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Abstract: Statistical analyses of homologous protein sequences can identify amino acid residue
positions that co-evolve to generate family members with different properties. Based on the hy-
pothesis that the coevolution of residue positions is necessary for maintaining protein structure,
coevolutionary traits revealed by statistical models provide insight into residue–residue interactions
that are important for understanding protein mechanisms at the molecular level. With the rapid
expansion of genome sequencing databases that facilitate statistical analyses, this sequence-based
approach has been used to study a broad range of protein families. An emerging application of this
approach is to design hybrid transcriptional regulators as modular genetic sensors for novel wiring
between input signals and genetic elements to control outputs. Among many allosterically regulated
regulator families, the members contain structurally conserved and functionally independent protein
domains, including a DNA-binding module (DBM) for interacting with a specific genetic element
and a ligand-binding module (LBM) for sensing an input signal. By hybridizing a DBM and an LBM
from two different family members, a hybrid regulator can be created with a new combination of
signal-detection and DNA-recognition properties not present in natural systems. In this review, we
present recent advances in the development of hybrid regulators and their applications in cellular
engineering, especially focusing on the use of statistical analyses for characterizing DBM–LBM inter-
actions and hybrid regulator design. Based on these studies, we then discuss the current limitations
and potential directions for enhancing the impact of this sequence-based design approach.

Keywords: statistical model; coevolutionary analysis; transcriptional regulator; protein design

1. Biological and Structural Properties of Allosterically Regulated
Transcriptional Regulators

Allosterically regulated transcriptional regulators are a group of proteins that can
interact with genetic elements, such as promoters, to control the expression of genes in
response to specific physical and chemical stimuli. Under different conditions, the gene
expression control facilitates the cells’ adaptation to environmental and physiological
changes by activating desirable biological functions, including drug resistance, catabolic
pathways, antibiotic biosynthesis, osmotic stress response, and bacterial pathogenicity [1–4].
Over 50 protein families of transcriptional regulators have been identified, sensing more
than 200 signals [5,6]. Many regulators are characterized by a highly conserved helix–
turn–helix (HTH) motif or winged helix motif. Among members in each regulator family,
conserved three-dimensional structures along the helix–turn–helix or winged helix suggest
that this region plays a significant structural role, which is key in their biological functions
and transcriptional regulation activities. Indeed, these two motifs are the key components
for binding to DNA. With the current knowledge and bioinformatics tools, potential
DNA-binding proteins and regulators have often been identified based on the presence
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of these motifs [7,8]; thus, HTH and the winged helix are considered the core part of the
DNA-binding module (DBM) among transcriptional regulators [9]. The other module,
often called the ligand-binding module (LBM), is relatively less conserved, with unique
sequences that may play a large role in the family members’ ability to bind and respond to
different ligands [10,11].

The DBM and LBM of a regulator define DNA recognition and signal detection
properties, respectively. Taking the LacI superfamily as an example, the representative
family member, LacI, is composed of four monomers that form a tetramer connected by four
α-helices [12,13], where each monomer contains an N-terminal DBM and an LBM towards
the C-terminal. These LBMs are involved in binding the ligand as well as controlling
dimerization [12,14]. Regulators in this family share a similar molecular mechanism, with
the effector molecule binding to the LBM, causing a conformational change in the regulator
and leading to release from the operator. In the case of the LacI protein, for which the LacI
family is named, each monomer is capable of binding allolactose or IPTG; upon binding, a
series of conformational changes occurs that leads to the protein releasing from the DNA,
or losing the capacity to bind DNA if not bound [12].

Many regulators are essential for maintaining cell fitness in response to stresses and
other biological conditions. LacI is involved in lactose metabolism by regulating the ex-
pression of the β-galactosidases lactose permease and galactoside transacetylase [15,16].
Ligand binding to the repressor causes the hinge helix to undergo a conformational change,
which in turn causes changes in the helix–turn–helix motif to reduce DNA binding affin-
ity [12], allowing access to the operon. This regulation is important, because efficient
energy metabolism is a critical process for cell viability. LacI is particularly advantageous
for use in genetic circuits due to the fine control that can be achieved with its promoters,
largely in part due to the strong affinity of LacI for its operator lacO, as well as a highly
dynamic range of gene expression and rapid state-switching in the presence of the inducer
IPTG [17]. A range of transcriptional regulators that are mechanistically similar to LacI,
such as TetR and AraC, has been used for genetic circuit construction and induction of gene
expression [18–21].

2. Previous Development of Hybrid Regulators

It has been a long-term goal in synthetic biology to utilize signal transduction pathways
from different organisms to serve new purposes. These pathways are capable of sensing a
broad range of conceivable bacteria-relevant inputs and linking each of them to outputs
in the form of biological process regulation or more generally, gene expression [22,23].
Directly porting native sensors between organisms can be difficult, due to issues such as
transcriptional incompatibilities or cross-regulation from other pathways [24]. To overcome
these limitations, researchers have explored engineering transcriptional regulators with
novel DNA recognition and signal detection functions, such that desirable genetic elements
(such as promoters) can be chosen specifically for building a genetic network to ensure
robust performance while linking the ideal signal to an output of interest. Domain swap-
ping is one viable strategy to this end (Figure 1). Transcriptional regulators may recognize
different sequences of DNA and respond to different signals, but if they are in the same
protein family, meaning that they evolved from the same origin, they are structurally and
mechanistically conserved. As a result, the DNA-binding modules and ligand-binding
modules from different family members maintain the conserved intra-protein scaffold at the
DBM–LBM interface, allowing amino acid residues across this module–module interface to
interact desirably. Therefore, if DBMs and LBMs are swapped to create hybrid regulators,
even if the two modules originated from different regulators, they may still be compatible
for maintaining native protein structure and allosteric interactions, generating regulatory
activities [9,25].
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Figure 1. Illustration of the domain-swapping strategy. A hybrid repressor containing the DNA-
binding domain from one native repressor (blue) and the ligand-binding domain of another repressor
(orange) retains each native repressor’s respective DNA and ligand-binding capacities.

LacI is one of the first protein families to have been explored for domain swapping [26],
which revealed that regulators in this family possess independent DNA-binding and regu-
latory domains, a feature that has been thoroughly exploited to produce hybrid regulators.
Between the HTH and the ligand-binding domain, there is a linker region known as the
hinge helix, and this interacts closely with the HTH to facilitate DNA-binding [14]. A
change in the linker region may affect DNA-binding specificity [12,25,26]. With the well-
characterized LacI family structural architecture and biochemical properties of each domain
and motif, domain swapping has been robustly performed using the HTH and hinge helix
as the DBM and the rest of the protein as the LBM [27–29].

Success in domain swapping with the LacI family has opened a new protein design
strategy for developing genetic sensors. Following the initial proof of concept, researchers
have demonstrated the use of this strategy in the TetR [30], LuxR [31], OmpR, NarL [32],
and MerR [33] families of regulators. Taken together, this success demonstrates that domain
swapping has a broad application. However, a key challenge arose; separate domains were
expected to retain their functions during recombination, but in practice, domains may be
incompatible due to functional or structural modifications. In many of the abovementioned
studies, some of the resulting hybrid regulators possessed poor regulatory activities, which
hindered their use for cellular engineering.

3. Genetic Circuit Development with Hybrid Regulators

Although identifying functional hybrid regulators remains challenging, some of those
that have been identified have been utilized for advanced applications, such as emulating
logic gate behavior at a cellular level [34,35]. The general strategy for these applications
stems from the notion that regulators can be conceptualized as Boolean devices that take
an input in the form of a signal ligand and produce an output such as gene expression.
For example, if two repressors had the same DBM but different LBMs, then both ligands
would be required to induce the expression of the common promoter, creating a genetic
AND gate. In turn, linking together combinations of these components allows the design
of sophisticated genetic circuits.

One of these circuits was built using hybrid repressors from the LacI family in a study
by Chan et al. (2016), where a “Passcode” circuit was designed as a biocontainment system.
Mediated by an AND gate of hybrid repressors containing the same DBM, two inputs
were required to prevent repression of the survival signal, without which cell death was
induced [36]. Another set of circuits utilizing hybrid repressors was made by Shis et al. [34],
in which several highly functional (>5-fold) two-input AND gates were constructed, as
well as a three-input and four-input gate. These studies highlight the novel circuit designs
only attainable by using hybrid regulators. These studies primarily used LacI, possibly
due to the high degree of characterization already performed by the scientific community.
Later studies sought to apply the same strategy to more diverse protein families. As
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an example, several chimeras were constructed from the OmpR/PhoB and NarL/FixJ
two-component system subfamilies using domain swapping, which were used to identify
the unknown inputs to an uncharacterized two-component system [32]. Another novel
application involved the use of hybrid regulators from the LuxR protein family to rewire a
quorum-sensing system for controlling an endogenous biosynthetic pathway [31]. Lastly,
MerR, a family of metal-responsive regulators, was used to synthesize hybrids to make
circuits capable of detecting heavy metals [33].

Compared with those using only native regulators, circuits constructed with hybrid
regulators that make novel connections between inputs and outputs immensely expand the
range of usable signals and enable more sophisticated, multi-input circuit designs. These
new connections can create circuit designs for entirely new functions that were previously
impossible. However, these circuits have their own challenges, specifically in finding
compatible DBMs and LBMs to connect desired inputs to outputs. When a regulator is
evolving to gain new DNA recognition or signal-detection functions, it may be necessary
to alter key residues involved in DBM–LBM interactions; to maintain these interactions,
interacting partners may co-evolve and thus, different family members may possess a
different pair of residues for a critical DBM–LBM interaction. In hybrid regulators, residues
from different native regulators may not interact efficiently, leading to incompatibility
between some modules. To determine module compatibility, the strategy often used is
to systematically test every combination experimentally; however, this wastes significant
time and resources as many nonfunctional regulators must be explored until an effective
one is found. To reduce this cost of development, a relatively new approach is to use
predictive models based on coevolution to identify functional regulators without needing
to synthesize each one and test for efficacy until one works. Based on the pattern of amino
acid distribution among family members, co-evolving residue pairs can be identified, which
provides a means to determine module compatibility and changes in residues that restore
perturbed interactions. Implementation of this strategy is described in Sections 4–7.

4. Using Direct Coupling Analysis and Direct Information Methods to Understand
Coevolution among Proteins

Statistical models have been used to analyze a wide range of proteins to reveal coevo-
lutionary information, facilitating the understanding of these macromolecules and their
interactions. A statistical modelling strategy has been used to predict performance of
hybrid regulators [28,37], involving statistical methods, direct coupling analysis (DCA),
and direct information (DI) [38,39]. DCA itself simply quantifies the relationship between
residue positions; however, this relationship strength can be interpreted as the result of
coevolutionary pressure [40]. Studies have demonstrated the capacity of these methods
to generate protein structure predictions from the sequence information alone [41]. Other
studies have employed DCA to augment the approach using additional methods or ex-
perimental data, such as coevolution alongside mass spectrometry data for improved
determination of protein folding [42]. Additionally, DCA has been used to study protein
stability and structure, as a basis for inferring contact between residues [43], and has
been further integrated with molecular dynamics simulations and empirical force-field
calculations for predicting protein folding [44]. Furthermore, an approach using DCA and
coupled DI pairs was used to understand and model dimerization in bacterial flagellar mo-
tors [45]. Not merely limited to protein structures, DCA has been used to predict 3D RNA
structures [46]. Lastly, DCA has also been extensively used to study interactions between
proteins, such as between ribosome and trp operon proteins [47], as well as large-scale
networks spanning entire protein families [48,49]. Variants of the above models have also
been shown to be effective for protein structure prediction. A modified direct information
score (DIS) based on the DI method has advanced our understanding of how bacterial
two-component signaling proteins selectively interact with their appropriate partners while
avoiding non-partners [50]. Additionally, pseudo-likelihood maximization-based DCA
(plmDCA) and Boltzmann–machine learning-based DCA (bmDCA) [51], both derived from
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the original DCA model, have shown that capturing the overall statistical properties of a
protein family can identify correlations between amino acid pairs in sequence alignments.
This capability is crucial for accounting for protein folding and function [52].

A key advantage of DCA and the statistical model-based protein design strategy
is that the only required inputs are protein sequences. Other protein design strategies
have also generated great success in understanding protein mechanisms and advancing
protein design, such as methods that involve calculations of free-energy states [53,54],
protein motion [55,56], and the number and duration of recurrences in dynamic protein
systems [57,58], which have been used to predict folding and interactions. Comparatively,
these other approaches can provide more in-depth analyses of biophysical aspects, but they
have a greater demand for computational power and information on protein structure. DCA
is an appropriate approach for studying protein families that are not well-characterized but
have a large set of available member sequences.

5. Using Statistical Modelling of Coevolution to Reveal Key DBM–LBM Interactions

As described above, DCA and DI have been used for studying many aspects of
protein sciences. A novel application is to predict compatibility between DBMs and LBMs
(Figure 2) [28]. In this strategy, functional regulators are still validated experimentally,
but the time and resource costs can be significantly reduced. This model is enabled by
the theory that residues on different positions of a protein that interact closely, such as to
coordinate allosteric regulation, will reciprocally affect each other’s evolution. In other
words, changing the residue at one site will be matched with a change of its interacting
partner at another site [38]. In examples where this strategy was first applied, DCA was
first used to discern residue pairs that were directly correlated due to roles in structure or
function. DCA was able to identify directly correlated residue pairs from false positives
caused by background signals or phylogenetic linkage. The DCA algorithm begins with
a multiple-sequence alignment (MSA), generated using hidden Markov models (HMMs).
MSA is critical as this step defines positional alignment for all sequences, which is the basis
for statistical analysis. There are many MSA programs [59–62]; for example, HMMER [63]
was used for MSA to develop hybrid regulators from the LacI family [37]. MSA starts
with a sequence homology search, where a seed sequence is compared to a large database
of known sequences, and known related sequences are found using statistical methods.
Ideally, a large number of related sequences are found, and these sequences are used to
generate a profile HMM, a hidden Markov model that is used to create a scoring system
that relates the amino acid probability distribution at each position [64] and is used to detect
distant homology. This method can better recognize the biases at each sequence position
towards different amino acids. Additionally, profile HMMs can better detect homologs
when insertions, deletions, and substitutions are involved [65]. After the profile is created,
it is compared against a sequence database to identify more related sequences, after which
each sequence is aligned to the profile HMM, and the final MSA is output as a single file
of aligned sequences. The quality of the MSA is critical because each subsequent step is
performed using the MSA as the primary input. If the MSA is constructed poorly, the
downstream statistical methods yield poor results.
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Figure 2. A general scheme for developing predictive models for DBM–LBM compatibility among
transcriptional regulators. (a) Multiple sequence alignment is created using a seed sequence, which
is usually from a well-characterized regulator in the protein family. (b) Pairwise couplings (eij)
are determined for each combination of amino acids in each residue pair between DBM and LBM.
(c) Pairwise couplings are inputs for direct coupling analysis, which outputs direct information
(DI) values for each DBM–LBM pair among family members; DI provides a quantitative means to
suggest the likelihood of the two corresponding positions co-evolving. (d) The top DI pairs are then
selected for use in model development, alongside the pairwise couplings to (e) generate compatibility
predictions for a given set of aligned hybrid sequences.

Following MSA generation, DCA is performed to assess each aligned residue position
in the MSA i, and the algorithm keeps a frequency count for each amino acid A in column
i. Another frequency count tracks when each amino acid B coappears in another residue
position j in the same protein sequence. These coappearing frequencies are adjusted in the
statistical model to avoid biases towards highly abundant genes; in a protein sequence
database, regulator sequences gathered from different organisms can be nearly identical
as some regulators are highly abundant across a broad spectrum of organisms. To correct
for sampling bias, sequences with greater than 80% identity are counted and reweighted.
With all these considerations, the equation for the statistical model P(S) of the amino acid
distribution is defined as:

P(S) =
1
Z

{
exp

{
∑
i<j

eij
(

Ai Aj
)
+ ∑

i
hi(Ai)

}}
(1)

Here, the model is based on the maximum entropy principle [38], which attempts
to make the fewest assumptions and selects the distribution with the highest entropy.
This leads to a Boltzmann distribution where the energy expression is substituted for the
sum of pairwise couplings eij(A,B) and local biases hi(A,B). Z is the normalization factor,
also called the partition function, which involves a sum of every possible state of the
system, specifically qL terms, where q represents the 21 possible elements, 20 amino acids
or a gap, and L is the length of the protein sequence. Due to the limits of reasonable
computing power, approximations are made to reduce these terms. With this information
on amino acid distribution, the direct information (DI) method can be used to determine
co-evolving pairs of residues, as the next step for developing the predictive model for
hybrid regulator design.

To understand coupling strengths between pairs of specific residue positions, direct
information is computed, representing the inference of direct statistical couplings, result-
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ing in a quantification of correlation strength between columns in the MSA [38]. Direct
information is described via the following equation [28]:

DIij = ∑
Ai Aj

Pij
(

Ai, Aj
)
ln

Pij
(

Ai, Aj
)

fi(Ai) f j
(

Aj
) (2)

where the probability distribution Pij(Ai, Aj) describes the variables that are coupled by
the direct link. In this expression, fi and fj are the correct marginal distributions for the
interaction. This quantity can be measured for every combination of positions i and
j. Sorting this list from the greatest DI value to the lowest provides an ordered list of
statistically inferred strongest coupling residue positions, which can be used to inform
hybrid regulator design, as illustrated in Figure 3. In the study performed on LacI family
regulators, the top 1500 DBM–LBM interaction pairs from the total possible 14,711 DBM–
LBM pairs were selected to exclude noise from non-co-evolving pairs [28]. These 1500 pairs
were then used as inputs for module compatibility predictions.
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key interactions that may be disrupted following domain swapping. In the illustration, it is implied
that a hybrid regulator’s poor function may be due to lost interactions between positions j1, j2, and i3.

6. Predictive Model Development for Evaluating DBM–LBM Compatibility

With key DBM–LBM interaction pairs identified from DCA and DI, these pairs were
used to develop a model for predicting compatibility between DBM and LBM in hybrid
regulators. The principle of this predictive model is to compare the patterns of amino acid
residue compositions in these pairs between a regulator sequence and the statistical trend
in the entire family; when a regulator sequence has a residue composition pattern similar
to that of the majority of the population, it is expected that these DBM–LBM pairs can
maintain desirable interactions and thus, the regulator should be functional.

To design hybrid regulators, their sequences can be systematically generated by using
the DBM of one native regulator from the original MSA and the LBM of another native
regulator, to create an array of length L2 − L, where L is the list of native regulators of
interest. The final list is composed of each combination of DBM–LBM, excluding the
original native sequences.

A compatibility score C(S) is then generated for each hybrid regulator sequence by
summing the eij values (see Equation (1)) for each amino acid pair in the sequence, as
described by the top selected DI pairs, mathematically depicted with the sigma notation
in Equation (3). In other words, for each DI pair in the list, the algorithm finds which two
residues are in those positions in the sequence and returns the corresponding coupling
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value from the eij submatrix for those two residues for that DI pair, and that value is added
to the sum for that sequence. The total sum of all these coupling values is the score C(S) for
that hybrid regulator sequence, which is described by the following equation:

C(S) =
DBM

∑
i

LBM

∑
j

{
−eij

(
Ai Aj

)}
(3)

For the application of hybrid regulator module compatibility prediction, position i is
always in the DBM and position j is always in the LBM. The algorithm sums each coupling
value for the amino acids in positions i and j for each i,j combination in the input list of DI
pairs. The more negative a C(S) score, the greater the prediction that the hybrid regulator
will be functional [28].

7. Hybrid Regulator Rescue Using the Coevolutionary Predictive Model Approach

In addition to predicting hybrid regulators’ performance, the coevolution-based model
has been used to design mutants for improving protein activities. Taking the predictive
model a step further, it can evaluate how point mutations may affect compatibility between
DBMs and LBMs, based on the change in the compatibility score. A mutation that leads to a
more favorable score can be considered constructive for facilitating key DBM–LBM interac-
tions. Therefore, if a hybrid regulator is poorly functional due to the loss of interactions, the
model can be used to guide the design of mutations for restoring those interactions, improv-
ing compatibility between the DBM and LBM. Jiang et al. used this approach to rescue the
activities of a range of hybrid regulators [37]. In that example, the team generated the full
set of sequences with a single mutation in the LBM for each target hybrid regulator. Then,
the predictive model was used to compute their compatibility score. By experimentally
characterizing the four mutations that led to the largest improvements in the score, they
identified mutants that significantly improved the activities of four hybrid regulators.

Furthermore, the team used a similar statistical approach for coevolutionary analysis
to evaluate the potential of mutations to generate adverse effects on protein structure
and function. As an amino acid residue may interact with multiple residues [66–68],
mutating a residue to reinstall DBM–LBM interactions may alter other critical interactions,
hampering protein structure stability. To predict how mutations may affect the protein, a
structural fitness model was developed, which also involved DCA to identify key intra-
module interaction pairs and define the statistical patterns of residue combinations in these
pairs [37]. Similar to the compatibility model C(S) (Equation (3)), these results were used to
compute the structural fitness score for mutant sequences, indicating the risk of protein
degradation by the mutation. This structural fitness model provided an additional layer of
information for designing hybrid regulator mutants.

8. Limitations of the Statistical Model Approach and Its Future Development

The success in designing LacI family regulators with sequence-based global statistical
analyses has provided a strong foundation in techniques and knowledge to apply this
approach to other protein families. However, some barriers are expected when extending
its use for hybrid regulator design. One of the main limitations is related to the size of
the protein family; to accurately identify coevolutionary traits with statistical models,
previous studies suggested that more than 1000 homologous, but sufficiently divergent,
sequences are required [38,48]. However, many regulators have great potential for genetic-
sensor applications although their families do not meet this criterion. For example, in
the Pfam database, families of Thermus thermophilus FadR (PF21776), Staphylococcus aureus
IcaR (PF18665), and Mycobacteria smegmatis DarR (PF17932) have less than 500 members.
Fortunately, with the rapid expansion of the genome sequencing database, the number of
regulatory sequences is expected to increase in the near future, reducing this problem.

As another limitation, statistical analyses on protein sequences can reveal only residue–
residue interactions and not the interactions between residues and other biological compo-
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nents, such as DNA and signaling molecules. Regulatory functions involve binding to DNA
at the DBM and signaling molecules at the LBM; these properties may be perturbed when
designing mutants to reinstall DBM–LBM interactions. Avoiding this situation requires an
in-depth understanding of the structural and biochemical properties of the regulator family,
which then allows the selection of appropriate mutations. Additional computational tools
can be used to determine interactions between transcriptional regulators and other biologi-
cal molecules. Recent advances in computational biology support accurate predictions of
protein–ligand [69] and protein–nucleic acid [70] interactions. Additionally, breakthroughs
in artificial intelligence-based technologies facilitate robust characterization of interactions
among biological molecules [71]. The limitations can potentially be overcome with these
complementing technologies.

Additionally, the use of this approach for protein design can be facilitated by devel-
oping comprehensive software with a user-friendly interface to automate all the steps in
the model development, ranging from multiple sequence alignment to score computing.
This would eliminate the barrier for researchers without a computational background to
gain access to these techniques. Studies from the previous several years demonstrate a
promising pathway for the robust design of hybrid regulators, and by addressing these
abovementioned issues, the statistic model approach will be broadly applied to study
other regulator families, as well as other multidomain proteins that involve conserved
domain–domain interactions.

9. Conclusions

The development of hybrid transcriptional regulators represents a way to create
biomolecular parts for synthetic gene networks, in which these new parts are the key to
new circuit designs. Recent studies on LacI family hybrid regulators show a promising
path to extend the capabilities in designing hybrid regulators by using a statistical model
approach for coevolutionary analysis. Resulting coevolutionary cues not only provide a
means to predict compatibility between DBMs and LBMs, they also support the design
of mutations that restore DBM–LBM interactions for rescuing regulator activities. These
previous studies have established a strong foundation for exploring this approach to design
hybrid regulators in other protein families.
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