvironments containing fibroblasts, mesothelial
cells, adipocytes, and immune cells also affect cancer cells [53]. To this end, we carried out
a pharmacological inhibition of nSMase2 and a genetic knockdown of COL6A3-decreasing
exosomes. We confirmed that COL6A3 is secreted from EOC cells and tumor stroma via
the exosomal pathway to affect EOC cells and ascites-derived MSC-OCSPCs. The results
indicate that COL6A3 has established a premetastatic niche in the microenvironment.

Our data showed COL6A3 has expression in more aggressive ES2 derivatives, es-
pecially in ES2 paclitaxel-resistant cells and ascites-derived MSC-OCSPCs and the EXs
derived from them, but not in less aggressive SKOV3 cells, ES2 knockdown COL6A3
(ES2/shCOL6A3), and thus-derived EXs. It is speculated that COL6A3 in more aggressive
ES2 cells secreted from EXs remodels the ECM to affect ascites-derived stromal progenitor
cells and establish a metastatic niche. However, COL6A3 expression in the differential
responses of chemotherapy-naïve and relapsed EOC tissues will provide a better under-
standing of the potential of COL6 as a therapeutic target. COL6A3 and EXs may serve as
novel diagnostic and prognostic biomarkers in cancer and contribute to clinical therapeutic
applications in the future. COL6A3 secretion from the EX route is an uncovered field in
EOC progression and metastasis. As COL6A3 is essential in facilitating tumor progression
and metastasis, future studies targeting COL6A3 as a valuable biomarker for the early
diagnosis of chemotherapy drug resistance, metastasis, recurrence, and the prediction of



Int. J. Mol. Sci. 2024, 25, 8121 15 of 20

survival outcome by checking COL6A3 exosomes from the blood, ascites, or tissues of EOC
patients are warranted, and the mediation of possible related signaling should be explored.
COL6A3 research also holds promise for developing therapeutically targeting COL6-based
conjugated antibodies or vaccines for EOC patients in the future.

4. Materials and Methods
4.1. Sample Collection

Ovarian cancer tissues and discarded ascites samples obtained from surgery or symp-
tom relief from patients with primary or recurrent ovarian cancer were immediately taken
to the laboratory for processing. In vitro isolation and culture of OCSPCs from ascites and
cancerous tissues were performed as described previously [26]. Cell lines and cultures (ES2
and SKOV3) were obtained from the American Type Culture Collection (ATCC). Cells were
maintained in a humidified atmosphere containing 5% CO2 at 37 ◦C and grown in McCoy’s
5A medium with 10% FBS. As previously described, we developed a paclitaxel-resistant ES2
cell line by continuously exposing cells to paclitaxel [27]. The final paclitaxel concentrations
that induced paclitaxel-resistant subclones, called ES2TR, were 160 nM in size.

4.2. Tumor Sphere Formation of Ovarian Cancer Stem-like Cells

ES2, ES2TR160, and ascites specimens isolated from EOC patients were cultured in
tumor sphere (spheroid)-inducing conditions to induce tumor sphere formation. Briefly,
cells were cultured in DMEM/F12 medium with 20 ng/mL of bFGF, 20 ng/mL of EGF,
10 ng/mL of IGF, and 2% B27 (Invitrogen, Carlsbad, CA, USA). Dissociated single cells
(1 × 105 cells/mL) were seeded into ultra-low attachment plates (Corning 3262, Pittston,
PA, USA). After 7 days, we counted the spheres that had formed with an Olympus light
microscope (Olympus, Tokyo, Japan). Then, tumor spheres obtained after 14 days were
harvested and analyzed with flow cytometry.

4.3. ExoQuick-TC™

Biofluid was collected and centrifuged at 3000× g for 15 min to remove cells and cell
debris. The supernatant was transferred to a sterile vessel to add the appropriate volume
of ExoQuick-TC to the biofluid. The well was mixed by inverting or flicking the tube,
refrigerating overnight (at least 12 h) at +4 ◦C, and centrifuging the ExoQuick-TC/biofluid
mixture at 1500× g for 30 min. After centrifugation, the supernatant was aspirated. The
residual ExoQuick-TC solution was spun down by centrifugation at 1500× g for 5 min, and
all fluid traces were removed by aspiration. Then, we resuspended the exosome pellet in
100–500 µL using sterile 1× PBS.

4.4. Nanoparticle Tracking Analysis

Purified exosomes were resuspended in 100 µL of 0.22 µm filtered PBS and analyzed
using a NanoSight LM10 instrument (NanoSight, Salisbury, UK). The analysis was per-
formed by applying a monochromatic 404 nm laser to dilute the exosomal preparation
and measure the Brownian movements of each particle. Nanoparticle Tracking Analysis
software version 2.3 was used to analyze 60 s videos of data collection to give the mean,
median, and mode of vesicle size and concentration.

4.5. Extracellular Exosome (EX) Flow Cytometry Analysis

EXs were incubated with biotinylated antibody-coated beads in 500 µL of bead wash
buffer (System Biosciences, Inc., Palo Alto, CA, USA) overnight in a 1.5 mL tube at 4 ◦C.
After the binding step, beads were stained with either anti-CD9, anti-CD34, anti-CD63,
anti-CD81, anti-CD105, anti-CD117, or anti-CD133 antibodies (BD Biosciences, Franklin
Lakes, NJ, USA), which were either biotinylated, APC, FITC, Pacific Blue, PE, or PE-Cy7
conjugated. After antibody binding, beads were washed with bead wash buffer and recov-
ered using a magnetic stand (optional, cat# EXOFLOW700A-1). When using a biotinylated
antibody, a step involving incubation with streptavidin-FITC (System Biosciences, Inc.)



Int. J. Mol. Sci. 2024, 25, 8121 16 of 20

was added, followed by EX stain buffer (System Biosciences, Inc.). Samples were analyzed
using FACS LSRFortessa cytometers (BD Biosciences), and data were analyzed using BD
FACSDiva™ Software v9.0 FACS Diva or FlowJo (BD Biosciences).

4.6. COL6A3 Knockdown and Overexpression

The COL6A3 knockdown in MSC-OCSPCs and ES2 cells and overexpression in SKOV3
cells were described previously [22].

4.7. LC-MS/MS Analysis

Protein digestion and dimethyl labeling of peptides were performed. The condition
media were reduced with 10 mM of dithiothreitol, alkylated with 50 mM of iodoacetamide,
and digested with Lys-C and trypsin. The digested peptides were labeled with isotopic
formaldehyde (13CD2O, heavily labeled) and formaldehyde (CH2O, lightly labeled), re-
spectively. Equal amounts of the heavily and lightly labeled peptides were mixed and
desalted with StageTips with Empore TM SDB-CX disc membrane (3M, St. Paul, MN, USA).

NanoLC-MS/MS analyses. The peptides were analyzed using nanoLC-MS/MS on
an online Dionex 3000 RSLC nanosystem (Thermo Fisher Scientific, Waltham, MA, USA)
coupled with an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific). SpeedVac
was used to dry the supernatant. Redissolved peptides with 0.5% acetic acid and 2%
acetonitrile (ACN) and loaded onto an in-house-prepared 100 µm × 15 cm tip column
were packed with 3 µm ReproSil-Pur 120 C18-AQ reverse-phase beads and eluted at a flow
rate of 500 nL/min. The mobile phases used for nanoLC were 0.5% acetic acid in water
(buffer A) and a mixture of 0.5% acetic acid and 80% ACN (buffer B). The LC gradient
conditions were 5% to 40% buffer B in 60 min, 40% to 100% buffer B in 5 min, and 100%
buffer B in 10 min. The LTQ Orbitrap XL system was operated in the positive ion mode, and
full-scan MS spectra (m/z 300–1600) were acquired an Orbitrap analyzer with a resolution
of 60,000 at m/z 400. Raw files from LC-MS/MS were analyzed using MaxQuant software
v2.6.3.0. The differential expression levels were compared among different groups: group
1—ES2 cells and ES2 EXs versus ES2 cells; group 2—ES2 with ES2 TS EXs versus ES2 cells;
and group 3—MSC-OCSPCs and ES2 EXs versus MSC-OCSPCs. The cutoff value was
defined as a differential expression level >2.

4.8. Analysis of TCGA and GEO Data

We downloaded 372 TCGA OV RNA-Seq level 3 read count data (serous type) from
the GDC Data Portal (https://portal.gdc.cancer.gov/ (accessed on 21 July 2024). The gene
annotation file was used in GENCODE version 22 and obtained from GDC Reference Files
(https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files (accessed on
21 July 2024), which the TCGA program used. Clinical follow-up information was found in
a PanCanAtlas publication (https://gdc.cancer.gov/about-data/publications/pancanatlas
(accessed on 21 July 2024). We calculated the best cut-off by splitting patients into high-
and low-expression groups, which was an autoselection process, and computed all possible
cutoff values between the lower and upper quartiles, and the best-performing threshold was
used as a cutoff. Microarray data from GEO and TCGA for all subtypes and RNA-seq data
from the TCGA data set for all subtypes and serous types were used for survival analysis.
The survival curve was plotted according to overall survival (OS) and progression-free
survival (PFS) for 1656 and 1435 patients for GEO and TCGA data and 373 and 177 patients
for TCGA data.

4.9. Invasion Experiments

For invasion assays, we used matrigel-coated transwell chambers (BD Biosciences,
San Jose, CA, USA) that were inserted into 24-well cell culture plates. SKOV3 cells, ES2
cells, or MSC-OCSPCs (5 × 104 cells in 0.2 mL of serum-free medium) were added to
the upper chamber, and culture medium (McCoy’s 5A medium) was used in the lower
chamber with serum-free conditions for the negative control, or containing 10% FBS for

https://portal.gdc.cancer.gov/
https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files
https://gdc.cancer.gov/about-data/publications/pancanatlas


Int. J. Mol. Sci. 2024, 25, 8121 17 of 20

the positive control, or supplemented with culture medium (McCoy’s 5A medium) with
serum-free conditions and treatment with EXs (30 µg) from SKOV3, SKOV3/COL6A3, ES2,
ES2/shCOL6A3, ES2 TS, ES2TR, S2TR TS, CSPCs, MSC-OCSPCs/shCOL6A3, or ES2 cells
treated with GW4869 or rampamycin cell extracts. Cells were cultured for 1, 3, or 7 days,
and cells that invaded the inserts were fixed in methanol for 20 min, stained with crystal
violet, and counted in three random microscope fields (Olympus BX3, Olympus, Tokyo,
Japan) at a magnification of 40×, 100×, or 200×.

4.10. Western Blot Analysis

Cells were lysed in phosphate-buffered saline (PBS) containing 1% Triton X-100 using
an ultrasonic cell disruptor. Lysates were separated using SDS-PAGE (12.5%) and trans-
ferred to a polyvinylidene fluoride membrane (NEN). The membranes were blocked in
blocking buffer (tris-buffered saline containing 0.2% Tween 20 and 1% I-block [NEN]) and
incubated with polyclonal antibodies (Ab) separately for 1 h. A purified rabbit antihuman
GAPDH polyclonal Ab (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) was applied simul-
taneously to normalize the signals generated from the anti-COL6A3, CD9, and CD63 (Cell
Signaling, Danvers, MA, USA). After washing, an alkaline phosphatase-conjugated anti-
rabbit antibody (Vector Laboratories, Burlingame, CA, USA) was applied. The membranes
were washed, and the bound Abs were visualized using nitroblue tetrazolium/5-bromo-4-
chloro-3-indolyl phosphate chromogen.

4.11. In Vivo Animal Experiments and Tumor Imaging

Female null mice (BALB/cAnN.Cg-Foxn1nu/CrlNarl) were purchased from the Na-
tional Animal Center (Taipei, Taiwan), and the Institutional Animal Care and Use Commit-
tee of Cathay General Hospital approved all experiments. In experiment 1, null mice at
5–7 weeks of age (5 mice/group) were injected intraperitoneally with luciferase-expressing
SKOV3 cells, which displayed a less aggressive phenotype, and 10 µg of EXs from more ag-
gressive ES2 cells or phosphate-buffered saline (PBS) were intraperitoneally injected twice
weekly for 6 weeks. In experiment 2, null mice at 5–7 weeks of age (5 mice/group) were
injected intraperitoneally with 1 × 106 SKOV3/COL6A3 cells, which displayed a more ag-
gressive phenotype, or 1 × 106 less aggressive SKOV3 cells were injected into the peritoneal
cavity. In experimental 3, 1 × 106 SKOV3/COL6A3 cells or 1 × 106 SKOV3 cells were admin-
istered intravenously into the tail vein of the mice. In experimental 4, SKOV3/COL6A3 cells
were intravenously injected with 10 µg of EXs from SKOV3/COL6A3 cells or phosphate-
buffered saline (PBS) twice weekly for up to 10 weeks to examine the tumor dissemination
and growth. The body weight of mice was measured, recorded, and compared with the
body change every week. The number and size of metastatic tumor nodules in mice were
recorded and measured when mice were sacrificed. Disseminated tumor numbers were
measured and counted using calipers, and volumes were calculated based on the modified
ellipsoid formula (L × W × W/2). Tumor weights were measured following euthanasia
at the endpoint. The histologic examination of tumor growth in the peritoneal cavity and
lung was confirmed via H&E stains for diagnosis.

4.12. Statistical Analysis

Data were analyzed using SPSS 16.0 (SPSS Inc., Chicago, IL, USA). All numerical
data are expressed as the mean ± SD from at least three experiments. Significant differ-
ences between the two groups were determined using the Student’s t-test, and important
differences among more than two groups will be determined using a one-way ANOVA.
Progression-free survival (PFS) and OS were calculated using the Kaplan–Meier method.
Differences in survival curves were calculated using the log-rank test. p < 0.05 was con-
sidered statistically significant. p * represents p < 0.05, p ** represents p < 0.01, and p ***
represents p < 0.001.
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