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Abstract: Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-
glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin
3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3
progression that require identifying trait and state biomarkers for a more accurate diagnosis and
prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of
therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify
potential trait and state biomarkers and their potential value in clinical trials. Our results show
that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress,
metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3
stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of
NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma.
Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical
trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.

Keywords: spinocerebellar ataxia type 3; Machado–Joseph disease; biomarkers; neurofilament light
chain; PolyQ-ATXN3

1. Introduction

Spinocerebellar ataxia type 3 (SCA3) or Machado–Joseph Disease (MJD) is the most
common form of SCA [1,2]. It is a poly-glutamine (polyQ) disorder with a prevalence of
1–5/100,000 [3] caused by the expansion of an unstable CAG trinucleotide repeat located in
the ATXN3 gene [4]. As a result, an ATXN3 protein with a longer Q tract (polyQ-ATXN3),
related to altered protein misfolding, accumulation and polyQ-ATXN3 inclusion formation
in neurons, is generated, causing gain-of-function toxicity [5–8]. This neuropathology
mainly affects the cerebellum and other regions that control motor functions [9,10].

The complexity of SCA3 encompasses not only neuropathological features but also
a wide range of clinical signs and chemical modifications [11,12]. The complexity of the
disease, as well as the demand for a therapeutic strategy to treat it, requires studying trait
and state biomarkers, the former portraying features before disease onset and the latter
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revealing the condition during disease progression or treatment [13]. Other biomarkers
besides polyQ-ATXN3 are thus required for comprehending disease progression and the
pathways that may aid in management and therapeutic intervention for patients.

From a clinical point of view, most assessments have relied on using medical scales
such as the Assessment and Rating of Ataxia (SARA) and the Inventory of Non-Ataxia
Symptoms (INAS) scales [14–16]. While these can aid the diagnosis of patients with explicit
ataxic symptoms, the asymptomatic and preclinical stages require a more comprehensive
battery of assessments, hence why the use of fluid markers represents a first option for
inclusion in this analysis.

Current clinical trials have implemented the use of SARA and ICARS scores to eval-
uate the efficacy of some compounds like riluzole, troriluzole, trehalose and valproic
acid [14,15,17–19], as well as antisense olinucleotides (ASOS) [20]. Nonetheless, these
clinical trials have not yet included specific and sensitive biomarkers that can improve
disease progression and therapeutic efficacy monitoring. Because of their easy availability
in clinical practice, the use of fluid biomarkers can therefore potentially aid in achieving
these goals. In this investigation, we present an overview of SCA3 biomarkers measured
in the body fluids of patients in different SCA3 stages. The aim of this study was to
identify potential trait and state biomarkers for clinical stage classification, prognosis and
therapeutic intervention assessment.

2. Materials and Methods
2.1. Literature Search Strategy

This systematic review was written according to the Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in PROSPERO
(ID: CRD42023424952). We performed a search in PUBMED with the terms (“Spinocerebel-
lar ataxia type 3”, “Machado–Joseph Disease”, “SCA3”) AND (“biomarker” OR “biofluid”
OR “pharmacodynamic marker”). The manuscript inclusion criteria consisted of cross-
sectional and longitudinal studies involving measures of protein, DNA and RNA markers
in body fluids such as plasma, serum, urine and cerebrospinal fluid (CSF). A total of
85 manuscripts appeared under these criteria as of 4 July 2024. The record discrimination
strategy was performed in Evidence for Policy and Practice reviewer version 6 (EPPI v6).
Firstly, manuscripts were screened for duplicates and excluded by title, abstract and full
text according to the following criteria: reviews or manuscripts with no quantitative data,
tissue measurements, cell or animal models and studies that did not include biofluids
(Figure 1). Ultimately, 24 studies complied with the inclusion criteria and the STROBE
guidelines for cohorts and case–control studies.

2.2. Data Extraction and Management

Data were extracted from eligible studies according to biomarker type, fluid source,
outcome, biomarker-related variables and manuscript reference. Data were pooled in
tables according to the stage classification proposed by Mass et al. [21]. “Asymptomatic”
refers to carriers who are free of symptoms and signs. “Preclinical” refers to carriers with
a SARA score < 3 with some early unspecific symptoms (e.g., muscle cramps, pain and
fatigue) [22]. In this category, we also included data from “preataxic” patients with non-
ataxic signs [23]. Ataxic patients included those who had a SARA score ≥ 3, as well as
alterations in balance, gait, coordination, lower limb spasticity, vision, cognition, dysarthria,
dysphagia and structural brain abnormalities. Moreover, data from asymptomatic carriers
were also considered to show biomarker progression, as shown in Figure 3a,b, specifically
for polyQ-ATXN3 and NfL; the rest of the biomarkers were based on preataxic and ataxic
stage information. Table 1 and Supplementary Table S3 show a summary of the studies in
which there were significant correlations between biomarkers and clinical variables.
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Figure 1. Flow diagram of EPPI v6 study selection following PRISM and STROBE guidelines.

2.3. Statistical Analysis of Neurofilament Light Chain (NfL) Levels

For NfL estimations, we included studies that used the same detection assay platform
(Single Molecule Array: SIMOA); data from two cohorts were excluded on the grounds that
they were validation cohorts in two studies that were already included as main cohorts.
We compared NfL between controls and preclinical and ataxic subjects using a random
effect analysis for continuous outcome variables [24]. The means of NfL for each separate
group, as well as the differences in means between groups, were estimated, along with
95% confidence intervals (CIs). I2 is a reliable descriptive statistic for analyzing homogene-
ity, particularly when accompanied by other statistics like means and p-values [25]. The
between-study heterogeneity in means and mean differences were examined by estimating
the I2 statistic, which measures the proportion of variation in these quantities due to hetero-
geneity beyond chance [26]. p-values < 0.05 were considered statistically significant. All
the statistical tests were two-sided. Statistical analyses were performed using R Statistical
Software (version 4.1.2; R Foundation for Statistical Computing, Vienna, Austria).

3. Results and Discussion

Figure 2 summarizes the useful SCA3 fluid biomarkers for delimiting disease stages.
However, none of these have been used to evaluate therapeutic efficacy in clinical trials,
though some are involved in oxidative stress, metabolism, neurodegeneration and RNA
metabolism. There are also biomarkers like miRNAs that researchers have started to explore
for tracking disease progression and pharmacodynamic use.
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Figure 2. SCA 3 and biofluid markers. NfL = neurofilament light chain; CSF = cerebrospinal fluid;
Aβ42 = β-amyloid protein at amino acid 42; GFAP = glial fibrillary acidic protein; UCHL1 = ubiquitin
carboxy-terminal hydrolase L1; pNfH = phosphorylated neurofilament heavy; IGF-1 = insulin grown
factor 1; IGFBPs = IGF-binding proteins; NSE = neuron-specific enolase; CHIP = carboxyl terminus of
Hsp-70 protein; SOD = superoxide dismutase; and GSH-Px = glutathione peroxidase.

The total number of patients analyzed in this review was 2838; of these, 1320 were
ataxic, 168 were preataxic and 1350 were healthy controls. In these groups, the most
frequently tested biomarkers were NfL (n = 8/21) and PolyQ-ATXN3 (n = 3/21) (Table 1).

The most widely analyzed marker in SCA3 was NfL (Table 1). As shown in Supple-
mentary Table S1, I2 was 0% in NfL plasma concentrations from both preclinical and ataxic
patients. The values in the serum were higher than 90%; in the CSF, they were 0%, and
in control and ataxic patients, they were 53%. This indicates that I2 could be a reliable
approach to evaluating heterogeneity in plasma and CSF and in comparisons between
preclinical/ataxic and control/ataxic patients, respectively. This result is reinforced by
the results presented in Supplementary Table S2, where the mean difference between pre-
clinical/ataxic and control/ataxic patients in plasma and CSF was statistically significant
(p < 0.0001). However, an overestimation of 12% is possible if I2 is high and there are
fewer than seven studies analyzed [27]. Therefore, the difference between plasma and
CSF could be due to difficulties in recruiting patients for lumbar puncture. Nonetheless,
in these cases, NfL can be used as a stage-discriminative biomarker, something which is
consistent with a meta-analysis showing that NfL levels increase in patients with different
types of ataxia [28] and cerebellum atrophy disorders [29]. It is thought that axonal damage
allows NfL release and protein synthesis and secretion as axons attempt to regenerate [30].
Therefore, NfL in CSF might also be an early disease state biomarker and its elevation
could reflect axonal damage in SCA3. While it was not possible to identify changes in NfL
levels in CSF through meta-analysis, their discriminative capacity in CSF and plasma has
been confirmed via area under the ROC curve [31]. Moreover, as a biomarker, NfL has
more positive correlations with clinical variables like SARA score, age and CAG repeats
(Table 1) and negative correlations with pons, midbrain and brainstem volumes [32]. Fur-
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ther longitudinal NfL studies should be performed to better understand the patterns in the
dynamics of this biomarker throughout patient lifespans in distinct populations, as can be
seen in other polyQ diseases [33]. As reported by Peng and collaborators, efforts to include
patients from asymptomatic and preclinical stages should persist in order to obtain more
accurate cut-off points in these stages of the illness [34]. Such efforts could help in giving a
globally valuable preliminary assessment.

Table 1. Fluid biomarkers in SCA3 with stage-discriminative features.

Biomarker Fluid Controls
Preataxic/
Preclinical SCA3
Patients

Ataxic Patients Associated Variables Reference

PolyQ-
ATXN3

Plasma
0.00 [0.00; 0.28] pg/µL
(n = 34)

0.84 [0.48; 1.68] pg/µL
(n = 4)

1.28 [0.03; 3.44] pg/µL
(n = 41)

Perfect discrimination capacity
between ataxic vs. controls.
No clinical associations.
No differences observed between
presymptomatic and symptomatic.

[31]

0.14 [0.1; 0.4] pg/mL
(n = 15)

53.80 [40.28; 63.37]
pg/mL (n = 11)

83.30 [55.38; 106.6]
pg/mL (n = 45)

Positively correlated with SARA and
negatively correlated with age of ataxia
onset.

[35]

CSF
0.00 [0.00; 0.04] pg/µL
(median, n = 33)

0.04 [0.04; 0.07] pg/µL
(median, n = 4)

0.13 [0.04; 0.46] pg/µL
(median, n = 45)

Perfect discrimination between SCA3
patients and controls.
No associations with other variables
found.
The median concentration was higher
in symptomatic vs. asymptomatic.

[31]

0.11 [0.1; 0.4] pg/mL
(n = 18)

Not reported.
Preataxic levels were
not different from
ataxic (n = 5).

5.48 [4.85; 6.67] pg/mL
(n = 12)

CSF perfectly discriminated between
controls and ataxic carriers. [35]

Urine Not reported Not reported.

Not reported.
PolyQ-ATXN3 is
higher in symptomatic
patients than in those
with other types of
ataxia and controls.

Mild correlation with plasma levels. [36]

NfL

Serum

Cohort B: 6.88 ± 2.72
pg/mL (n = 91)

15.03 ± 7.49 pg/mL
(n = 26)

37.56 ± 13.47 pg/mL
(n = 90)

Positively related to disease severity.
Positively associated with SARA and
ICARS.
Negatively associated with cerebellar
and brainstem volumes.

[37]

Cohort 1 (ESMI): 8.6
[5.7;11.7] pg/mL
(n = 77)
Cohort 2 (Eu-
roSCA/RiSCA):19.4
[15.1:25.4] pg/mL
(n = 48)

29.1 [15.9:43.7] pg/mL
(n = 8)
47.3 [25.5:78.0] pg/mL
(n = 14)

34.8 [28.3:47.0] pg/mL
(n = 75)
85.5 [70.2:100.2]
pg/mL
(n = 27)

Positive correlation with age, CAG
repeat length and longitudinal SARA
score.
Prediction of time to onset.
Preconversion stage delineation.
Differentiation between early and late
preataxic stages.

[38]

8.24 [5.92–10.84]
pg/mL
(n = 185)

21.84 [18.37–23.45]
pg/mL
(n = 20)

36.06 [30.04–45.90]
pg/mL
(n = 198)

Negative correlation with gray matter
in left precentral gyrus and paracentral
lobule, as well as mean diffusivity in
widespread matter tracts.

[34]

7.43 pg/mL
(n = 14) -- 35.33 pg/mL

(n = 20)

Positively correlated with SARA and
ICARS, speech disorders and limbic
kinetic function.

[39]

10.24 ± 4.48 pg/mL
(n = 19) Not reported. 34.92 ± 10.95 pg/mL

(n = 20)

Optimal cut-off: 16.04 pg/mL.
Baseline levels correlate with disease
duration and SARA.
Concentrations persisted after a 2-year
follow-up.

[40]

Plasma

11.20 [3.31: 33.56]
pg/mL (n = 30)

15.42 [11.05: 28.68]
pg/mL (n = 4) 30.1 [17.24: 69.9]

pg/mL (n = 41)
Discrimination between SCA3 patients
and controls. [31]

2.31 [0.83] log pg/mL
(n = 172)

2.70 [0.47] log pg/mL
(n = 23)

3.26 [0.46] log pg/mL
(n = 120)

Predictors: age and number of CAG
repeats account for 4.2% variability in
ataxic and 30.63% in preataxic.

[41]

5.7 [4.3; 7.2] pg/mL
(n = 39)

19.8 [13.9; 27.3] pg/mL
(n = 24)

31.4 [26.4; 36.4] pg/mL
(n = 64)

Correlation with disease duration,
SARA, INAS and CCFS, as well as
diplopia.

[23]
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Table 1. Cont.

Biomarker Fluid Controls
Preataxic/
Preclinical SCA3
Patients

Ataxic Patients Associated Variables Reference

CSF

Cohort A
471.70 ± 210.40 pg/mL
(n = 17)

Not reported. 4262.00 ± 1762.00 pg/mL
(n = 9)

Higher in manifest SCA3 patients.
CSF was 102X higher than serum. [37]

449 [137: 1512] pg/mL
(n = 34)

1352 [1019: 1398]
pg/mL (n = 4)

3569 [1413: 6837]
pg/mL (n = 46)

NfL discriminates symptomatic SCA3
patients from asymptomatic carriers
and controls.

[31]

Abbreviations: NfL = neurofilament light chain; CSF = cerebrospinal fluid; ICARS = International Cooperative
Ataxia Rating Scale; SARA = Scale for the Assessment and Rating of Ataxia; INAS = Inventory for Non-ataxia
Signs; CCFS = Composite Cerebellar Functional Severity Score.

PolyQ-ATXN3 was the second most frequently measured biomarker in SCA3. How-
ever, there are few studies that have evaluated their concentrations in plasma (n = 2), urine
(n = 1) and CSF (n = 2). This marker has been successfully used to discriminate between
controls and ataxic patients, but its discrimination capacity between the preclinical stage
and ataxic and controls remains unclear. Only one study showed differences between
the preclinical and ataxic stages in plasma [35]. In addition, the correlation with clinical
variables like SARA or disease onset is not consistent. PolyQ-ATXN3 can be a valuable
biomarker for evaluating the efficacy of novel, targeted therapies against expanded ATXN3,
such as siRNA [31], miRNA [42] and clustered regularly interspaced short palindromic
repeats (CRISPR)-based technology [43,44]. PolyQ-ATXN3 has also been successfully mea-
sured in peripheral blood mononuclear cells (PBMCs) [45] and is therefore a potential trait
and state marker for tracking disease progression and the efficacy of therapeutic strategies.

Some patients with SCA3 show comorbid manifestations related to other movement
disorders [46–50]. This is why studying different biomarker profiles could be a more specific
approach for better differential diagnoses. For example, NfL is not specific to SCA3 [51–57].
Neuron-specific enolase (NSE) and S100B are markers of progressive cell damage [58],
but only the former correlates with SARA and ICARS. Therefore, by themselves, some
biomarkers like NfL, phosphorylated heavy chain neurofilament (pNfH) and NSE may not
be useful for differentiating SCA3 from other movement disorders; instead, their clinical
use could rely on identifying associations with other biomarkers and building a profile that
must be carefully interpreted and correlated with clinical findings and imaging features.

There are other biomarkers that have been measured in ataxic and control patients
(Supplementary Table S3), some of which have shown relevant correlations with clinical
variables that could render them functional value state biomarkers. For example, plasma t-
tau has been correlated with CAG repeats and INAS. Furthermore, through the SCA3 stages,
the t-tau and p-tau181 concentration trends in CSF seem to follow an inverted U-shape
curve, suggesting that they could be predictive biomarkers before the symptomatic stage.
Moreover, in patients with SCA3, β-amyloid protein at amino acid 42 (Aβ42) is different
from other neurological disorders, indicating that this may be useful for differentiating
between SCA3 and cognitive and movement disorders. Perhaps they share common
pathophysiological pathways that could be included in clinical trials.

We also found other biomarkers involved in the pathogenic pathways common to
other neurodegenerative disorders, such as oxidative stress and metabolism disorders
(Supplementary Table S3). While some of these potential state biomarkers can provide
information about the disease’s pathomechanism, there are two limitations. The first is that
most of them are only measured in controls and ataxic patients, reducing the information
required for understanding the preclinical stage. The second is their lack of correlation with
clinical features. This is the case for Ubiquitin Carboxy-terminal Hydrolase L1 (UCHL1),
pNfH, ROS, superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px), eo-
taxin and some metabolic markers. Therefore, these biomarkers may require more research
before being considered for stage discrimination. Other biomarkers like Glial Fibrillary
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Acidic Protein (GFAP) and the carboxyl terminus of Hsp-70 protein (CHIP) have clinical
correlations that make them worth considering in evaluating state biomarker profiles.

Figure 3a shows the trajectories of the levels of different plasma and serum biomarkers
in the different SCA3 stages, demonstrating correlations with the clinical variables shown
in Table 1 and Supplementary Table S1. Interestingly, these biomarkers follow different
patterns during the asymptomatic, preclinical and ataxic stages. Some of them, like NfL,
polyQ-ATXN3, GFAP and t-tau, increase until patients reach the ataxic stage. However,
some may decrease thereafter, as is the case for t-tau in plasma in symptomatic patients
older than 40 years. Biomarker concentrations can also vary in CSF. The polyQ-ATXN3
and NfL levels in CSF followed a similar pattern to those in plasma (Figure 3b). The levels
of t-tau and p-tau181 were higher in preclinical patients than in controls, but decreased
in the ataxic stage. Unfortunately, only a few biomarkers have been evaluated in the
asymptomatic stage, reducing the possibility of identifying putative trait biomarkers and
drawing conclusions about the patterns that biomarker levels follow throughout SCA3
progression. Nonetheless, comparisons with controls and between clinical and symptomatic
stages can illuminate the state biomarker end point, if not the whole process.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 13 
 

 

 

 

(a) (b) 

Figure 3. SCA3 stages are indicated by gray dashed lines. The Y axis represents the levels of bi-
omarkers, and the X axis depicts disease progression (a). CSF biomarkers in SCA3 stages. Disease 
progression is shown along the X axis, and biomarker levels along the Y axis. Stages are indicated 
by gray dashed lines (b). 

Interestingly, novel markers like exosomal miRNAs have been differentially found 
in plasma and CSF in patients with SCA3. In particular, mir-7014 could be a relevant trait 
and state biomarker, provided it is evaluated in asymptomatic and preclinical patients 
[59]. Recent studies, particularly those using state-of-the-art transcriptomics [60], have 
identified some genes, like splicing factor SWAP (SFSWAP), scaffold attachment factor B2 
(SAFB2) and latent transforming growth factor beta-binding protein 4 (LTBP4), with the 
potential to differentiate between the preclinical, the ataxic and possibly the asymptomatic 
stages. It is also important to include an assessment of these biomarkers, which could have 
a dual function in terms of both trait and state, in clinical trials. Some clinical trials have 
been conducted (Supplementary Table S4), but they lack assessments of fluid biomarkers. 
The complex nature of SCA3 and its progression demands a successful therapeutic ap-
proach that must be delivered in the preclinical stage. Considering the psychological bur-
den of testing positive for such a neurodegenerative illness, diagnosing SCA3 presympto-
matically would be crucial in preserving neurological functions [61,62]. 

One of the main limitations in identifying a “gold-standard” trait, state or pharma-
codynamic biomarker is the absence of measurements at the preclinical stage. This could 
be due to the fact that SCA3 has a low prevalence, thus reducing the number of patients 
without ataxic symptoms attending medical appointments; this may be why asympto-
matic and preclinical cohorts are underdiagnosed. Therefore, it is worth increasing efforts 
to achieve wider recruitment and a higher statistical power. Nonetheless, examining the 
current cohorts is still a valuable approach to assessing molecular, imaging and clinical 
biomarkers. For instance, patients can show white-matter motor network alterations prior 
to the ataxic stage [63], but there has been insufficient study of their association with mo-
lecular biomarkers. It is also important to consider that SCA3 progression and staging will 
be influenced by age, sex, non-ataxic symptoms (cognitive alterations, depression, pain, 
autonomic dysfunction, etc.), individual variability and environment, and future studies 
should include this information when reporting data. 

Finally, there are differences in certain technical aspects, like the antibodies and im-
munoassay platforms used to detect and quantify these biomarkers. These narrow the 
options for performing a meta-analysis or establishing cut-off point statistics. Future in-
vestigations should consider new methodological and statistical approaches, as well as 

Figure 3. SCA3 stages are indicated by gray dashed lines. The Y axis represents the levels of
biomarkers, and the X axis depicts disease progression (a). CSF biomarkers in SCA3 stages. Disease
progression is shown along the X axis, and biomarker levels along the Y axis. Stages are indicated by
gray dashed lines (b).

Interestingly, novel markers like exosomal miRNAs have been differentially found
in plasma and CSF in patients with SCA3. In particular, mir-7014 could be a relevant trait
and state biomarker, provided it is evaluated in asymptomatic and preclinical patients [59].
Recent studies, particularly those using state-of-the-art transcriptomics [60], have identified
some genes, like splicing factor SWAP (SFSWAP), scaffold attachment factor B2 (SAFB2)
and latent transforming growth factor beta-binding protein 4 (LTBP4), with the potential to
differentiate between the preclinical, the ataxic and possibly the asymptomatic stages. It
is also important to include an assessment of these biomarkers, which could have a dual
function in terms of both trait and state, in clinical trials. Some clinical trials have been
conducted (Supplementary Table S4), but they lack assessments of fluid biomarkers. The
complex nature of SCA3 and its progression demands a successful therapeutic approach
that must be delivered in the preclinical stage. Considering the psychological burden of
testing positive for such a neurodegenerative illness, diagnosing SCA3 presymptomatically
would be crucial in preserving neurological functions [61,62].
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One of the main limitations in identifying a “gold-standard” trait, state or pharma-
codynamic biomarker is the absence of measurements at the preclinical stage. This could
be due to the fact that SCA3 has a low prevalence, thus reducing the number of patients
without ataxic symptoms attending medical appointments; this may be why asymptomatic
and preclinical cohorts are underdiagnosed. Therefore, it is worth increasing efforts to
achieve wider recruitment and a higher statistical power. Nonetheless, examining the
current cohorts is still a valuable approach to assessing molecular, imaging and clinical
biomarkers. For instance, patients can show white-matter motor network alterations prior
to the ataxic stage [63], but there has been insufficient study of their association with molec-
ular biomarkers. It is also important to consider that SCA3 progression and staging will
be influenced by age, sex, non-ataxic symptoms (cognitive alterations, depression, pain,
autonomic dysfunction, etc.), individual variability and environment, and future studies
should include this information when reporting data.

Finally, there are differences in certain technical aspects, like the antibodies and
immunoassay platforms used to detect and quantify these biomarkers. These narrow
the options for performing a meta-analysis or establishing cut-off point statistics. Future
investigations should consider new methodological and statistical approaches, as well
as reporting data using an international, common nomenclature, in order to circumvent
these limitations. This could be achieved via collaboration between multiple research
centers, including global population cohorts. In addition, ways of classifying patients
when reporting data are inconsistent; some studies use the terms “asymptomatic” vs.
“symptomatic”, preataxic vs. ataxic, manifest vs. non-manifest or categorizations based on
SARA scores.

4. Conclusions

This study has shown the different fluid biomarkers that can be included in the
assessment profile for SCA3 diagnosis and prognosis. This could be useful for thoroughly
evaluating disease staging and therapeutic efficacy. NfL and polyQ-ATXN3 provide a
closer view of disease progression, and they have been assessed as state biomarkers.
This being said, more information about their patterns during the preclinical stages and
ataxic onset is needed in order to clarify their use as trait biomarkers. These may be
complemented by other biomarkers that have been successfully evaluated in the preclinical
stage, such as the novel genes found in transcriptomics. Moreover, the sub-classification
of the asymptomatic and preataxic stages should also include clinical evaluations and
imaging correlations. Assessing fluid biomarkers could be a good start in validating SCA3
diagnosis and prognosis, but they may not be completely conclusive when considered alone.
Furthermore, increased preataxic and asymptomatic group sizes should be considered
in future investigations, and diagnostic procedures must be improved in order to detect
patients in these stages. In future endeavors in developing clinical management guidelines
and finding therapeutic targets, evaluating trait and state biomarkers could be a first step.
Being armed with a battery of sensible and specific molecular biomarkers may open up
more options for identifying correlations between clinical and neuroimaging variables.
Such approaches could potentially help to understand SCA3 pathological pathways and
find appropriate time windows for therapeutic interventions.
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