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Abstract: Circular RNAs (circRNAs) are cardinal players in numerous physiological and pathological
processes. CircRNAs play dual roles as tumor suppressors and oncogenes in different oncological
contexts, including hepatocellular carcinoma (HCC). Their roles significantly impact the disease
at all stages, including initiation, development, progression, invasion, and metastasis, in addition
to the response to treatment. In this review, we discuss the biogenesis and regulatory functional
roles of circRNAs, as well as circRNA–protein–mRNA ternary complex formation, elucidating the
intricate pathways tuned by circRNAs to modulate gene expression and cellular processes through a
comprehensive literature search, in silico search, and bioinformatics analysis. With a particular focus
on the interplay between circRNAs, epigenetics, and HCC pathology, the article sets the stage for
further exploration of circRNAs as novel investigational theranostic agents in the dynamic realm
of HCC.

Keywords: circRNAs; HCC; initiation; progression; metastasis; epigenetics; theranostics; ncRNA; in
silico; bioinformatics

1. Introduction

Circular RNAs (circRNAs) have recently been in the spotlight, yet their origins date
back over four decades [1,2]. The exploration of circRNAs goes back to observations in
murine retroviruses and plant pathogenic viruses, namely viroids. In 1979, the circular
structure of circRNAs was confirmed through the electron microscope analysis of eukaryotic
cells. Subsequently, in 1986, circRNAs were identified in the hepatitis delta virus, marking
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their initial detection in humans [1,3]. These early breakthroughs established the basis for
elaborating on the diverse functions of circRNAs in biological processes [4–8].

2. CircRNA Nomenclature

The dynamic landscape of circRNA research and the lack of standardized nomenclature
pose a major challenge [4,9,10]. Existing databases such as circBase 0.1 http://www.circbase.
org/ [11] (accessed on 17 May 2023) use arbitrary numbering and have limited knowledge
of the host gene and chromosomal location of some circRNAs. To solve this problem, a
circRNA nomenclature system was developed based on the host gene and precise start/end
positions within the hosting gene. This innovative approach was implemented in the
newly developed Circbank Database, http://www.circbank.cn/ (accessed on 17 May
2023) which contains 140,790 human circRNAs. This database not only comprehensively
organizes circRNA data but also provides valuable information, including microRNA
(miRNA) binding sites, conservation, m6A modifications, circRNA mutations, protein-
coding potential, and predicted internal ribosome entry sites (IRESs), providing a basis for
further development of circRNA nomenclature and functions [12].

According to Bagheri Moghaddam et al. [13], the CircBank Database recently intro-
duced a new nomenclature system for circRNAs based on the host genome and the specific
location of the circRNA within that gene. Specifically, the upstream circRNA is assigned
the starting number. Regarding intergenic circRNAs, the naming convention follows the
format “hsa-circChrom#_#”, where the chromosomal number denotes the first number, and
the second number follows the same rules as circRNAs derived from coding genes.

3. CircRNA Classification

The classification of circRNAs is based on their origin. The exonic circRNAs (Ecir-
cRNAs) originate from the coding regions of genes and play a crucial role in controlling
genes [14] after they have been transcribed [14,15]. They act like conductors in a symphony,
specifically by sequestering miRNAs [16,17]. In simpler terms, they function as a control
center, fine-tuning the orchestra of genes in our cells after the transcription of genetic
information [18]. In contrast, circular intronic RNAs (ciRNAs), originating from intronic
regions of genes, are primarily localized within the nucleus, where they intricately coor-
dinate transcriptional dynamics. Last but not least, a unique composition of exon–intron
circRNAs (EIcircRNAs) are involved in complex interactions with RNA polymerase II, a key
enzyme involved in the transcription of genes [10]. This interplay with RNA polymerase II
underscores the multifaceted role of EIcircRNAs in modulating gene expression processes
within the cellular nucleus [19].

CircRNAs play vital roles in physiology and pathology, acting as sponges for miRNA,
regulating gene transcription, controlling RNA-binding proteins, and producing functional
peptides [6,20]. Interestingly, almost 25% of eukaryotic genes that code for proteins in the
mammalian brain are encoded by circRNAs. For example, circAcbd6 has a role in transform-
ing neural stem cells into cholinergic neurons. This is achieved by inhibiting the function of
miR-320-5p, thereby affecting the expression of Osbpl2, hence providing valuable insights
into the mechanisms by which circRNAs promote or inhibit neurogenesis [21].

4. CircRNA Biogenesis

CircRNAs are endogenously synthesized from exons by the “Exons Back Splicing”
method, a form of non-canonical messenger RNA splicing [5,22]. CircRNAs are distin-
guished by their single-strand closed structure, produced via ligating the 5′-3′-splice, and
donor–acceptor sites [23–25]. This contrasts the normal splicing of the pre-mRNAs finished
with a 5′ cap and 3′ polyadenylated tails, as shown in Figure 1 [26,27]. Difference points
between circRNA and mRNA are summarized in Table 1, indicating the direction of the
splicing, the pre-mRNA, the ligation sites, the structure, the parent genetic material, and
susceptibility to RNase R [9,28].

http://www.circbase.org/
http://www.circbase.org/
http://www.circbank.cn/
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polyadenylated tail.] 
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process. 

Difference CircRNA Linear mRNA 
Splicing Back Normal 
Pre-mRNA Non-canonical Canonical pre-mRNA 
Production By ligation With a free 5′-cap and 3′-tail 
Structure No free cap and tail With a free cap and tail 

Final structure Covalent closed-loop structure; 
circular  Linear  

Formed from 

Exons located in the cytoplasm or 
the nucleus increase nuclear 
protein retention, and circRNAs 
within introns remain in the 
nucleus  
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Figure 1. Splicing of circRNAs versus mRNAs. This figure demonstrates the non-canonical back
splicing of the circRNAs from the pre-messenger RNA, showing its single-strand closed-loop struc-
ture, which is resistant to RNase, versus the canonical splicing of the mRNA with its polyadenylated
3′ tail. [CircRNA: circular RNA; mRNA: messenger RNA, Poly-A-tail: polyadenylated tail].

Table 1. Differences between circRNA and mRNA during and after the RNA transcript maturation
process.

Difference CircRNA Linear mRNA

Splicing Back Normal
Pre-mRNA Non-canonical Canonical pre-mRNA
Production By ligation With a free 5′-cap and 3′-tail
Structure No free cap and tail With a free cap and tail

Final structure Covalent closed-loop
structure; circular Linear

Formed from

Exons located in the cytoplasm or
the nucleus increase nuclear
protein retention, and circRNAs
within introns remain in
the nucleus

Pre-mRNA from a DNA
template in the cell nucleus

Resistant to RNase R Yes No

5. Mechanisms of CircRNA Biogenesis

As mentioned earlier, circRNAs are sub-classified into three categories, EcircRNA,
ciRNA, and EIcircRNA, as illustrated in Figure 2 [29,30]. CircRNAs are generated via
various mechanisms. Table 2 demonstrates the different mechanisms involved in circRNA
circularization, including intron pairing-driven circularization, RBP-induced circulariza-
tion, lariat-induced circularization, and intro self-cyclization. Following their biogenesis,
circRNAs are regulated by the associated miRNA levels in their producing cells and then
transferred to body fluids through exosomes [28].
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Figure 2. CircRNA biogenesis. This figure illustrates how circularization can be induced by intron
pairing, RBPs, and lariat, which is triggered by spliceosomes and results in the synthesis of EIcir-
cRNA or EcircRNA. It also depicts introns self-cyclization producing ciRNA. [CircRNA: circular
RNA; ciRNA: intron circRNA; EIcircRNA: exon–intron circular RNA; Ecirc: exonic circular RNA;
RBPs: RNA-binding proteins].

Table 2. Molecular circularization of circRNAs.

CircRNA Biogenesis CircRNA Product Biogenesis Mechanism Refs.

Intron pairing-driven
circularization

EcircRNAs
or ElciRNAs

The method by which EcircRNA and EIcircRNA cyclize is
known as “direct back splicing” or intron pairing-driven
cyclization; pre-mRNA containing ALU repeats is sheared
to form EcircRNA following reverse-base complementary
pairing. EIciRNAs are produced if introns are kept in
between exons.

[19,31]

RBP-induced circularization

RBPs (trans-acting factors) are Quaking, Muscleblind, and
Fused-in Sarcoma. Circularization is facilitated by bridging
comparable intronic regions. RBP dimerization links the 3′

and 5′ ends of circularized exons.

[32,33]

Lariat-induced circularization
driven by spliceosomes

Exon circularization is spliceosome-dependent and is
collected at the back-splicing site to help join the 5′-3′

donor–acceptor sites. Within lariat, internal splicing releases
EcircRNAs or EIcircRNAs.

[34–37]

Intron self-cyclization ciRNA

Intron self-cyclization is brought about by the 7 nucleotides
of the G/U-rich sequence located near 1 exon and the
11 nucleotides of the C-rich sequence located near another
exon in pre-mRNA.
Three distinct kinds of circRNAs are produced: ciRNAs,
EIcircRNAs, and EcircRNAs. A closed RNA loop
(covalently EcircRNA) is formed when the 3′ end of an exon
(5’ss) is joined to the 5′ end of either the same exon
(single-exon circRNA) or an upstream exon (multiple-exon
circRNA).

[22,38–40]

[CircRNA: circular RNA; ciRNA: intronic circRNA; EIcircRNA: exon–intron circular RNA; Ecirc: exonic circular
RNA; RBP: RNA-binding protein].
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6. CircRNAs and Cancer Pathology

In the context of cancer pathology, circRNAs are critical players with significant
implications across diverse cancer types, spanning from brain cancer to myeloma. The
expression patterns of circRNAs exhibit associations with crucial stages in cancer progres-
sion, impacting immune response, cellular differentiation, pluripotency, apoptosis, and
angiogenesis. Investigating the specific types of circRNAs and their precise chromosomal
locations in distinct cancer types provides valuable insights into their roles and actions [41].
CircRNAs have been shown to possess significant implications in HCC development and
advancement. They contribute to cell proliferation, tumor metastasis, evasion of immune
responses, and resistance to drugs [42–47].

7. HCC Prevalence and Etiology

The most prevalent type of primary liver cancer and the third leading cause of cancer
death globally is hepatocellular carcinoma (HCC). Regarding frequency, HCC ranks ninth in
women and fifth in men. Its incidence rates vary across different regions worldwide [48–51].
According to Ferlay et al., one million individuals will be affected annually by HCC in one
way or another by 2025 [52].

The etiology of HCC is multifactorial, involving interactions between various causative
agents [53–56]. HCC can result from long-term viral infections such as chronic hepatitis
B virus (HBV) and hepatitis C virus (HCV) [57–59]. Metabolic problems like obesity and
diabetes, especially in women [57,59–63], and inherited conditions like hemochromatosis
and Wilson’s disease can also cause HCC, as shown in Figure 3. [52,64–66]. Biological and
molecular mechanisms in HCC involve either tumor suppressor genes or oncogenes [51,67],
interleukins [2,68,69], immunoglobulin-like receptors [70–72], and/or various cytokines
and their polymorphisms [57,58,73].
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Figure 3. Some HCC predisposing factors. This figure depicts some hereditary diseases (hemochro-
matosis, Wilson’s, alpha-1 antitrypsin deficiency), acquired conditions (hepatitis C and B viruses,
non-alcoholic FLD and alcoholic FLD), metabolic abnormalities (diabetes mellitus and obesity), and
environmental risk factors (aflatoxins, tobacco, and others) that predispose people to chronic liver
damage and hepatic cancers. [HCC: hepatocellular carcinoma, FLD: fatty liver disease].

Some hereditary conditions become more significant as we age, contributing to HCC
risk. It is worth mentioning that around 10–20% of HCC cases occur in individuals without
liver cirrhosis. Non-alcoholic fatty liver disease (NAFLD) represents an independent risk
factor for HCC and is often linked to obesity due to the increased consumption of fatty
diets [57,74]. Other risk factors include exposure to aflatoxins, excess iron in the body, and
even smoking. Most of these risk factors promote the development of cirrhosis, which is
present in more than 80–90% of HCC cases [75], as depicted in Figure 3.

The term poor prognosis usually accompanies HCC because HCC lacks symptoms
in its early stages [76]. It is worth mentioning that survival rates are directly linked to
HCC early diagnosis and, hence, a better prognosis. Another reason that may contribute to
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HCC’s bad prognosis is the fact that HCC represents the end stage of liver disease, so there
is minimal reserving capacity at this stage [77]. Further, HCC itself, being an aggressive
cancer that is highly metastasized, contributes as well to the disease’s poor prognosis [78].
Hence, even if HCC is appropriately diagnosed, it is still difficult to control [79].

8. HCC Molecular Heterogeneity

The underlying pathogenic condition(s) affect(s) the molecular pathways involved
in the etiology of HCC. HCV-mediated hepatocarcinogenesis primarily occurs through
host–viral protein interactions, particularly involving the core, non-structural proteins NS3,
NS4A, and NS5A [80,81].

Abundant and enduring RNA molecules, such as miRNAs or long non-coding RNAs
(lncRNAs), showcase a manifold of abilities in physiological and pathological contexts.
They function as repositories, regulatory elements, catalysts of translation, identifiers, and
healthy tumor suppressors. Hence, their significance was demonstrated across multiple
cancer types like colon, liver, and breast [82]. LncRNAs can regulate gene expression in
three ways: epigenetic, transcriptional, and post-transcriptional [83,84]. LncRNAs have
been well investigated in terms of their role in the regulation of cancer. For example, in HCV,
lncRNA-ATB is highly associated with fibrosis and may also be involved in developing
HCC [4,85–92]. In this aspect, lncRNA-ATB was reported to promote tumor metastasis via
the induction of epithelial–mesenchymal transition (EMT) [93]. On the other hand, miRNAs
function as post-transcriptional regulators by binding mRNA and inhibiting its translation
into a protein. Several studies have identified an association between dysregulated miRs
and the development of HCC [94,95].

9. Role of CircRNAs in HCC

The functions of circRNAs in HCC are complicated, as they can act either as good or
evil, being tumor suppressors or oncogenes, respectively [96–99]. CircRNAs play various
functional roles in tuning the initiation, development, progression, and metastasis of HCC.

10. CircRNAs Act as miRNA Sponges or Decoys

CircTRIM33-12 sponging miR-191 upregulates the expression of tet methylcytosine
dioxygenase 1 (TET1), which lowers the levels of 5-hydroxymethylcytosine in HCC cells [100].
By acting as a decoy for miR-9, CircMTO1 inhibits cell proliferation in HCC and functions
as a tumor suppressor by upregulating p21 [101]. Similarly, circHIPK3 promotes HCC
proliferation by sponging some miRs, including miR-124 [97] and miR-29b [102], as illus-
trated in Figure 4, leading to the release of their target genes responsible for cell growth
regulation. Other studies demonstrate the oncogenic behavior of HIPK3 through spong-
ing miR-338-3p [103]. By sponging miR-3619-5p, increasing catenin beta 1 (CTNNB1)
expression, and triggering Wnt/β-catenin signaling, CircZFR controls cell proliferation,
the epithelial–mesenchymal transition, and the Wnt/β-catenin pathway [104]. Another
circRNA, circFBLIM1, acts as a competing endogenous RNA (ceRNA) that enhances HCC
progression via sponging miR-346 [105]. CircMAT2B promotes glycolysis and HCC ma-
lignancy by sponging miR-338-3p to activate the pyruvate kinase M2 (PKM2) axis under
hypoxia [43]. CircTP63 increases ZBTB18 expression by sponging miR-155-5p, which ad-
vances HCC. The latter was reported to positively correlate with mortality rates in HCC
patients [106]. However, by upregulating tissue inhibitor of metalloproteinase 3 (TIMP3),
a well-known tumor suppressor that functions by sponging miR-17-3p and miR-181b-
5p, hsa_circ_0001445 (cSMARCA5) suppresses the migration and proliferation of HCC
cells [46].

A recent study proposed that circ_0001806 expedites HCC advancement by upreg-
ulating matrix metalloproteinase (MMP)-16 expression by inhibiting miR-193a-5p [107].
Another preliminary investigation, yet to be approved, revealed that circYTHDF3 fosters
liver carcinogenesis via the miR-136-5p/chromobox 4 (CBX4)/vascular endothelial growth
factor (VEGF) pathway [108]. Furthermore, earlier research reveals that circCFH stimulates
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HCC by modulating cellular functions via the miRNA 377-3p/RNF38 axis, including pro-
liferation, apoptosis, migration, invasion, and glycolysis [109]. Lastly, circRNA CDR1as
affects HCC progression by interacting with markers and miR-1287 bands within the Raf1
pathways [110].
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Figure 4. Regulatory mechanisms of circRNAsin HCC. This figure summarizes the different mech-
anisms by which circRNAs contribute to HCC. CircRNAs function as miRs or protein sponges.
They can also scaffold cellular proteins and regulate the latter’s translation in the cytoplasm. Fur-
ther, circRNAs can alter epigenetic regulations and modulate gene transcription within the nucleus.
[CircRNA: circular RNA; miRNA: microRNA; mRNA: messenger RNA].

In patients with HCC, Hsa_circ_0085616 (circASAP1) induced pulmonary metas-
tases by stimulating the proliferation of cells, in vitro colony formation, migration, and
invasion [42]. CircASAP1 was reported to operate as a ceRNA for the endogenous colony-
stimulating factor (CSF) and mitogen-activated protein kinase (MAPK) suppressors miR-
326 and miR-532-5p. MAPK and CSF are known to mediate tumor-associated macrophage
infiltration, which is also linked to cell invasion and proliferation [42].

11. CircRNAs Function as Protein Sponges or Decoys

CircBACH1 interacts with human antigen R (HuR), an RBP, leading to the down-
regulation of p27 expression, as shown in Figure 4. Through the interferon-responsive
sequence motif in the p27 5′-untranslated region, this interaction prevents translation. HuR
transport and accumulation in the cytoplasm are similarly facilitated by CircBACH1 [111].
By competitively binding to fragile X mental retardation protein (FMRP), on the other
hand, CircZKSCAN1 functions as a tumor suppressor by influencing the translation of cell
division cycle and apoptosis regulator protein 1 (CCAR1) mRNA and blocking the Wnt
signaling pathway (Table 3) [112].
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Table 3. List of circRNAs, their functional roles, and mechanisms of action in HCC.

Functional Role CircRNAs Mechanism Refs.

M
iR

sp
on

ge
or

de
co

y

CircTRIM33-12
increases the production of TET1 by the sponging of

miR-191, lowering the levels of
5-hydroxymethylcytosine in HCC cells

[100]

CircMTO1 downregulates p21 level by sponging oncogenic
miR-9 to inhibit HCC progression. [101]

CircHIPK3 regulates AQP3 expression, sponges miR-124, alters
cell proliferation and HCC migration [97]

CircZFR

regulates cell proliferation, epithelial–mesenchymal
transition, Wnt/β-catenin via quenching

miR-3619-5p, enhancing CTNNB1 expression and
activating Wnt/β-catenin signaling

[104]

CircFBLIM1 ceRNA that enhances HCC progression via
sponging miR-346 [105]

CircMAT2B
encourages HCC malignancy, glycolysis, and

miR-338-3p quenching to activate the PKM2 axis
under hypoxic conditions

[43]

CircTP63
sponges miR-155-5p and thus increases ZBTB18
expression, which is positively correlated with

mortality rates in HCC patients
[106]

CircSMARCA5 TIMP3 expression via sponging miR-17-3p and
miR-181b-5p [46]

Circ_0001806
expedites HCC advancement by upregulating
MMP-16 expression through the inhibition of

miR-193a-5p
[107]

CircYTHDF3 fosters HCC via miR-136-5p/CBX4/VEGF pathway [108]

CircCFH
promotes HCC by influencing cellular proliferation,

apoptosis, migration, invasion and glycolysis via
miRNA 377-3p/RNF38 axis

[109]

CDR1as interacts with markers and miR-1287 bands within
the Raf1 pathways to modulate HCC progression [110]

CircASAP1

ceRNA for miR-326 and miR-532-5p regulates the
expression of MAPK1 and CSF-1 targets, facilitating
invasion, HCC cell proliferation and infiltration of

tumor-associated macrophages

[42]

CircSORE
induces sorafenib resistance by competitively

activating the Wnt/β-catenin pathway through
miR-103a-2-5p and miR-660-3p

[45]

Pr
ot

ei
n

sp
on

ge
or

de
co

y CircBACH1

interacts with HuR; RBP downregulates p27
expression, blocks translation in the p27

5′-untranslated region by an interferon-responsive
sequence element, encourages HuR translocation

and cytoplasmic accumulation

[111]

CircZKSCAN1
competitively binding FMRP to modulate the

translation of CCAR1 mRNA and inhibiting the Wnt
signaling pathway

[112]

Protein scaffold

CircAMOTL1
combines with c-myc, STAT3, PDK1, and AKT1 to

promote their translocation to the nucleus,
modulating the expression of their target genes.

[113–115]

CircRHOT1 recruits TIP60 to NR2F6, initiating NR2F6
transcription and HCC progression [116]
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Table 3. Cont.

Functional Role CircRNAs Mechanism Refs.

Protein scaffold

CircADD3 protein scaffold inhibits HCC metastasis via
CDK1-mediated EZH2 ubiquitination [117]

CircPABPC1
a tumor suppressor, directly delivering ITGβ1 to the

proteasome for HCC ubiquitin-independent
destruction

[118]

CircSORE
causes sorafenib resistance by binding oncogenic
YBX1 and blocking its nuclear interaction with E3

ubiquitin ligase PRP19
[44]

Gene transcription regulation CircIPO11 binds TOP1 to trigger GLI1 transcription, with
Hedgehog signaling activation. [119]

Translation to proteins and
peptides CircCTNNB1

creates 370 amino acid β-catenin isoform, uses
circularization to block translation at a new stop

codon, uses Wnt to stimulate HCC cell development
[120]

Epigenetic alterations’
regulation CircSOD2 induces epigenetic alteration to drive HCC

progression by activating JAK2/STAT3 signaling. [121]

[AKT1: AKT serine/threonine kinase 1; AQP3: Aquaporin 3; CBX4: chromobox 4; CCAR1: cell division cycle and
apoptosis regulator protein 1; CDK1: cyclin-dependent kinase 1; CTNNB1: catenin beta 1; CSF: colony-stimulating
factor 1; EZH2: enhancer of zeste homolog 2; FMRP: fragile X mental retardation protein; GLI1: GLI family
zinc finger 1; HCC: hepatocellular carcinoma; ITGβ1: integrin β1; MAPK: mitogen-activated protein kinase;
miR: microRNA; Hur: human antigen R; JAK2: Janus kinase 2; MMP: matrix metalloproteinase; NR2F6: nuclear re-
ceptor subfamily 2 group F member 6; PDK1: 3-phosphoinositide-dependent kinase 1; PKM2: pyruvate kinase M2;
RBP: RNA-binding protein; STAT3: signal transducer and activator of transcription 3; TIMP3: metalloproteinase
3; VEGF: vascular endothelial growth factor; YBX1: Y-box binding protein 1.]

12. CircRNAs Can also Serve as Scaffolding for Proteins

CircAMOTL1 facilitates the translocation of c-myc, 3-phosphoinositide-dependent ki-
nase 1 (PDK1), AKT serine/threonine kinase 1 (AKT1), and signal transducer and activator
of transcription 3 (STAT3) to the nucleus. Their target genes’ expression is modulated by
this activity [113–115]. NR2F6 transcription and the advancement of HCC are triggered
by CircRHOT1, which recruits TIP60 to the nuclear receptor subfamily 2 group F member
(6NR2F6) promoter [116]. Another downregulated circRNA, hsa_circ_0020007 (circADD3),
has been linked to vascular invasion and distant and intrahepatic metastasis of HCC, as
summarized in Table 3. Mechanistically, circADD3 promotes the ubiquitination of EZH2
and the subsequent degradation of that protein. CircADD3 boosts the interaction between
EZH2 and cyclin-dependent kinase 1 (CDK1) to accomplish this activity. The expression
of several anti-metastatic genes, including dampening circADD3 itself, is increased when
EZH2 is downregulated. This is achieved by lowering the histone tri-methylation marker
H3K27me3 on the promoter regions of the anti-metastatic genes [117].

In HCC, CircPABPC1, another circRNA, directly feeds ITGβ1 to the proteasome for
ubiquitin-independent degradation, demonstrating tumor-suppressive activity [118].

CircRNAs are also involved in regulating gene transcription. CircIPO11, for example,
binds topoisomerase I (TOP1), which triggers GLI family zinc finger 1 (GLI1) transcription.
This interaction leads to activating the Hedgehog signaling pathway [119]. It has also been
demonstrated that circRNAs play a role in translating proteins or peptides. circCTNNB1
produces a new 370-amino-acid β-catenin isoform. This isoform is generated through the
circularization process, which leads to translation termination at a new stop codon. This
mechanism promotes HCC cell growth through the Wnt signaling pathway [120].

Last but not least, circRNAs were shown to regulate epigenetic alterations. For ex-
ample, circSOD2 induces an epigenetic alteration that drives HCC progression by ac-
tivating the JAK2/STAT3 signaling pathway [121]. In summary, Table 3 classifies the
different circRNAs involved in HCC according to their functional roles while describing
the corresponding mechanisms.
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13. CircRNA–Protein–mRNA Ternary Complexes

Ternary circRNA–protein–mRNA complexes play crucial roles in regulating mRNA
stability and translation. These complexes involve circRNA interactions with RBPs and
mRNAs simultaneously. For instance, circNSUN2 can assemble into a complex with
high mobility group A (HMGA2) mRNA and insulin-like growth factor 2 mRNA-binding
protein 2 (IGF2BP2) to stabilize mRNA, triggering EMT and enhancing the aggressiveness
of colorectal cancer (CRC) [122].

Moreover, circPOK functions differently than its linear counterpart, Pokemon, a tu-
mor suppressor gene. CircPOK promotes the stability of VEGF mRNA and interleukin
6 (IL6) via interacting with the interleukin enhancer binding factor 2/3 (ILF2/3) complex.
Additionally, it strengthens ILF2/3’s binding to the IL6 promoter. CircPOK regulates the
tumor cell secretome both transcriptionally and post-transcriptionally [123]. Similarly, the
circFNDC3B-IGF2BP3-CD44 mRNA ternary complex supports CD44 overexpression and
mRNA stability [124].

In contrast, some circRNAs act as brakes in translation. With the aid of 11 comple-
mentary nucleotides and IRES, a tumor suppressor mRNA, a three-part complex is formed
between circMALAT1 with paired box 5 (PAX5) and ribosome, causing mRNA breakdown.
It additionally initiates the JAK2/STAT3 signaling pathway and functions as a sponge for
miR-6887-3p [125].

Another circRNA was discovered to interfere with the translation initiation process.
CircYap, which is known to interact with Yap mRNA, was found to interact with poly(A)-
binding protein (PABP) and eukaryotic initiation factor 4 gamma (eIF4G), which bind to
the 3′-tail and 5′-cap of the mRNA, respectively. This complex prohibits PABP and eIF4G
interaction, thereby hindering Yap translation initiation [126].

CircRNAs play a role in the EMT, which is linked to drug resistance in HCC. Clear
examples of dysregulated circRNAs involved in HCC drug resistance include higher ex-
pression of CircFoxo3 in adriamycin-resistant tissues, potentially contributing to resistance
through the miR-199a-5p/ABCC1 pathway [127]. Furthermore, HCC cells’ release of Cir-
cUHRF1 wears down natural killer cells and increases their resistance to anti-programmed
cell death protein 1 (PD1) immunotherapy [47]. On the other hand, reduced levels of
circ_0003418 promote cisplatin resistance along with activation of the Wnt/β-catenin sig-
naling cascade [128,129].

To sum up, circRNAs are viewed as regulatory ncRNA molecules that exert their effect
directly by regulating the transcription and splicing of genes or indirectly by altering other
regulators, including proteins and miRNAs (Table 3 and Figure 1). Accordingly, it is clear
that the regulatory role circRNAs play in HCC remains a topic of ongoing research and
needs further investigation.

14. Are circRNAs Involved in Therapeutic Resistance Experienced by HCC Patients?

In the context of resistance, circRNAs act as molecular sponges, preventing specific
miRNA inhibitory effects on critical genes linked to resistance, which result in a loss of
control [130,131]. So, surprisingly, the answer to the question is yes. CircRNAs influence
crucial signaling pathways, affecting how HCC cells respond to therapeutic agents [132].
Their modulation extends to apoptosis and cell survival pathways, strengthening HCC
cells against treatment-induced cell death and promoting resistance. Interestingly, in-
teractions with RNA-binding proteins add a level of complexity to cellular responses
following therapeutic interventions [133]. Sorafenib-induced resistance arose from circ-
SORE that competitively activated the Wnt/β-catenin pathway by sponging miR-103a-2-5p
and miR-660-3p [45]. Another proposed mechanism by which circSORE promotes sorafenib
resistance involves binding to the oncogene Y-box binding protein 1 (YBX1). By blocking
YBX1’s nuclear connection with the E3 ubiquitin ligase PRP19, this association inhibits the
enzyme’s breakdown and increases the resistance to sorafenib [44].
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15. Could circRNAs Act as Theranostic Agents for HCC Patients?

As mentioned earlier, HCC diagnosis is challenging. The main reason is the lack of
exclusive, specific biomarkers for HCC. Moreover, there are not enough appropriate blood
molecular markers for surveillance and early HCC diagnosis. The current biomarkers have
low sensitivity and inconsistent specificity despite having different cut-off values [134].

Biomarkers like alpha-fetoprotein (AFP) are elevated in HCC and other pathological
conditions such as chronic liver diseases. Further, it has also been demonstrated that
around 40% of HCC patients present with normal AFP levels [135,136]. Des-γ-carboxy-
prothrombin (DCP) has been studied as a promising biomarker for HCC [137]. Research is
still ongoing in this area, and whole genome-wide sequences and DNA microarray analysis
have identified markers of early HCC [138,139] that still need to be validated.

The concept of theranostics is linked to having a personalized health compass that
guides treatment decisions and illuminates the unique individual molecular landscape [140].
This dynamic approach merges therapy and diagnostics, ensuring that medical interven-
tions are tailored to the patient’s needs. In HCC, circRNAs act as molecular sensors,
possessing traits ideal for early cancer detection and identifying subtle clues in tissues
and body fluids [141,142]. These circRNAs, while still in the early stages of their thera-
peutic paths, have shown promising potential in preclinical trials [142]. For instance, in
experiments involving circRNAs like circMYLK and circMAST1, the introduction of small
interfering RNA (siRNA) demonstrated an ability to suppress tumor formation [141]. This
is a precision strike against cancer cells guided by these circRNA navigators. Moreover,
developing a plasma circRNA panel for diagnosing HCC is akin to having a sophisticated
diagnostic tool, providing accuracy surpassing traditional markers. In this narrative of
theranostics, circRNA emerges as a molecular marker and an active player, potentially
transforming how we approach the personalized treatment landscape in HCC and beyond.

16. Exosomal circRNA Is a New Hot Area of Research

Exosomal hsa_circ_0051443, frequently downregulated in HCC cells, has been demon-
strated to have anti-proliferative and pro-apoptotic properties in cells. This is facilitated
by upregulating BRI1-associated kinase 1 as a consequence of miR-331-3p binding [143].
Exo_circ_79050 (also named hsa_circ_0009024) is a circRNA that is exosomal, originat-
ing from a “pseudogene” being upregulated in HCC as retrieved in silico from exoR-
Base v2.0 [144] (http://www.exorbase.org/exoRBaseV2/detail/detailInfo?id=exo_circ_
79050&kind=circRNA&tab=profile, accessed on 18 May 2023). Its genomic position is
chrY:19587210-19587507, with the positive strand upregulated in HCC. Moreover, four
protein-coding exosomal circRNAs are upregulated in HCC, as shown in Table 4 (re-
trieved from exoRBase v2.0, http://www.exorbase.org/exoRBaseV2/browse/toIndex?
kind=circRNA, accessed on 18 May 2023).

Table 4. Exosomal circRNAs upregulated in HCC urine or blood samples retrieved from
exoRBase v2.0.

circID circBase ID Genomic Position Strand Gene Symbol

exo_circ_11335 NA chr12:94169153-94186473 + PLXNC1

exo_circ_23574 hsa_circ_0041462 chr17:3814322-3816270 − NCBP3

exo_circ_71780 hsa_circ_0006320 chr8:22474954-22498112 + PPP3CC

exo_circ_79066 hsa_circ_0001953 chrY:2953909-2961646 + ZFY

http://www.exorbase.org/exoRBaseV2/browse/toIndex?kind=circRNA, accessed on 18 May 2023.

17. CircRNAs in HCC: Bioinformatics Analysis

We accessed circAtlas 2.0 (http://circatlas.biols.ac.cn/) on 17 May 2023, for the liver’s
most highly expressed human circRNAs, as shown in Figure 5.

http://www.exorbase.org/exoRBaseV2/detail/detailInfo?id=exo_circ_79050&kind=circRNA&tab=profile
http://www.exorbase.org/exoRBaseV2/detail/detailInfo?id=exo_circ_79050&kind=circRNA&tab=profile
http://www.exorbase.org/exoRBaseV2/browse/toIndex?kind=circRNA
http://www.exorbase.org/exoRBaseV2/browse/toIndex?kind=circRNA
http://www.exorbase.org/exoRBaseV2/browse/toIndex?kind=circRNA
http://circatlas.biols.ac.cn/
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mapped reads].

18. CircRNAs in Different Liver Diseases

The upcoming chapter demonstrates the association between circRNAs and liver
disease. In particular, the upregulated or downregulated circRNA expression patterns,
circRNA-associated genes, sponged miRNAs, biological functions (e.g., proliferation, mi-
gration, and invasion), and molecular mechanisms (e.g., ceRNA, PI3K-AKT, FOXO, SIRT1,
PPAR-a signaling pathways) of circRNA in various liver diseases are discussed. Data
in Table 5 are retrieved from the circRNADisease v2.0 database (last updated January
2023 [145]), http://cgga.org.cn:9091/circRNADisease/, accessed on 17 May 2023.

Table 5. CircRNAs in different liver diseases retrieved from circRNADisease v2.0 bioinformatics
database search.

Downregulated circRNAs

CircRNAs Hepatic Disease/
Biological Function Mechanism

Molecular
Mechanism/Associated miR
(Sponged miR)

circRNA_0046366 Hepatocellular steatosis - circRNA_0046366/miR-
34a/PPAR-a signaling

hsa_circ_0070963,
hsa_circ_0061893 and
hsa_circ_0013255

Liver fibrosis - -

circRNAs_100395 Liver cancer inhibits cell proliferation,
induces apoptosis miR-1228

circScd1 NAFLD
encourages the JAK2/STAT5
pathway, which causes fatty
liver disease

-

http://circatlas.biols.ac.cn/
http://circatlas.biols.ac.cn/
http://cgga.org.cn:9091/circRNADisease/
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Table 5. Cont.

Downregulated circRNAs

CircRNAs Hepatic Disease/
Biological Function Mechanism

Molecular
Mechanism/Associated miR
(Sponged miR)

circCDK13 Liver cancer
suppresses progression via
JAK/STAT and
PI3K/Akt signaling

-

circRNA_101764 HBV-related HCC - hsa-miR-181

circ_03848,
circ_08236,
circ_13398 and
circ_15013

Liver regeneration - -

circRNA-4099 Hepatitis unknown/triggers
keap1/Nrf2 and p38MAPK

miR-706 aggravating
H2O2-induced injury

Upregulated circRNAs

CircRNAs Hepatic Disease/
Biological Function Mechanism

Molecular Mechanism/
Associated miR
(Sponged miR)

hsa_circRNA_0000657,
hsa_circRNA_0000659,
hsa_circRNA_0003247,
hsa_circRNA_0001535

Hepatotoxicity - -

hsa_circ_0072765,
hsa_circ_0071410,
hsa_circ_0054345

Liver fibrosis -
-
miR-9-5p
-

circZFR,
circFUT8
circIPO11

Liver cancer - -

circMEG3 Liver cancer
inhibits telomerase activity,
shortens telomere lifespan,
reduces Cbf5

-

circRNA-0067835 Liver fibrosis promotes cell proliferation,
inhibits apoptosis miR-155 to promote FOXO3a

circ_0091579 Liver cancer promotes proliferative
and metastasis miR-490-3p

hsa_circ_0003056
hsa_circ_0067127 Carcinoma - -

circRNA-1984 HSCs-related to fibrosis - miR-146b

circ_0015756 Hepatoblastoma - -

hsa_circ_0000594 Hepatoblastoma - mir-217/SIRT1 regulatory axis

circFBLIM1 Hepatoblastoma Promotes cell viability,
proliferation, invasion

miR-346-ceRNA to regulate
FBLIM1 expression

circHMGCS1 Hepatoblastoma Regulates proliferation,
apoptosis and glutaminolysis

miR-503-5p/IGF/PI3K/AKT
axis; regulates IGF2 and
IGF1R expression

circ-PWWP2A Fibrogenesis Downstream reactor of TGF-ß
and LPS miR-203 and miR-223

http://cgga.org.cn:9091/circRNADisease/ accessed on 17 May 2023. Table 5 demonstrates the upregulated and
downregulated circRNAs in the different hepatic diseases while denoting the involved molecular mechanism

http://cgga.org.cn:9091/circRNADisease/
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and/or associated miRNA as retrieved from circRNADisease v2.0 bioinformatics database, http://cgga.org.cn:
9091/circRNADisease/, accessed on 17 May 2023. [AKT: AKT serine/threonine kinase; FBLIM1: Filamin-
binding LIM protein 1; FOXO3a: Forkhead box O3; IGF: insulin-like growth factor; IGF1R: insulin-like growth
factor 1 receptor; JAK2: Janus kinase 2; Keap 1: Kelch-like erythroid cell-derived protein with CNC homology
[ECH]-associated protein 1; HSCs: hepatic stellate cells; LPS: Lipopolysaccharide; NAFLD: non-alcoholic fatty
liver disease; Nrf2: nuclear factor erythroid 2 [NF-E2]-related factor 2; PI3K: phosphoinositide 3-kinase; PPAR:
Peroxisome proliferator-activated receptor; p38MAPK: p38 mitogen-activated protein kinase; SIRT1: Sirtuin 1;
STAT5: signal transducer and activator of transcription 5; TGF-ß: transforming growth factor beta].

Several circRNAs are downregulated in various liver diseases, each with its own specific
biological function and molecular mechanism. In hepatocellular steatosis, circRNA_0046366 is
downregulated and is associated with the miR-34a/PPAR-a signaling pathway, although the
exact mechanism remains unknown. For liver fibrosis, hsa_circ_0070963, hsa_circ_0061893,
and hsa_circ_0013255 are also downregulated. CircRNA_100395 in liver cancer suppresses
growth and triggers apoptosis, potentially via controlling miR-1228. The JAK2/STAT5 path-
way links the downregulation of CircScd1 in non-alcoholic fatty liver disease (NAFLD) to the
advancement of fatty liver disease. In liver cancer, CircCDK13 inhibits the JAK/STAT and
PI3K/Akt signaling pathways to prevent the disease from progressing. CircRNA_101764 is
downregulated and linked to hsa-miR-181 in HBV-related HCC. Although their precise func-
tions are uncertain, circ_03848, circ_08236, circ_13398, and circ_15013 are downregulated
in liver regeneration. CircRNA-4099 in hepatitis triggers the keap1/Nrf2 and p38MAPK
pathways and is associated with the aggravation of H2O2-induced injury through the
regulation of miR-706, although the specific mechanism remains unclear.

On the other hand, several circRNAs are upregulated in various hepatic diseases
and biological functions. In hepatotoxicity, hsa_circRNA_0000657, hsa_circRNA_0000659,
hsa_circRNA_0003247, and hsa_circRNA_0001535 are upregulated, although the specific
mechanism and associated miRNAs are not yet identified. For liver fibrosis, hsa_circ_0072765,
hsa_circ_0071410, and hsa_circ_0054345 are upregulated, but their mechanisms remain
unknown. In liver cancer, circZFR, circFUT8, and circIPO11 are also upregulated. Cir-
cMEG3 is also upregulated and has been shown to inhibit telomerase activity, shortening
telomere lifespan and reducing Cbf5. Through the miR-155/FOXO3a pathway, circRNA-
0067835 stimulates cell division and suppresses apoptosis in liver fibrosis. Circ_0091579
in liver cancer promotes proliferation and metastasis via miR-490-3p. For other hep-
atic diseases, hsa_circ_0003056 and hsa_circ_0067127 are upregulated in cancer, while
mmu_circRNA_005186 is upregulated in ischemia/reperfusion injury, acting through the
miR-124-3p/Epha2 pathway. CircRNA-1984 in hepatic stellate cells (HSCs) is related to
fibrosis, possibly through the miR-146b pathway. Circ_0015756 and hsa_circ_0000594
are upregulated in hepatoblastoma, with hsa_circ_0000594 potentially acting through the
mir-217/SIRT1 regulatory axis. CircFBLIM1 in hepatoblastoma promotes cell viability,
proliferation, and invasion through the miR-346-ceRNA mechanism. CircHMGCS1 in
hepatoblastoma regulates proliferation, apoptosis, and glutaminolysis, possibly through
the miR-503-5p/IGF/PI3K/AKT axis and by regulating IGF2 and IGF1R expression. Circ-
PWWP2A is upregulated in fibrogenesis and acts downstream of TGF-ß and LPS, possibly
through the miR-203 and miR-223 pathways.

19. Expert Authors’ Opinions, Recommendations, and Future Perspective

To our knowledge, there are no clinical reports of circRNAs having a positive or
negative impact on HCC by modifying an individual’s (epi)genes or polymorphism(s).
CircRNAs have been linked to liver metastasis from CRC and HBV-mediated HCC [104,146].
Restrictive limitations on applying circRNAs as molecular markers in the HCC clinical field
are related to inadequate clinical information about circRNA-potential axes and various
HCC hallmarks.

Nevertheless, several known hsa-circRNA-miR downstream signaling targets were
found, analyzed, and validated for HCC and/or liver disorders. To demonstrate their
efficacy, these targets could be further investigated for other cancer types, such as BC or
neurodegenerative diseases (NDDs).

http://cgga.org.cn:9091/circRNADisease/
http://cgga.org.cn:9091/circRNADisease/
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Developing ncRNA precision therapeutic regimens can be achieved by targeting
the hsa-circRNA-miR downstream signaling cascades through drug repurposing using
molecular docking, followed by experimental validation of the selected drug’s efficacy.

20. Conclusions

Utilizing in silico databases, bioinformatics analysis (Supplementary File), and litera-
ture exploration, we emphasized in the current review the link between circRNAs and liver
illnesses, particularly HCC. The significance of circRNAs as one of the epigenetic ncRNAs
was highlighted. We compiled comprehensive background information regarding circRNA-
related liver diseases with a particular emphasis on HCC. Specifically, we discussed the
biological roles of circRNA in liver disorders, the molecular mechanisms by which they
contribute to HCC as cancer molecular markers, the miRs they target to sponge, and the
ultimate downstream signaling cascade. Nonetheless, the authors have shed light on a
promising clinical implementation for circRNAs: their suitability as theranostic agents for
HCC and their involvement in chemotherapeutic resistance experienced by some HCC pa-
tients. Yet these areas still need further investigation by the scientific community. Notably,
circRNAs serve as promising targets for therapeutic interventions. CircRNAs are expected
to have a novel function in tumor immunotherapy and/or controlling the tumor immune
microenvironment in HCC. Ultimately, circRNAs have the potential to serve as an effective
molecular tool in combating multi-drug resistance (MDR).

While emerging evidence suggests that circRNAs may play important roles in the
pathogenesis and progression of HCC, it is important to note that the definitive establish-
ment of their crucial role requires further investigation. Studies have shown that circRNAs
are differentially expressed in HCC tissues, may regulate oncogenes and tumor suppressors,
and can impact cellular processes such as proliferation, apoptosis, and metastasis. However,
additional research is needed to fully elucidate their significance and mechanisms in HCC.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells13151245/s1, Figure S1: Genomic distribution of human circRNAs;
number of circRNAs per chromosome retrieved from circRNADb; Figure S2: CircRNA distribution
in different tissues, including the liver; Figure S3: Number of circRNAs in different liver cell lines
retrieved from CIRCpedia v2; Table S1: Experiments browsed for circRNAs in liver cancer.
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