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Abstract: Nucleophosmin (NPM1) is a key nucleolar protein released from the nucleolus in response
to stress stimuli. NPM1 functions as a stress regulator with nucleic acid and protein chaperone
activities, rapidly shuttling between the nucleus and cytoplasm. NPM1 is ubiquitously expressed in
tissues and can be found in the nucleolus, nucleoplasm, cytoplasm, and extracellular environment. It
plays a central role in various biological processes such as ribosome biogenesis, cell cycle regulation,
cell proliferation, DNA damage repair, and apoptosis. In addition, it is highly expressed in cancer
cells and solid tumors, and its mutation is a major cause of acute myeloid leukemia (AML). This
review focuses on NPM1’s structural features, functional diversity, subcellular distribution, and role
in stress modulation.
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1. General Introduction

Nucleophosmin 1 (NPM1; also called B23 or Numartin) is one of the major nucleolar
proteins, along with nucleolin and nucleostemin [1–4]. There are two other shorter iso-
forms, called NPM1.2 and NPM1.3 [5]. NPM1.3 lacks the C-terminal nucleolar localization
signal (NoLS) and is mainly localized in the nucleoplasm [6–12]; its high expression is
associated with many cancer types including lung adenocarcinoma [13]. NPM1 is the
most studied and most abundant isoform [11]. NPM1 is a member of the nucleophos-
min/nucleoplasmin family of nuclear chaperones, which includes nucleoplasmin 2 and
3 (NPM2 and NPM3) [14]. Since NPM1 has nucleic acid and protein chaperone activity,
it is considered a molecular chaperone [15]. It interacts with almost all NoLS-containing
proteins, such as Tat, CENP-W, p14ARF, and FMRP [11,16–18]. NPM1 shuttles between the
nucleus and cytoplasm, and accordingly, a fraction of nucleolar NPM1 constantly translo-
cates to the nucleoplasm and inner nuclear membrane, as well as to the cytoplasm and
inner and outer plasma membranes [19–21]. Because of this ability, NPM1 has been impli-
cated in many stages of viral infection through interaction with a variety of proteins from
heterologous viruses [22,23], including human immunodeficiency virus type 1 Rev [20],
human T-cell leukemia virus type 1 Rex [24], herpes simplex virus type 1 UL24 [25], bovine
immunodeficiency virus chronic hepatitis B virus Rev [26], SAMD12-AS1 [27], circovirus
PCV3 Cap [28], and chikungunya virus nsP3 [29].

NPM1 is a multifunctional protein involved in diverse biological processes, such as
ribosome biogenesis [7,11,30–32], the maintenance of genomic stability [33], chromatin
remodeling through histone chaperoning [34,35], centrosome duplication [36], and DNA
repair [37]. NPM1 also plays a key role in response to various stress stimuli [38], including

Cells 2024, 13, 1266. https://doi.org/10.3390/cells13151266 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells13151266
https://doi.org/10.3390/cells13151266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-2034-8894
https://doi.org/10.3390/cells13151266
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells13151266?type=check_update&version=2


Cells 2024, 13, 1266 2 of 15

hypoxia [39], heat shock [40], oxidative stress [41], UV irradiation [42], chemotherapeutic
agents [43], and gamma irradiation [44,45].

NPM1 is associated with various pathological conditions. It is frequently overex-
pressed, altered, rearranged, and sporadically deleted in human cancers [46]. Thus, there is
little doubt that NPM1 is involved in human tumorigenesis, where its expression and gene
integrity are frequently altered. NPM1 belongs to a novel gene category that functions as
oncogenes and tumor suppressors. Depending on the expression level and gene dosage, ei-
ther the partial functional loss of NPM1 or its aberrant overexpression can lead to neoplastic
transformation through different mechanisms. Mutations in NPM1 occur in approximately
one-third of patients with acute myeloid leukemia [47,48] and are clinically associated with
leukocytosis, a high percentage of blasts, and extramedullary involvement [49]. In addition,
NPM1 has shown increased interest in radiotherapy, where its knockdown significantly
reduces tumor cell survival after irradiation. Irradiation has been shown to induce the
dephosphorylation of NPM1 at T199, T234, and T237, and its intracellular distribution
between the nucleoli, nucleoplasm, and cytoplasm [50]. Several studies have shown that
the exposure of fibroblasts and lymphoblastoid cells to UV or γ-IR leads to the increased
expression of NPM1 as an immediate early gene response, which is also induced by chro-
mosomal instability [51,52]. Thus, NPM1 appears to be a key determinant of nuclear
homeostasis in protecting cells from radiation-induced apoptosis, but the elucidation of the
underlying molecular mechanisms awaits future investigation.

2. Structure and Functions of NPM1

NPM1 is the most abundant isoform with 294 amino acids (aa) and an approximate
molecular weight of 37 kDa [22,47]. It consists of an N-terminal oligomerization domain
(OD), a central histone binding domain (HBD), and a C-terminal nucleic acid binding
domain (NBD) (Figure 1).
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containing two nuclear export signals (NES1 and NES2), the central histone binding domain (HBD),
comprising two acidic stretches A1 and A2 in addition to two nuclear localization signals (NLS1),
and the C-terminal nucleic acid binding domain (NBD) containing the nuclear localization signal
(NLS2) and the nucleolar localization signal (NoLS). Post-translational modifications (PTM) and
related functions in addition to interacting partners, such as phosphorylation (green), acetylation
(red), ubiquitination (dark blue), SUMOylation (light blue), and PARylation (magenta). For more
details, see text.

The OD is highly conserved, methionine-rich, and contains a hydrophobic core [53]
that organizes its oligomeric state. Thus, NPM1 exists in monomeric, pentameric, and
decameric states [54]. The pentameric NPM1 is normally localized to the nucleolus and is
involved in nucleosome formation and chromatin remodeling [11,55,56]. The N-terminal
OD contains two canonical, leucine-rich nuclear export signals (NES; Figure 1) [16]. NES1
regulates ribosomal subunit binding, protein synthesis, and cell proliferation. NES2 binds
the RAN complex with exportin 1 (XPO1; also called CRM1) and regulates NPM1′s associa-
tion with centrosomes [16]. The mutation of a potential phosphorylation site at threonine
95 in NES2 abolishes the NPM1 association and inhibition of centrosome duplication [57].
The central unstructured, negatively charged HBD (Figure 1) mimics DNA structure for
efficient binding to histones, preferentially to histone H3, to mediate nucleosome formation
and chromatin decondensation [12,19,58,59]. The central HBD contains one of the two
nuclear localization signals (NLS) that act as importin α/β recognition sites and mediate
nuclear localization of NPM1. The C-terminal positively charged NBD preferentially binds
RNA. It can also bind double-stranded DNA [60,61] and ATP [62]. In addition to an NLS,
the NBD contains aromatic residues representing nucleolar localization signals (NoLS).
Ribonucleolytic activity has been demonstrated at the 28S rRNA level in a common fraction
of HBDs and NBDs [61,63], suggesting that NPM1 may play a role in ribosome maturation
in addition to ribosome export from nucleoli.

Post-translational modifications, including phosphorylation, acetylation, ubiquitina-
tion, SUMOylation, and PARylation, modulate the subcellular compartmentalization of
NPM1, thereby regulating its oligomeric state and functions (Figure 1) [31,54].

NPM1 is phosphorylated by several kinases, including casein kinase 2 [64], polo-
like kinase 2 [65], cyclin-dependent kinase 1 [66], and the cyclin E-dependent kinase 2
(E/CDK2) complex [47,67]. Phosphorylated NPM1 at S48, S88, T95, and S125 is monomeric
and nucleoplasmic [54,56]. The phosphorylation of T199 by E/CDK2 regulates mitosis,
is responsible for centrosome duplication and pre-mRNA processing, and reduces the
ability of NPM1 to bind RNA. T234 and T237 phosphorylation facilitates mitosis and
detachment from the nucleolus. In contrast, the dephosphorylation of NPM1 by PP1β is
involved in DNA repair and is induced by UV exposure [68]. Acetylation at lysines 54,
229, 230, 257, and 267 also modulates compartmentalized functions of NPM1, including
interaction with RNA Pol II, and the regulation of DNA transcription by, for example, the
Polycomb repressive complex 2 in the nucleoplasm [69–72]. Several processes, including
HIV1 infection and drug resistance in cancer cells, depend on the induction and stabilization
of NPM1 acetylation [73,74].

Ubiquitination and SUMOylation further control NPM1 localization and stability.
BRCA1-BARD1 catalyzes the ubiquitination of NPM1 during mitosis, which appears to
result in NPM1 stabilization rather than degradation [75]. BRCA1 forms a heterodimeric
RING-type ubiquitin ligase with BARD1 to catalyze non-traditional K6-linked polyu-
biquitin chains [76]. BRCA1-associated protein 1 (BAP1) has been shown to disrupt
BRCA1/BARD1 association and consequently inhibit NPM1 ubiquitination by
BRCA1/BARD1 [77]. Mesencephalic astrocyte-derived neurotrophic factor (MANF) binds
to NPM1. It increases the ubiquitination-mediated degradation of NPM1, leading to upreg-
ulation of the p53 signaling pathway and inhibition of cell proliferation, migration, and
invasion ability in some cancer cells [78]. The SUMOylation of NPM1 is required for the
recruitment of DNA repair proteins early in the DNA damage response, and SUMOylated
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NPM1 affects the assembly of the BRCA1 complex [79]. Sentrin/SUMO-specific peptidase 3
(SENP3) antagonizes p14ARF-mediated NPM1 SUMOylation to promote ribosomal biogen-
esis [79]. Following double-stranded DNA breaks, hCINAP is recruited to damage sites that
promote the SENP3-dependent deSUMOylation of NPM1 [79]. In addition, p14ARF and
TRIM28 cooperate to SUMOylate NPM1, thereby preventing centrosome amplification [80].
SUMOylation at K230 and K263 enhances Rb binding and E2F1-mediated transcriptional
activity [81]. Porcine circovirus type 2 (PCV2) infection promotes the SUMOylation of
NPM1 by activating the ERK/Ubc9/TRIM24 signaling pathway, resulting in the nucleolar
regulation of PCV2 DNA replication [82]. NPM1 is associated with the poly(ADP-ribose)
polymerase 1/2 (PARP1/2) [83]. PARP1 represses PD-L1 transcription through its interac-
tion with NPM1 NBD, which is required for NPM1 binding to the PD-L1 promoter [84].
PARylated NPM1 has been reported [85], where NPM1 is known to be a target for mono-
and poly-ADP ribosylation by several PARP proteins [29,66,86–88]. This PARylation modi-
fication regulates the myogenesis function for several proteins including NPM1 and human
antigen R (HuR) [89]. The role of NPM1 PARYlation in regulating DNA damage repair
foci [90] needs to be investigated in more detail.

3. NPM1 in Nucleolus

The nucleolus is a highly dynamic subnuclear compartment that undergoes major
structural and compositional changes in response to growth signals, cellular status, and
stress [3,4]. Various factors, including DNA damage, nutrient deprivation, viral infection,
and exposure to certain chemicals, can induce nucleolar stress. The nucleolus is considered
a stress-sensing organelle in cells, and genotoxic stress induces nucleolar dynamic and
functional changes.

Specific cellular pathways aimed at maintaining cellular homeostasis and integrity
are activated due to stress. Several diseases, including cancer and neurodegenerative
disorders, have been implicated in the dysregulation of nucleolar stress responses [4,91].
The nucleolus is composed of three major compartments: the fibrillar center (FC; pre-rRNA
transcription from rDNA), the dense fibrillar component (DFC; pre-rRNA processing), and
the granular component (GC; ribosome unit assembly) (Figure 2) [92–96].

NPM1 is predominantly localized at the outer GC layer [97], where it regulates late
rRNA processing and ribosome unit assembly [94,95]. Thus, the primary function of NPM1
is ribosome biogenesis [96,98,99]. In contrast, NPM1 directly binds and assists in the nuclear
export of ribosomal protein L5 (rpL5) [100]. Therefore, blocking NPM1 affects the nuclear
export of ribosomal protein L5 (rpL5) and 5S rRNA, reducing cell proliferation and cell
cycle arrest. The endonuclease activity of NPM1 prevents it from cleaving and converting
pre-rRNA to mature 28S rRNA [63,101,102]. NPM1 also shuttles and localizes premature
60S rRNA, 80S ribosomes, and polysomes [47].

NPM1 has been implicated in maintaining nucleolar structure by modulating liquid-
liquid phase separation (LLPS) through mechanisms driven by electrostatic interactions
between either the negative and positive domains on NPM1 (homotypic) or between
the positively and negatively charged domain of NPM1 on one side with the positively
charged R motifs on other nucleolar proteins or negatively charged rRNA (heterotypic) [11].
The interaction of NPM1 with SURF6 (Surfeit locus protein 6) is thought to modulate
heterotypic vs. homotypic interactions [11,103–105]. Another nucleolar function of NPM1
is the initiation of the nucleolar stress response, where the nucleolus responds very early to
stress and/or damage [2]; this early response occurs upon the modification of the nucleolar
protein NPM1 by oxidation or S-glutathionylation (at cysteine residue 275), followed by the
release and dissociation of the nucleolar protein NPM1 from the nucleolus and translocation
to the nucleoplasm [48,106,107].
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membrane and extracellular milieu. For more details, see text.

4. NPM1 in Nucleus

In the nucleus, NPM1 regulates cell survival through its interaction with PKB/AKT
in response to growth factor stimulation and may begin to regulate and balance cell
survival and apoptosis [108]. On the other hand, the inhibition of apoptosis is achieved by
binding to both nuclear PI(3,4,5)P3 and nuclear AKT, a complex that directly interacts with
caspase-activated DNase and inhibits its DNA fragmentation activity [32,33] This NPM1-
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dependent process appears to be controlled by nuclear PI3K and its upstream regulator
PIKE (PI3K enhancer), which is a nuclear GTPase [32].

NPM1 contains two NES signals and its shuttling properties are regulated via its
interaction with RAN-CRM1, which are mainly involved in the regulation of centrosome
duplication and spindle assembly by cyclin-CDK complexes, p53, BRCA1, and BRCA2
(Figure 2) [46,57,109–114]. NPM1 acts as a regulator of cell cycle progression; its overex-
pression induces the rapid entry of hematopoietic stem cells into the cell cycle by inhibiting
the expression of many negative cell cycle regulators during the G1-S phase, while NPM1
depletion upregulates the expression of these negative regulators and induces cell cycle
arrest during stress [115]. The absence of NPM1 induces ploidy or uncontrolled centrosome
amplification [114]. NPM1 is recruited to the centrosome through its interaction with
BRCA2 and ROCK2 [116,117].

Interestingly, the phosphorylation of NPM1 is critical for regulating its nuclear func-
tions. The phosphorylation of NPM1 on serine 4 by PLK1 and NEK2A regulates its
reassociation with the centrosome during mitosis [118]. This process is also regulated by
the NES of NPM1 and its interaction with RAN/CRM1, and the inhibition of its phospho-
rylation at T95, or mutation of the NES motif of NPM1, induces ploidy [6]. In addition, the
phosphorylation of T 199 with E/CDK2 is required for centrosome duplication and the
regulation of G2/M cell cycle arrest through its interaction with p53 and the regulation of its
interaction with GADD45 [47]. Various stressors, such as UV, induce the rapid translocation
of NPM1 to the nucleoplasm and its interaction with p53 and HDM2 [119]. NPM1 regulates
the cell cycle by transporting hyperphosphorylated Rb to the nucleolus, allowing for the
dissociation between Rb and E2F protein, where E2F allows the cell cycle to proceed into
the S phase [120].

On the other hand, NPM1 regulates and maintains genomic stability by regulating
many repair mechanisms of the DNA damage response. It also regulates centrosome
replication [6,97]. NPM1 modulates base excision repair by forming a complex with the
base excision repair proteins (APE1, FEN1, Polβ, and LIGL) [121,122], and the absence
of NPM1 induces mislocalization between APE1, FEN1, and LIGL [12,97]. NPM1 affects
the stability and localization of many base excision repair proteins, such as the alternative
reading frame tumor suppressor p14ARF and the apurinic/apyrimidinic endonuclease 1
(APE1) [97]. Recently, it was shown that interaction between p14ARF and sirtuin7(SIRT7)
blocks its interaction with NPM1 and subsequently induces its degradation via proteasomal
activity [123]. Another way in which genome stability is regulated is through the regulation
of DNA double-strand breaks by interacting with both p53 and its negative regulator, the E3
ubiquitin ligase HDM2. This interaction protects p53 from degradation and prolongs its half-
life during stress [119]. NPM1 directly interacts with aa 639-1000 in BRCA2 and supports
the double-strand break repair mechanism by forming BRCA2/RAD51 foci [116,124]. It
interferes in translesion DNA synthesis by interacting with the catalytic domain of Pol
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Phosphorylated NPM1 recruits to double-strand break Rad51 foci, and its depletion
does not affect the formation of the foci but leads to their persistence. The analysis of Rad51
and γ H2AX foci in NPM1-null mouse embryonic fibroblasts has been conducted, which
are characterized by persistent DNA damage without affecting cell survival [126,128,129].
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5. NPM1 in Cytoplasm

Although NPM1 should shuttle between the nucleus and cytoplasm, its predominant
presence in the cytoplasm indicates abnormalities or severe mutations, including cancer
(acute myeloid leukemia, AML) and viral infection [24]. NPM1 in AML has insertional
mutations that result in a frameshift that affects tryptophan residues on the nucleolar local-
ization signal and converts it to a nuclear export signal, resulting in the aberrant cytoplasmic
localization of NPM1 [16,48,130]. The latter can be inhibited by CRM1 inhibitors [131,132].

NPM1 may also mediate actin cytoskeletal dynamics through the Ras-dependent
hyperactivation of the mammalian target of the rapamycin (mTOR) protein [133]. One
of the most interesting functions of NPM1 is its role in regulating apoptosis. During
stress, NPM1 suppresses the p53 apoptotic pathway by blocking the localization of p53
to mitochondria and preventing its translocation from the nucleus to mitochondria [37].
Another anti-apoptotic activity of NPM1 appears through reducing the proteolytic activity
of several caspases (3, 6, 8), where a remarkable decrease in caspase 8 activity has been
reported in cultured cardiomyocytes (Figure 2) [12,134]. On the other hand, NPM1 may
regulate the pro-apoptotic activity in both intrinsic and extrinsic apoptosis. Its pro-apoptotic
role in intrinsic apoptosis appears by its binding to activated BAX and the translocation
of BAX to mitochondria. In this study, pro-apoptotic activity was monitored by detecting
increased levels of mitochondrial cytochrome c release and caspase cascade activation
with NPM1 downregulation using RNAi, and this pro-apoptotic effect is supported by
the NFκB pathway and the direct interaction between NPM1 and other nucleolar proteins
(RELA) [34,135,136]. Nevertheless, the oncogenic mutant of NPM1 impairs mitochondrial
function [137]. Using pharmacological inhibitors of NPM1 to induce apoptosis in cancer
cells, reports have monitored the anti-apoptotic properties of NPM1. The interaction
of GAGE with NPM1 increases the stability of NPM1 and its resistance to interferon
gamma-induced apoptosis [12,138]. In extrinsic apoptosis, NPM1 showed anti-apoptotic
activity through its fusion with retinoic acid receptor alpha (RARA) and by blocking
the TNF-mediated activation of caspases 3 and 8 (CASP3/8) through its interaction with
the tumor necrosis factor receptor type 1-associated DEATH domain protein (TRADD)
(Figure 2) [139,140].

Interestingly, the disruption of the oligomerization state of NPM1, by disrupting its
pentameric state formation, induces apoptosis and affects its subcellular localization [134].
The inhibition of NPM1 nucleocytoplasmic shuttling also induces apoptosis [46,141,142].
All these data together suggest a bipartite role of NPM1 in apoptosis or as having an anti-
or pro-apoptotic effect like some apoptotic marker proteins (e.g., BCL2) [143].

The N-terminal domain of NPM1 is structurally responsible for the binding of many
viral proteins, such as HIV Tat and Rev proteins, herpes simplex virus US11 [20,22], hepatitis
B core proteins [144], and adenovirus basic core proteins (Figure 2) [145]. As a result,
NPM1 is involved in various stages of the viral life cycle, including the nuclear import
of viral proteins and final assembly, making it a target for the treatment of various viral
infections [11,23].

6. NPM1 at the Plasma Membrane and Its Secretion

The nucleolar proteins NPM1 and nucleolin have been reported at the inner leaflet of
the plasma membrane using electron microscopy; these proteins have also been reported
to interact with KRAS [146]. Another interesting point is that at the plasma membrane,
NPM1 binds and stabilizes activated KRAS nanoclusters to modulate signaling through
the MAPK pathway [35]. Furthermore, NPM1 regulates various cell signaling pathways
such as proliferation and differentiation and cell survival via the MAPK pathway through
its interaction with RAS proteins, specifically KRAS rather than HRAS. The acidic domain
of NPM1 interacts with the basic domain of KRAS [35,146].

Several reports have drawn attention to the potential role of NPM1 in innate immunity.
NPM1 was passively released into the extracellular milieu by necrotic or damaged cells
but secreted by macrophages and monocytes [147]. This secretion can be accompanied by
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miRNAs, and NPM1 is responsible for the stabilization of the secreted miRNAs [148]. In
addition, extracellular NPM1 acts as an inflammatory stimulator by inducing the produc-
tion of inflammatory cytokines such as tumor necrosis factor (TNFα), IL-6, and IL-8 via
ERK1/2 activation [149]. TLR4 is a receptor that mediates NPM1 signaling, which requires
NPM1 binding to myeloid differentiation protein-2 (MD-2). Thus, NPM1 activity may be
useful in the treatment of TLR4-related diseases [147].

NPM1 is considered one of the damage-associated molecular pattern (DAMPA) pro-
teins, high mobility group box 1 (HMGB1); histones H3 and H4 are considered pro-
inflammatory and cause cytotoxicity to living cells [149–154]. In addition, NPM1 can be
secreted as a pro-inflammatory factor that induces migration and angiogenic regeneration
by stimulating vascular endothelial growth factor-A (VEGF-A), hepatocyte growth factor
(HGF), stromal-derived factor-1 (SDF-1), fibroblast growth factor-2 (FGF-2), platelet-derived
growth factor-B (PDGF-B), and matrix metallopeptidase 9 (MMP9) properties in human
endothelial cells [155], where it was reported that NPM1 interacts with TLR4 in these cells
and activates an NFκB -dependent inflammatory pathway that upregulates interleukin
IL-6 and COX-2 gene expression [156]. NPM1 regulates NFκB activity by binding its DNA-
binding domain and enhancing its DNA-binding activity. NPM1 enhances inflammatory
gene expression induced by tumor necrosis factor-alpha (TNF-α) and lipopolysaccharides
(LPSs) in fibroblasts and macrophages [156].

7. Conclusions

NPM1 is an essential multifunctional nucleolar protein. It diffuses from the nucleolus
during stress to interfere with many stress-related processes such as genomic stability,
cell cycle, and apoptosis. Its aberrant cytoplasmic localization is a sign of cancer (acute
myeloid leukemia). Recently, NPM1 has been identified as a key protein in either pro/anti-
apoptotic activities and is responsible for the stabilization of many other proteins including
tumor suppressor proteins; these findings developed our understanding of NPM1 beyond
its implications in cancer prognosis and it has been identified as a primary therapeutic
target. Approaches such as gene therapy to correct its mutations or targeting its interacting
networks with small molecule inhibitors are being actively explored with a focus on
cancer malignancy and cell response to radiotherapy. However, the molecular mechanisms
underlying NPM1-related pathology are still poorly understood. Conversely, its anti-stress
properties offer promising avenues for intervention in neurodegenerative diseases such
as Huntington’s disease by managing pathological aggregates, as well as many other
stress-related diseases.

Advances in the understanding of the mechanisms governing NPM1 secretion, its in-
teraction with different extracellular receptors, its involvement in external apoptosis and its
potential fusion with other proteins will open new avenues. These developments could po-
tentially transform NPM1 from a therapeutic target into a bioengineered recombinant drug
candidate for various diseases. In addition, considering its chaperoning properties and its
ability to modulate different stages of viral cellular processing, all of this together suggests
that NPM1 is a key regulator of innate immunity and may serve as an immunotherapeutic
or pro-inflammatory agent in many diseases as well as viral infections.
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dependent process appears to be controlled by nuclear PI3K and its upstream regulator 
PIKE (PI3K enhancer), which is a nuclear GTPase [32]. 

NPM1 contains two NES signals and its shuttling properties are regulated via its in-
teraction with RAN-CRM1, which are mainly involved in the regulation of centrosome 
duplication and spindle assembly by cyclin-CDK complexes, p53, BRCA1, and BRCA2 
(Figure 2) [46,57,109–114]. NPM1 acts as a regulator of cell cycle progression; its overex-
pression induces the rapid entry of hematopoietic stem cells into the cell cycle by inhibit-
ing the expression of many negative cell cycle regulators during the G1-S phase, while 
NPM1 depletion upregulates the expression of these negative regulators and induces cell 
cycle arrest during stress [115]. The absence of NPM1 induces ploidy or uncontrolled cen-
trosome amplification [114]. NPM1 is recruited to the centrosome through its interaction 
with BRCA2 and ROCK2 [116,117].  

Interestingly, the phosphorylation of NPM1 is critical for regulating its nuclear func-
tions. The phosphorylation of NPM1 on serine 4 by PLK1 and NEK2A regulates its reas-
sociation with the centrosome during mitosis [118]. This process is also regulated by the 
NES of NPM1 and its interaction with RAN/CRM1, and the inhibition of its phosphoryla-
tion at T95, or mutation of the NES motif of NPM1, induces ploidy [6]. In addition, the 
phosphorylation of T 199 with E/CDK2 is required for centrosome duplication and the 
regulation of G2/M cell cycle arrest through its interaction with p53 and the regulation of 
its interaction with GADD45 [47]. Various stressors, such as UV, induce the rapid translo-
cation of NPM1 to the nucleoplasm and its interaction with p53 and HDM2 [119]. NPM1 
regulates the cell cycle by transporting hyperphosphorylated Rb to the nucleolus, allow-
ing for the dissociation between Rb and E2F protein, where E2F allows the cell cycle to 
proceed into the S phase [120].  

On the other hand, NPM1 regulates and maintains genomic stability by regulating 
many repair mechanisms of the DNA damage response. It also regulates centrosome rep-
lication [6,97]. NPM1 modulates base excision repair by forming a complex with the base 
excision repair proteins (APE1, FEN1, Polβ, and LIGL) [121,122], and the absence of NPM1 
induces mislocalization between APE1, FEN1, and LIGL [12,97]. NPM1 affects the stability 
and localization of many base excision repair proteins, such as the alternative reading 
frame tumor suppressor p14ARF and the apurinic/apyrimidinic endonuclease 1 (APE1) 
[97]. Recently, it was shown that interaction between p14ARF and sirtuin7(SIRT7) blocks 
its interaction with NPM1 and subsequently induces its degradation via proteasomal ac-
tivity [123]. Another way in which genome stability is regulated is through the regulation 
of DNA double-strand breaks by interacting with both p53 and its negative regulator, the 
E3 ubiquitin ligase HDM2. This interaction protects p53 from degradation and prolongs 
its half-life during stress [119]. NPM1 directly interacts with aa 639-1000 in BRCA2 and 
supports the double-strand break repair mechanism by forming BRCA2/RAD51 foci 
[116,124]. It interferes in translesion DNA synthesis by interacting with the catalytic do-
main of Pol ղ and preventing its proteasomal degradation [12,125]. The post-translational 
modification of NPM1 regulates its DNA repair functions, where phosphorylated NPM1 
has been shown to translocate to DNA double-strand breaks with γ-H2AX foci [126], and 
the inhibition of this colocalization sensitizes cells to ionizing radiation [127].  

Phosphorylated NPM1 recruits to double-strand break Rad51 foci, and its depletion 
does not affect the formation of the foci but leads to their persistence. The analysis of 
Rad51 and γ H2AX foci in NPM1-null mouse embryonic fibroblasts has been conducted, 
which are characterized by persistent DNA damage without affecting cell survival 
[126,128,129]. The dephosphorylation of NPM1 at threonines 199, 234, and 237 by the pro-
tein phosphatase PP1β due to the release of the retinoblastoma tumor suppressor (pRB) 
in response to UV irradiation is important for the activation of E2F1-dependent DNA re-
pair mechanisms [48]. NPM1 SUMOylation at k263 by p14ARF is required for NPM1 in-
volvement in HR and RAD51 foci formation [79,124].  

  

: DNA
polymerase eta; PP1β: Protein phosphatase; Rad51: RecA Homolog; RARA: Retinoic acid receptor
alpha; RAS: Rat sarcoma virus; Rb: Retinoblastoma protein; RELA: V-rel avian reticuloendotheliosis
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Sentrin/SUMO-specific peptidase 3; SIRT7: sirtuin7; SURF6: Surfeit locus protein 6; Tat: Trans-
activator of transcription;;; T-cell: Thymus-dependent development lymphocytes; TNF-α: tumor
necrosis factor-alpha; TRADD: Tumor necrosis factor receptor type 1-associated DEATH domain pro-
tein; TRIM24/28: Tripartite Motif Containing 24/28; Ubc9: Ubiquitin carrier protein 9; UL24: Unique
long region; US11: Unique short US11 glycoprotein; UV: Ultraviolet; VEGF-A: Vascular endothelial
growth factor-A; XPO1; Exportin 1; γ-H2AX: Histone family member X; γ-IR: Gamma–Infrared.
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