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Abstract: (1) Background: Identifying acute aortic syndrome (AAS) and thoracic aortic aneurysm
(TAA) in busy emergency departments (EDs) is crucial due to their life-threatening nature, necessitat-
ing timely and accurate diagnosis. (2) Methods: This retrospective case-control study was conducted
in the ED of three hospitals. Adult patients visiting the ED between 1 January 2010 and 1 January
2020 with a chief complaint of chest or back pain were enrolled in the study. The collected chest
radiography (CXRs) data were divided into training (80%) and testing (20%) datasets. The training
dataset was trained by four different convolutional neural network (CNN) models. (3) Results: A
total of 1625 patients were enrolled in this study. The InceptionV3 model achieved the highest F1
score of 0.76. (4) Conclusions: Analysis of CXRs using a CNN-based model provides a novel tool for
clinicians to interpret ED patients with chest pain and suspected AAS and TAA. The integration of
such imaging tools into ED could be considered in the future to enhance the diagnostic workflow for
clinically fatal diseases.

Keywords: acute aortic syndrome; thoracic aortic aneurysm; convolutional neural network;
emergency department

1. Introduction

Acute aortic syndrome (AAS) encompasses patients with a similar clinical profile,
including penetrating atherosclerotic aortic ulcer, intramural aortic hematoma (IMH), and
classic aortic dissection (AD) [1]. AAS presents a life-threatening medical condition, chal-
lenging prompt diagnosis in the emergency department (ED) due to its atypical presenta-
tion. The long-term survival rate among AD patients ranges from 30% to 60% [2]. Thoracic
aortic aneurysm (TAA) also represents a medical emergency, with an overall mortality rate
of 97% to 100% upon rupture [3]. Immediate surgical repair is necessary for all symptomatic
TAAs, underscoring the importance of early diagnosis for successful treatment.

Despite advancements in medical technology over the centuries since AD was first
reported, the mortality rate remains high, ranging from 18% to 25% [4]. This high mortality
rate may be due to the fact that, clinically, AAS can lead to rapid deterioration and requires
immediate detection and management [5]. Current diagnostic tools, including electrocar-
diography, chest radiography (CXRs), and symptom assessment, exhibit poor sensitivity
and specificity for TAA diagnosis. CXRs, however, offers a convenient diagnostic tool in
the early stages due to its immediate availability and low radiation dose. Radiographic
signs of AD in CXRs include widening of the mediastinum, double or irregular aortic knob,
left pleural effusion due to a hemothorax, and displacement of intimal calcification [6–9].
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Nevertheless, some studies have noted that 37.4% of Type A AD cases show no mediastinal
widening, and 12.4% exhibit no radiographic abnormalities [4].

Currently, computed tomography angiography (CTA) serves as the gold standard
diagnostic tool for AD due to its high sensitivity (100%) and specificity (98–100%) [10,11].
However, CTA may be more time consuming than single CXR, has a risk of contrast
medium injection, and is more expensive, and thus it is not an easily accessible screen
image tool clinically.

Traditionally, clinical physicians diagnose AAS primarily based on symptoms and
signs and then proceed with basic diagnostics such as CXR, electrocardiogram, blood
tests, and focused ultrasound to differentiate it from other diseases. If AAS is highly
suspected, CTA will be arranged for confirmation. However, sometimes the symptoms
and signs are not specific, making early diagnosis challenging. With the introduction of
artificial intelligence (AI) in CXR imaging, we can detect AAS at an earlier stage, potentially
accelerating the diagnostic process and consequently shortening the time to treatment
or surgery.

In recent years, AI interpretation of medical images has gained traction, offering
objective interpretation, examination of a large number of image features, automation, rapid
diagnosis, and continuous improvement through rigorous database establishment [12–15].
For example, deep learning networks have been utilized in medical image processing
to aid in the prognosis and diagnosis of diseases such as breast cancer, lung cancer, and
brain tumors [16]. A particular study highlighted that the ResNet-18 model demonstrates
exceptional performance in characterizing dense tissue patterns, which is a critical risk
factor for the development of cancerous cells in women’s breasts [17].

To date, AI applications in AD diagnosis have been limited to basic clinical data
analysis (area under the curve, AUC: 0.857) [18] and computer tomography (CT) inter-
pretation assistance [19]. Research on enhancing the efficiency of automated radiography
interpretation remains scarce. Many medical imaging studies have employed existing
public convolutional neural network (CNN) architectures for transfer learning, showing
promising results in interpreting CXRs [20,21].

Reviewing the literature, most existing studies have focused on a single CNN model
to predict AD via CXRs. However, research comparing different CNN models is lacking.
Therefore, this study aims to utilize four different CNN-based models as objective imaging
tools to expedite the diagnosis of aortic syndromes via CXRs. It also seeks to evaluate the
performance of these models and discuss their potential application in the ED, with the
expectation of improving the efficiency of CXR interpretation by emergency physicians and
enhancing the accuracy of disease diagnosis.

Furthermore, this study also makes several contributions to the field of medical AI:

1. This study compares the performance of four various CNN architectures on medical
imaging, demonstrating the varying effectiveness of different models in CXR diagnosis.

2. The ground truth for disease diagnosis in this study was established using CTA, which
is the gold standard imaging tool for aortic disease.

3. By incorporating class activation mapping (CAM) in CXRs and comparing it with
CTA, our study demonstrates that CNNs have the potential to accurately pinpoint
aortic lesions.

4. This research highlights the specificity of CNNs in disease diagnosis, suggesting that
they can be practically applied in emergency clinical settings.

2. Method
2.1. Study Design

This was a retrospective case-control study conducted in the ED of the Cathay Medical
System (CMS), Taiwan, which comprises three hospitals: one medical center (located in
Taipei), one regional hospital (located in New Taipei City), and one district hospital (located
in Hisnchu City). The medical center has a capacity of 800 beds and an estimated annual
ED visit volume of 60,000. The regional and district hospitals have capacities of 642 beds
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and 348 beds, respectively, with estimated annual ED visit volumes of 48,000 and 30,000.
Patients who visited these three hospitals between 1 January 2010, and 1 January 2020,
were enrolled in the study.

2.2. Data Collection and Assignment to Case and Control Groups

The experimental group included CXRs of patients who met the following criteria:
(1) emergency patients who were older than 18 years old, with the chief complain of chest
or back pain. (2) Patients underwent CXRs and computer tomography angiography in
the ED. Patients in this group also fit the following image criteria: (1) diagnosed as AAS
and IMH or (2) enlarged TAA (>5.5 cm) as confirmed by CTA. Exclusion criteria for the
experimental group were: (1) trauma patients; (2) patients who had implants or a history
of thoracic surgery; and (3) lesions on the CXRs, such as pneumonia, pulmonary edema,
and tumors in the thorax cavity and mediastinum, as these lesions may interfere with the
interpretation of the thoracic aorta. Other than chest images, patients’ gender, age, and
underlying medical conditions were also collected. The underlying medical conditions
of each patient were identified via the ICD-9 and recorded during the ED visit, including
hypertension, atherosclerosis, renal insufficiency, ischemic heart disease, diabetes, and
cerebral vascular disease, which can be related to aortic disease [22]. The control group
included the CXRs of patients who met the following criteria: (1) emergency patients who
were older than 18 years; (2) with a complaint of chest and back pain and who underwent
CXR and computer tomography in the ED; (3) and whose CTA diagnosis report showed
no evidence of AAS or TAA. The CTA images were interpreted and confirmed by board-
certified radiologists. Gender, age, and underlying medical conditions were collected
to analyze the characteristics of the control group patients. The patients’ demographic
information was obtained from the electronic medical records of the CMS, while the images
were sourced from the picture archiving and communication system (PACS) of the CMS.
The flowchart of the study is illustrated in Figure 1.

2.3. Region of Interest

The ROI algorithm can extract specific signals from an image and maintain the anatom-
ical structure we are interested in. It can maintain good image quality during the image
decompression process of the CNN model. Therefore, such a method can prevent inter-
ference on the experimental results while accelerating the computational speed [23,24]. In
order to train the ROI model, two hundred images were randomly selected from all image
data, and the dataset was further divided into 80% for the training group (160 images) and
20% for the testing group (40 images). A board-certified emergency physician (the attending
physician, who has 3 years of experience) manually annotated the training dataset to select
the structures near the mediastinum, including the ascending aorta, aortic arch, descending
aorta, and cardiac structure; After that, an aggregate channel features (ACF) object detector
was used as the architecture for the ROI model training [25]. While detecting the CXRs
automatically, the object detector model gave three sets of coordinates of ideal bounding
boxes to show the rectangular area where the entire thoracic aorta may be located; the ROI
was then defined as the intersection of the three ideal bounding boxes. The ROI selection
step retained important structures in images while excluding other interfering factors such
as text labels, abdominal images, neck bones, etc.

Finally, in the testing dataset, emergency physicians manually interpreted the model,
and the ACF object detector trained a model that could automatically detect the ROI. In the
testing dataset, the ROI area consisting of the thoracic aorta structure was marked with an
accuracy rate of 100% (40/40). This ACF model was then used in the next experiment to
detect the ROI of different CXRs before proceeding to the next step of image processing. In
Figure 2A,B, the central black square area on the chest image demonstrates the regions of
the aorta and mediastinum automatically labeled by our ROI model.
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Figure 1. The flow chart of the study.

2.4. Image Enhancement

This study utilized contrast limited adaptive histogram equalization (CLAHE), a
technique widely employed in medical imaging [26]. CLAHE has been found to offer
enhanced visualization of the mediastinal cavity and thoracic aorta without over highlight-
ing high-density structures, such as bones, compared to other algorithms like histogram
equalization and adaptive histogram equalization. Consequently, CXR images processed
with CLAHE exhibit improved performance in training both the ROI model and the CNN
model (Figure 3).
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Figure 2. The images on the left (A,B) show the location of a possible aortic lesion on the CXR
marked by the CNN model (VGG19), and these areas are colored by CAM to make it easy for users to
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true location of the patient’s aortic lesion. After comparing with the CAM image, it was found that
the CNN model correctly interpreted the location of the lesion on the CXRs, arrow: false lumen of
aortic dissection.

Diagnostics 2024, 14, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 3. Image enhancement and ROI selection of original images for better image quality and 
normalization before model training. 

2.5. Data Augmentation 
Given the greater number of cases in the control group compared to the AAS and 

TAA groups (n = 1167 vs. 306), we augmented the images of patients with AAS and TAA 
in the training dataset to achieve data balance (n = 1167 vs. 918) (Figure 1). This augmen-
tation involved rotating CXRs of the AAS and TAA groups in the training dataset. We 
decided to rotate these images (n = 306) by three degrees clockwise (n = 306) and counter-
clockwise (n = 306), and combined these images with the original CXRs (n = 306) to in-
crease the data numbers (n = 918), as demonstrated in Figure 4. 

 
Figure 4. Image augmentation: original images were rotated by 3 degrees clockwise and coun-
terclockwise. 

2.6. Pre-Trained CNN Model 
CNNs have found extensive application in deep learning, encompassing tasks such 

as image classification, object detection, and feature extraction. A CNN typically com-
prises various types of neural network layers, including convolutional layers, MaxPooling 
layers, dropout layers, fully connected layers, and SoftMax. Over time, CNN architectures 
have evolved, with many medical imaging studies leveraging existing public architectures 
for transfer learning. 

In this research, we utilized four pre-trained CNN models (InceptionV3 [27], Incep-
tion-ResNet-v2 [28], VGG19 [29], and ResNet101 [30]), all derived from the ImageNet Da-
tabase, which was originally developed for interpreting natural images. After image aug-
mentation and preprocessing, we resized the images and inputted them into these four 

Figure 3. Image enhancement and ROI selection of original images for better image quality and
normalization before model training.



Diagnostics 2024, 14, 1646 6 of 13

2.5. Data Augmentation

Given the greater number of cases in the control group compared to the AAS and TAA
groups (n = 1167 vs. 306), we augmented the images of patients with AAS and TAA in the
training dataset to achieve data balance (n = 1167 vs. 918) (Figure 1). This augmentation
involved rotating CXRs of the AAS and TAA groups in the training dataset. We decided to
rotate these images (n = 306) by three degrees clockwise (n = 306) and counterclockwise
(n = 306), and combined these images with the original CXRs (n = 306) to increase the data
numbers (n = 918), as demonstrated in Figure 4.
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2.6. Pre-Trained CNN Model

CNNs have found extensive application in deep learning, encompassing tasks such as
image classification, object detection, and feature extraction. A CNN typically comprises
various types of neural network layers, including convolutional layers, MaxPooling layers,
dropout layers, fully connected layers, and SoftMax. Over time, CNN architectures have
evolved, with many medical imaging studies leveraging existing public architectures for
transfer learning.

In this research, we utilized four pre-trained CNN models (InceptionV3 [27], Inception-
ResNet-v2 [28], VGG19 [29], and ResNet101 [30]), all derived from the ImageNet Database,
which was originally developed for interpreting natural images. After image augmentation
and preprocessing, we resized the images and inputted them into these four different
CNN architectures for transfer learning to establish models. Our data were divided into
training datasets (80% of all images) and testing datasets (20% of all images). We then
assessed the performance of these models on the testing dataset by evaluating their ability
to interpret CXRs.

2.7. Statistical Analysis and Model Performance Evaluations

After testing the four different CNN-based models in the testing dataset, the final
result of their confusion matrix was acquired. The contents of the confusion matrix for
each model were analyzed for their sensitivity (precision), specificity, precision, F1 score,
and accuracy of the testing dataset. The F1 score is a popular tool for evaluating the
performance of AI models. The F1 score represents the classifier’s performance in both
precision and recall; thus, the F1 score was used in this study to decide which model was
the most successful.

F1 score = 2
precision × recall
precision + recall

The area under the receiver operating characteristic (AUROC) was used to evaluate
the performance of the classifier models. Without threshold selection and calculation
of precision and recall, the AUC represents the overall diagnostic performance of an AI
model and is widely used in the machine learning field [31]. CAM is used to evaluate
and weight each CNN-based model while interpreting the CXRs [32]. Although the CNN
model can handle non-linear and high-degree-of-freedom data (such as images), it lacks
interpretability, as the model itself could not identify the relationship between input data
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and output results [33]. Therefore, researchers often need to further verify the performance
of the CNN model in order to increase users’ confidence. CAM is currently an effective
tool to visualize the featured maps extracted by CNN. In the research process, when it is
necessary to adjust training parameters or select algorithm tools, CAM can help researchers
to confirm whether the model’s prediction results are accurate and whether adjustments
are clinically reasonable when evaluating the model. CAM can provide a reference for
researchers to adjust parameters and avoid model over fitting. In clinical applications, the
visualized image features of CAM can allow clinical users to quickly enter the situation,
thereby increasing the willingness of clinicians to use the CNN model tool (Figure 2C,D).

2.8. Training Parameters, Software, and Hardware

The software used in this study was Matlab 2020b; it was used for image pre-processing,
model training, and statistical analysis of the results. The parameters used in the training
CNNs were as follows: optimization algorithm; Adaptive Moment Estimation (ADAM);
mini batch size: 20; max epochs: 6; and initial learn rate: 0.0001. We used an Intel® Core™
i7-10750H as the CPU (Central Processing Unit) and an AMD Radeon™ Pro 555X as the
GPU (Graphics Processing Unit) for building and training our models.

3. Results

In total, 1625 patients’ CXRs were included in this study, with 382 patients in the AAS
and TAA group and 1243 patients in the control group. Analysis of patient demographics
revealed a higher percentage of males in the AAS and TAA groups compared to the control
group, accounting for 64.4% and 58.5%, respectively. Furthermore, the AAS and TAA
groups exhibited a higher mean age ± standard deviation of 69.5 ± 15.5 years, compared
to 65.1 ± 17.0 years in the control group. Hypertension was more prevalent in the AAS
and TAA groups, with 69.1% of patients affected, compared to 55.3% in the control group.
Similarly, the prevalence of all underlying medical conditions was higher in the AAS and
TAA group, with 77% of patients affected, compared to 70% in the control group (Table 1).

Table 1. Patient characteristics.

Patient Characteristic AAS and TAA Groups (N = 382) Control Group (N = 1243) p Value

Sex, n (%) 0.04
Male 246 (64.4) 727 (58.5)

Female 136 (35.6) 516 (41.5)
Age-yr (Mean ± SD) 69.5 ± 15.5 65.1 ± 17.0 <0.01

Underlying medical condition, n (%) 294 (77.0) 874 (70.3) 0.01
Hypertension 264 (69.1) 689 (55.4) <0.01

Atherosclerosis 57 (14.9) 251 (20.2) 0.02
Renal insufficiency 63 (16.5) 205 (16.5) 0.10

Ischemic heart disease 77 (20.2) 378 (30.4) <0.01
Diabetes mellitus 69 (18.1) 391 (31.5) <0.01

Cerebral vascular disease 81 (21.2) 203 (16.3) 0.03

AAS, acute aortic syndrome; TAA, thoracic aortic aneurysm; n, number; SD, standard deviation.

In terms of demographic distribution, patients in the AAS and TAA groups were older
and had a higher proportion of hypertension, which was significant (p < 0.01), consistent
with the known risk factors for AAS. Although the difference was not statistically significant
(p = 0.04), the AAS and TAA groups had a higher proportion of male patients. Previous
literature has shown that patients with emergency chest pain or those in the AAS and TAA
groups exhibit a similar gender distribution.

Regarding dataset organization, approximately 80% of the images from both groups
were randomly allocated to the training datasets, resulting in 306 images in the AAS and
TAA group and 1167 images in the control group, while the remaining 20% of images were
assigned to the testing datasets, with 76 images in each group. To ensure data balance in
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the training datasets, data augmentation techniques were employed, resulting in a total of
2085 images (918 in the AAS and TAA group, and 1167 in the control group) (Figure 1).

For dataset arrangement, approximately 80% of images from both groups were ran-
domly selected for training datasets (AAS and TAA group: 306, control group: 1167) and
the remaining 20% for testing datasets (AAS and TAA group: 76, control group: 76). Data
augmentation was used to increase the number of images to 2085 (AAS and TAA group:
918, control group: 1167) in order to achieve data balance in our training datasets.

During algorithm development, images processed without ROI selection via the ACF
model sometimes caused the CNN model to lose focus, as shown in Figure 5(A1–A3).
Conversely, images processed with ROI selection allowed the CNN to concentrate on the
true anatomical structures, such as the aortic arch and thoracic aorta (Figure 5(B1–B3)),
enhancing the clinical reliability of the CNN model.
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Figure 5. (A1–A3) The CAM images of the original CXRs interpreted by the CNN model show that
some feature extraction areas are not logically related to the aortic structure. In contrast, (B1–B3)
displays the results after the ACF-generated feature extraction model processed the images. Training
the CNN model with ROI-focused images shows that the model focuses more on the anatomical
structures of the mediastinum, without being distracted by surrounding organs.

We trained the processed images using four different CNN architectures for CXR
interpretation and validated each model using the testing datasets (AAS and TAA group:
76, control group: 76). Analysis of model performance revealed that the Inception-v3 model
attained the highest F1 score of 0.76, indicating strong overall performance. The VGG19-
based model achieved the highest AUC of 0.84, highlighting its robust discrimination
ability between classes. Both models demonstrated similar specificity, with the VGG19
model and the Inception-v3 model achieving specificities of 88%. Additionally, both the
Inception-v3 and VGG19 models exhibited superior precision, at 85% and 82%, respectively,
demonstrating their ability to correctly identify positive cases.

In contrast, the Resnet101 model showed lower sensitivity at 64%, suggesting it may
miss more true positive cases compared to Inception-v3 and VGG19. It also had a lower
AUC of 0.68, indicating less effective discrimination between classes compared to the other
models. The Res-net-Inception-v2 model demonstrated consistent but modest performance
across all models, with sensitivity, specificity, precision, and F1 scores all around 64%.

These findings highlight the varying effectiveness of different CNN architectures in
the task of X-ray interpretation, with Inception-v3 and VGG19 outperforming Resnet101
and Res-net-Inception-v2 in key metrics (Table 2).
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Table 2. Performance of AD detection in AAS and TAA predictions using different CNN models.

CNN Pre-Trained
Models

Sensitivity (%,
95% CI)

Specificity (%,
95% CI)

Precision (%,
95% CI)

F1 Score
(95% CI)

Accuracy (%,
95% CI) * AUC

Inception-v3 68 [50, 86] 88 [75, 100] 85 [68, 100] 0.76 [0.58, 0.91] 78 [65, 92] 0.82
VGG19 56 [39, 73] 88 [73, 97] 82 [66, 92] 0.67 [0.53, 0.80] 72 [61, 83] 0.84

Resnet101 64 [45, 83] 68 [50, 87] 67 [48, 86] 0.65 [0.46, 0.84] 66 [58, 89] 0.68
Resnet-Inception-v2 64 [45, 83] 64 [45, 83] 64 [45, 83] 0.64 [0.45, 0,83] 64 [45, 83] 0.67

* Area under the curve (AUC) and area under the receiver operating curve (AUROC).

To enhance the model’s reliability, we also collected digital CTA images of AAS and
TAA patients and retrospectively compared them with CXRs. This was to determine
whether the CNN model could not only correctly identify abnormal images but also
pinpoint the lesion’s location. CAM was applied to the original CXRs to visualize the
feature maps extracted by the CNN models, enabling the localization of possible aortic
lesions on CXRs and comparison with the same patients’ aortic CTA images (Figure 4).
This confirmed that the CNN has the potential to locate and visualize lesions, providing
valuable diagnostic information to clinicians.

4. Discussion

The novelty of this study lies in the comparative analysis of four distinct CNN-based
models to determine their diagnostic performance for AAS and TAA based on CXRs in
the ED. Specifically, the study provides a comprehensive evaluation of four pre-trained
CNN models (Inception-v3, VGG19, Resnet101, and Resnet-Inception-v2) across several
key metrics, including sensitivity, specificity, precision, F1 score, accuracy, and AUC. The
results showed that Inception-v3 had the highest F1 score, while VGG19 had the highest
AUC. These findings align with a recent study using the ResNet18 CNN model to detect
acute thoracic AD based on CXRs, which achieved a diagnostic accuracy of 90.20%, a
precision of 75.00%, a recall of 94.44%, and an F1 score of 83.61% [34]. Another study
explored the use of explainable AI methods like Grad-CAM to interpret the decisions of a
CNN model for detecting aortic elongation, which can be an indicator of AD, from CXR
images [35]. However, the algorithms, data sources, and study designs of these studies
varied. Therefore, we have included a table that summarizes the comparison of three
studies (current study and two recent studies [34,35]) on the use of CNNs for aortic disease
detection in CXR images, detailing their case numbers, data sources, CNN types used, and
targeted abnormalities in Table 3.

In current practice, the diagnosis of AAS and TAA is challenging and often overlooked
by physicians in the ED due to several factors. Firstly, crowded EDs result in physicians
having insufficient time to diagnose a patient [36]. Secondly, using CXRs to diagnose
AAS and TAA lacks clear image feature definition, leading to subjective interpretation
and inter-rater differences. Thirdly, AAS may present with atypical symptoms that can be
easily overlooked. Fourthly, novice doctors, such as post-graduate-year doctors or junior
residents, may be unfamiliar with the disease’s characteristics. Finally, fatigue from long
working hours or night shifts can contribute to diagnostic errors.

The CNN models used in the present study offer significant advantages by auto-
matically screening all CXRs to identify patients who may potentially have AAS or TAA,
especially in crowded EDs where physicians may have limited time to diagnose a patient.
CNN models also provide more objective judgment, are not constrained by past research,
and may identify new features of AAS on CXRs. CNN models are also helpful for novice
doctors who are not familiar with the disease’s characteristics. Unlike human physicians,
CNN models are not affected by long working hours or fatigue. Moreover, the prompt
diagnosis of AAS and TAA by CNN models allows ED physicians to initiate treatment
before receiving the official radiology report from radiologists [37], thereby potentially
enhancing the quality of medical care and prognosis. In Taiwan, several studies have re-
ported using CNN models for interpreting X-rays [38], particularly for severe diseases that
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are easily missed in the ED, such as acute epiglottitis [39]. Furthermore, the combination
of CAM technology demonstrated in this study (Figure 2) illustrates the CNN model’s
ability to accurately locate aortic lesions during diagnosis, further highlighting its utility as
a valuable medical assistance tool.

Table 3. Comparison of this study with two recent studies on the use of CNN in aortic disease CXR
research, including methods and results.

This Study Ribeiro et al. (2024) [35] Lee et al. (2023) [34]

Case numbers
N = 1473

(normal= 1167, AAS and
TAA= 306)

N = 8752
(Aortic elongation = 2350,

non-aortic elongation = 6402)

N = 3331
(Positive images = 716,

negative images = 2615)

Data source
Three hospitals: one medical
center, one regional hospital,

and one district hospital
VinDr-CXR dataset Three tertiary academic

hospitals

CNN type

Inception-v3
VGG19

Resnet101
Resnet-Inception-v2

DenseNet 121
EfficientNet B4 ResNet 18

Abnormalities targeted AAS and TAA Aortic elongation Acute thoracic aortic
dissection

Disease label CTA report Interpretation by radiologist CTA report and surgery
record

Image augmentation protocol Rotation Rotation, horizontal flipping,
and vertical flipping

Rotation, horizontal flipping,
and vertical flipping

ROI model architecture Aggregate channel features
object detector * UNet UNet

Image enhancement CLAHE Histogram equalization Histogram equalization

CAM application Yes, and comparison with
patients’ CTA image Yes Yes

* UNet is a convolutional network architecture for fast and precise segmentation of images.

While developing diagnostic AI models for medical images, the preprocessing of
images is as crucial as selecting the appropriate CNN structure. Preprocessing images
using suitable image enhancement algorithms and selecting an ROI segmentation model
are vital in our study settings. Image preprocessing can expedite the CNN model training
process and enhance diagnostic accuracy [23,24,26]. However, employing CNN models
directly on medical images may not suffice, as real-world medical images often contain
considerable noise. Noise reduction can be achieved by combining various algorithms
at different stages of image preprocessing, enabling the CNN model to focus on relevant
information in CXRs. In this study, the ACF detector was initially utilized as the ROI
segmentation model to identify structures such as aortic vessels, heart borders, and the
mediastinum. CLAHE was then applied for image enhancement, enhancing the density
of these soft tissue structures. Subsequently, these images were fed into various CNN
architectures for training. Throughout the training process, CNN model parameters were
adjusted based on prediction results and the CAM analysis. The training outcomes were
further deliberated by clinical physicians and programming engineers, and our group
determined which algorithms to select and how to adjust the parameters accordingly.

Patients presenting with chest pain represent approximately 10% of total ED visits.
While most of these patients may be discharged following evaluation, a subset may ulti-
mately receive diagnoses of acute and potentially fatal conditions such as acute coronary
syndrome and AAS [40]. Our study findings demonstrate that both Inception-v3 and
VGG19 exhibited superior performance compared to other methods, with Inception-v3
achieving the highest scores for sensitivity, F1 score, and accuracy. VGG19, while slightly
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behind Inception-v3 in these areas, showed the highest AUC, indicating its strong discrimi-
native ability. Resnet101 and Resnet-Inception-v2, although performing adequately, lagged
in several key aspects, suggesting room for improvement in these models for detecting
AAS and TAA from CXRs in EDs (Table 2). The high precision and accuracy of Inception-v3
offers a critical role in an ED setting where timely and accurate diagnosis can significantly
impact patient outcomes. The high precision (85%, 95% CI: 68, 100) indicates that when the
model predicts a positive case, it is likely to be correct, which is important for maintaining
the credibility of the diagnostic tool among clinicians. The accuracy (78%, 95% CI: 65, 92)
shows its overall effectiveness in correctly classifying both positive and negative cases.
Therefore, Inception-v3 would be the recommended model for use in the ED for screening
AAS and TAA from CXRs.

There are several limitations to this study. Firstly, despite fine model adjustment and
image preprocessing, the sensitivity of the CNN model to identify AAS and TAA remains
at 68%. Previous studies have also noted the limitations of CXRs in diagnosing aortic
diseases [4]. This may be attributed to the inherent constraints of CXRs, which typically
provides flat, binary-colored, and single-view images, making it challenging to diagnose
vascular diseases such as AAS and TAA, which have complex 3D anatomical structures. In
fact, delving into the detailed structure or blood flow changes in aortic dissection requires
the aid of advanced imaging tools. For example, one study utilized computational fluid
dynamics (CFD) to model blood flow in aortic dissection, enhancing the understanding
of hemodynamics in these cases [41]. Another review article introduced the application
of image-based CFD simulations and four-dimensional flow magnetic resonance imaging
(4D-MRI) to predict risks in patients with aortic dissection [42]. These cutting-edge imaging
tools provide valuable insights for identifying, managing, and treating aortic conditions.

In further exploration of this topic, we suggest considering the combination of CNN
models with these advanced imaging tools (CFD, 4D-MRI, and 3D reconstruction tech-
niques) and expanding the image database for CNN model training. Additionally, inte-
grating CNN models for image analysis with other machine learning models that utilize
clinical information and parameters such as age, risk factors, symptoms, and vital signs
could form a multimodal solution to complement the limitations of a single CNN model.

Secondly, this study is retrospective in nature, which inevitably introduces some
selection bias in patient selection and grouping, despite efforts to mitigate this bias in the
study design. However, such selection bias is a common challenge encountered in similar
AI medical research during the developmental stages. Therefore, based on our findings,
we anticipate the emergence of more prospective studies in the future, focusing on the
application of AI in real-world medical scenarios.

5. Conclusions

A CNN-based model (Inception-v3) can provide good diagnostic performance for
AAS and TAA based on CXRs, as indicated by its F1 score of 0.76, demonstrating a good
balance between sensitivity and precision. Furthermore, the use of this CNN-based model
may help physicians speed up the diagnosis process and avoid possible misdiagnoses,
resulting in a non-invasive, objective, accurate, and fast diagnostic tool for AAS and TAA
patients before they undergo CTA examination.
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