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Simple Summary: Endometrial cancer and mixed Müllerian tumors are different types of uterine
malignancies, yet differentiating these diseases can be challenging and often requires surgery. A
timely and accurate diagnosis of these conditions is crucial for providing optimal treatment options.
The emerging field of radiomics may assist clinicians in diagnosing these conditions preoperatively
by extracting complex patterns from clinical imaging to identify features unique to each type of
tumor. This study aims to analyze radiomics data from patients with endometrial cancer and mixed
Müllerian tumors to identify distinguishing features that could help clinicians diagnose each disease.

Abstract: The objective of this study was to compare the quantitative radiomics data between
malignant mixed Müllerian tumors (MMMTs) and endometrial carcinoma (EC) and identify texture
features associated with overall survival (OS). This study included 61 patients (36 with EC and 25
with MMMTs) and analyzed various radiomic features and gray-level co-occurrence matrix (GLCM)
features. These variables and patient clinicopathologic characteristics were compared between EC
and MMMTs using the Wilcoxon Rank sum and Fisher’s exact test. The area under the curve of the
receiving operating characteristics (AUC ROC) was calculated for univariate analysis in predicting EC
status. Logistic regression with elastic net regularization was performed for texture feature selection.
This study showed that skewness (p = 0.045) and tumor volume (p = 0.007) significantly differed
between EC and MMMTs. The range of cluster shade, the angular variance of cluster shade, and
the range of the sum of squares variance were significant predictors of EC status (p ≤ 0.05). The
regularized Cox regression analysis identified the “256 Angular Variance of Energy” texture feature as
significantly associated with OS independently of the EC/MMMT grouping (p = 0.004). The volume
and texture features of the tumor region may help distinguish between EC and MMMTs and predict
patient outcomes.

Keywords: endometrial cancer; artificial intelligence; machine learning; mixed Müllerian tumor;
radiomics

1. Introduction

Endometrial carcinoma (EC) and malignant mixed Müllerian tumors (MMMTs), also
known as carcinosarcomas, represent two distinct yet interrelated entities within the spec-
trum of uterine malignancies. EC, characterized by the abnormal growth of endometrial
cells, comprises a heterogeneous group of tumors with varying histological subtypes and
clinical behaviors [1]. In contrast, an MMMT is a rare but aggressive tumor composed of
both epithelial and mesenchymal components, posing challenges in accurate diagnosis and
management [2].

Cancers 2024, 16, 2647. https://doi.org/10.3390/cancers16152647 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16152647
https://doi.org/10.3390/cancers16152647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-5825-3102
https://orcid.org/0000-0001-9161-1314
https://orcid.org/0000-0001-5943-8742
https://doi.org/10.3390/cancers16152647
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16152647?type=check_update&version=1


Cancers 2024, 16, 2647 2 of 11

The differentiation between EC and MMMTs holds paramount clinical significance
due to their divergent treatment approaches, prognostic implications, and therapeutic
outcomes [3]. While EC is often associated with favorable survival rates, MMMT is ominous
for its aggressive behavior, leading to poorer clinical outcomes. However, distinguishing
between these two malignancies based solely on clinical and histological grounds can be
complex, necessitating advanced diagnostic tools for accurate classification [4].

In recent years, radiomic analysis has steered into a new era of precision medicine
in oncology. Radiomics analysis has emerged as a promising tool for the non-invasive
characterization of tumors and the prediction of clinical outcomes and treatment responses
in various cancer types [5–7]. It accomplishes this by identifying and analyzing very subtle
patterns in the area of interest of the imaging study. In our study, the area of interest is the
uterine tumor. Varying patterns include tumor texture, intensity, size, and shape [8]. This
approach holds immense promise in unraveling intricate gray-scale patterns within images
that might otherwise escape the human eye. In gynecological malignancies, including
EC and MMMTs, radiomics, though still in infancy, has emerged as a potential avenue to
enhance diagnostic accuracy, prognostication, and treatment stratification.

While existing studies have begun to explore the utility of radiomics in differentiating
EC from MMMTs, significant knowledge gaps persist [4]. In particular, the precise radiomic
features that delineate these malignancies, the potential correlation of these features with
clinicopathological characteristics, and the integration of radiomics into clinical decision-
making frameworks remain areas of active research. Furthermore, introducing novel
machine learning algorithms has opened avenues for developing predictive models that
could revolutionize the diagnostic landscape of EC and MMMTs [9].

This study presents a comprehensive analysis of radiomic features extracted from
MRI images of patients diagnosed with EC and MMMTs. We aim to elucidate the specific
radiomic features that could differentiate these malignancies.

2. Materials and Methods

This retrospective study was performed at our institution after the approval of the
institutional review board, which granted a waiver of informed consent.

2.1. Patient Population

The institution’s database was used to identify patients with histologically proven
uterine MMMTs or EC. A computerized search for “carcinosarcoma” and “mixed Mullerian
tumor” was performed using the institution’s database for cases and yielded 1364 patients
with MMMTs treated from January 2002 to December 2015. A computerized search for
“endometrial adenocarcinoma” and “endometrial carcinoma” for cases yielded 154 patients
with EC treated from December 2013 to December 2015.

2.1.1. Inclusion Criteria

From the total query results, patients were included in the study if they met the fol-
lowing criteria: (1) a diagnosis of MMMT or EC; (2) a staging MRI performed prior to
chemotherapy, radiation, or surgery; (3) visible tumor on MRI; and (4) available tumor
pathology report from our institution. Of the 1518 patients found in the initial computer-
ized search, 61 matched the inclusion criteria and were included in the study. Of these,
42 patients had a diagnosis of MMMT, and 25 patients had a diagnosis of EC.

2.1.2. Exclusion Criteria

Patients were excluded from the study that met any of the following criteria: (1) staging
MRI performed after chemotherapy, radiation, or surgery; (2) no visible tumor on staging
MRI; or (3) staging MRI with motion degradation.
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2.2. MRI Techniques

MRI studies were performed at our institution on 1.5 T machines (GE Signa HDxt,
manufactured in Florence, SC, USA) using an eight-channel cardiac or multi-channel body
coil. To limit artifacts caused by bowel peristalsis, the patients were instructed to fast for
4–6 h before the scan. Dynamic contrast-enhanced (DCE) images were acquired using T1
DCE which was performed using a gradient echo sequence with the following parameters:
TR (repetition time) 4–6 ms, TE (echo time) 1–2 ms, field of view 220–240 mm, flip angle
12–15◦, matrix 150–208 × 256–320, section thickness 2.5–5.0 mm, interslice gap 2.0–2.5 mm,
and excitation. MRI studies for 14 cases (13 MMMT cases and 1 EC case) were conducted
at an outside facility (OSF).

2.3. Tumor Segmentation and Radiomic Feature Extraction

Axial T2 FSE nonfat saturated images (small FOV–TR/TE) were used for segmentation,
and sagittal T2 images were used to calculate the tumor volume. The endometrial primary
tumors were manually contoured using the free, open-source software application 3D Slicer
5.2 (https://www.slicer.org/ (accessed on 4 April 2020)) (Figure 1). The segmentations
were conducted by a post-doc research assistant and confirmed with a radiologist (PB, with
18 years of experience in pelvic MRI reading) blinded to clinical and pathological patient
information. Although not used for segmentation, the sagittal dynamic postcontrast T1
and DWI and sagittal T2 sequences were available to the readers for visual inspection to
verify tumor borders. The radiomic tumor features extracted from the masks were 300 first-
and second-order radiomic features. The radiomic features were computed by 3D Slicer 5.2.
To compare whole-tumor radiomic profiling with single-slice radiomic profiling, the axial
image planes depicting the largest tumor mask area were identified, and all the radiomic
features were also extracted from these single-slice masks.
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Figure 1. Illustrations of texture features analysis. (A) Axial T2-weighted MRI image of a 45-year-old
female with EC. (B) Axial T- weighted MRI image of a 58-year-old female with MMMT.

2.4. Statistical Analysis

Patient characteristics were summarized using 300 features of first-order statistics:
average and range measures, angular second-order statistics: angular variance measures,
Different Scale Levels: 8 × 8 window, 16 × 16 window, 32 × 32 window, 64 × 64 window,
256 × 256 window. Additionally, tumor volume was also analyzed. These variables were
compared between endometrial carcinoma and malignant mixed Müllerian tumors using
the Wilcoxon Rank sum and Fisher’s exact test. Area Under the Curve of the Receiver
Operating Characteristics (AUC ROC) was calculated for univariate analysis to predict
EC status. Logistic regression with elastic net regularization was performed for texture
feature selection. The elastic net is a regularized regression method that linearly combines
the penalties of the lasso and ridge methods. Both regularization and mixing parameters
were optimized using 5-fold cross-validation based on the AUC ROC. Overall survival
(OS) curves were estimated using the Kaplan–Meier method. A log-rank test was used
to compare survival curves. Regularized Cox regression with elastic net was used to

https://www.slicer.org/
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select OS texture features. The regularization parameter was optimized using 5-fold cross-
validation based on the Harrell C index. A p-value less than 0.05 was considered statistically
significant. Statistical analyses were conducted using R (version 3.63, R Development Core
Team, Vienna, Austria).

3. Results
3.1. Patient Characteristics

A total of 61 patients were included in the study: 36 patients with EC and 25 with
MMMT. The patients with MMMT had a mean age of 66.5 years (range 24–83 years),
while the mean age of the patients with EC was 64.3 years (range 30–80 years). A higher
proportion of Hispanic patients existed in the EC group (9%) than in the MMMT group
(3%), whereas the proportion of black patients was higher in the MMMT group (9%) than
in the EC group (3%).

A higher proportion of MMMT patients (76%) presented at advanced stages (II–IV) than
EC patients (58.3%). Most EC patients had histologically proven endometrioid adenocarcinoma
subtypes (86%), while the remaining 14% had more aggressive subtypes, papillary serous, clear
cell, undifferentiated, and high-grade mixed types. Supplement Table S2 includes a detailed
description of patient demographic and tumor staging information.

3.2. Descriptive Statistical Analysis

The descriptive statistical analysis was performed to summarize first-order parameters
and volume for both the endometrial carcinoma (EC) and malignant mixed Müllerian tumor
(MMMT) groups (Table 1). Skewness: The mean value for EC was 0.49 (SD: 0.57), and for
MMMT, it was 0.22 (SD: 0.47). The median value for EC was 0.55, and MMMTs’ was 0.27.
Volume: The mean value for EC was 5.5 cm3 (SD: 6532.11); for MMMT, it was 13.64 cm3

(SD: 16,182.72). The median value for EC was 3.22 cm3 and MMMT was 7.01 cm3. The
analysis concluded that a higher skewness value and a lower tumor volume value were
associated with EC.

Table 1. Descriptive statistical analysis to summarize first-order parameters and volume for EC
and MMMT.

EC (N = 36) MMMT (N = 25) Total (N = 61) p Value

Minimum 0.348
N 36 25 61

Mean (SD) 131.14 (167.63) 79.90 (64.03) 110.14 (136.66)
Median (Range) 69.00 (4.00, 872.00) 64.00 (9.00, 246.00) 67.00 (4.00, 872.00)

Maximum 0.628
N 36 25 61

Mean (SD) 411.81 (283.91) 402.52 (276.26) 408.00 (278.51)
Median (Range) 313.50 (115.00, 1496.00) 291.00 (112.00, 1077.00) 311.00 (112.00, 1496.00)

Mean 0.918
N 36 25 61

Mean (SD) 244.21 (206.65) 225.47 (152.38) 236.53 (185.16)
Median (Range) 167.33 (58.99, 1075.43) 179.69 (55.22, 579.68) 173.40 (55.22, 1075.43)

Standard Deviation 0.587
N 36 25 61

Mean (SD) 45.14 (30.75) 46.46 (38.07) 45.68 (33.64)
Median (Range) 35.93 (10.66, 159.46) 27.84 (12.94, 129.67) 35.40 (10.66, 159.46)

Percentile 1 0.730
N 36 25 61

Mean (SD) 159.11 (171.05) 125.02 (84.76) 145.14 (142.22)
Median (Range) 96.38 (30.24, 915.58) 109.12 (30.00, 306.55) 106.00 (30.00, 915.58)
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Table 1. Cont.

EC (N = 36) MMMT (N = 25) Total (N = 61) p Value

Percentile 5 0.849
N 36 25 61

Mean (SD) 178.66 (174.55) 152.41 (100.83) 167.90 (148.35)
Median (Range) 124.50 (42.00, 938.00) 128.00 (36.00, 374.92) 126.00 (36.00, 938.00)

Percentile 95 0.730
N 36 25 61

Mean (SD) 323.19 (247.80) 304.04 (212.38) 315.34 (232.27)
Median (Range) 253.40 (77.00, 1251.20) 226.25 (78.00, 771.86) 253.00 (77.00, 1251.20)

Percentile 99 0.603
N 36 25 61

Mean (SD) 364.11 (265.18) 341.80 (241.91) 354.97 (254.07)
Median (Range) 280.74 (87.00, 1342.26) 242.25 (90.00, 916.29) 277.40 (87.00, 1342.26)

Skewness 0.045
N 36 25 61

Mean (SD) 0.49 (0.57) 0.22 (0.47) 0.38 (0.55)
Median (Range) 0.55 (−1.07, 2.18) 0.27 (−1.00, 0.88) 0.45 (−1.07, 2.18)

Kurtosis 0.557
N 36 25 61

Mean (SD) 3.81 (1.41) 3.55 (0.95) 3.71 (1.24)
Median (Range) 3.58 (1.90, 9.24) 3.42 (2.30, 6.92) 3.45 (1.90, 9.24)

Volume 0.007
N 36 25 61

Mean (SD) 5541.92 (6532.11) 13,646.22 (16,182.72) 8863.35 (12,074.47)

Median (Range) 3215.29 (280.96,
31,591.33)

7011.87 (691.41,
64,373.78)

5603.25 (280.96,
64,373.78)

Endometrial carcinoma (EC); malignant mixed Müllerian tumor (MMMT). Higher skewness and lower tumor
volume was associated with EC.

3.3. Univariate Analysis of AUROC for First-Order, Volume, and GLCM Features

The univariate analysis of the AUC ROC for the first-order, volume, and GLCM
features was performed to predict EC status. The results are presented in Supplementary
Table S1. The top predictor was volume, with an AUC of 0.71, a lower limit (LL) of 0.57, an
upper limit (UL) of 0.84, and a p-value of 0.006. The AUC’s LL > 0.5 indicates a significant
predictor, while an AUC of 0.5 represents a random model. Other predictors with significant
AUC values include various ranges and angular variances of cluster shade, sum of squares
(variance), sum average, and information measure of correlation. These results suggest that
the univariate analysis of the AUC ROC for the first-order, volume, and GLCM features
can help differentiate between MMMT and EC.

3.4. Multivariate Analysis for First-Order, Volume, and GLCM Features at Baseline

We utilized multivariate analysis to construct a more robust radiomic model. Em-
ploying a final elastic net model and adopting a 5-fold cross-validation approach, we
observed an average AUC of 0.685, accompanied by a standard error of 0.055. This iterative
methodology, involving data splitting, model fitting, and validation, further substantiated
the potential of radiomics in stratifying EC and MMMT. The culmination of this analysis,
utilizing the entire dataset for model prediction, yielded an AUC of 0.877 (0.79~0.96).

A multivariate analysis was conducted on baseline first-order, volume, and gray-
level co-occurrence matrix (GLCM) features. The obtained coefficients of elastic net
regularization are presented in Table 2. Among the first-order statistical features, skew-
ness demonstrates a coefficient of elastic net regularization for the standardized data of
0.471, indicating a negative association with the event. This suggests that an increase
in skewness might lead to a decrease in the odds of the event. Notably, the ‘8 Range of
Sum average’ feature holds a coefficient of 0.266, implying a similar negative correlation.
Other first-order features such as ‘8 Range of Sum of squares Variance’ (coefficient: 0.242)
and ‘8 Range of Sum entropy’ (coefficient: 0.209) also exhibit negative associations. The
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‘Volume’ feature is associated with a coefficient of 0.176, signifying a weaker negative
relationship. In the context of GLCM features, ‘256 Angular Variance of Homogeneity’
(coefficient: 0.139) and ‘256 Angular Variance of Entropy’ (coefficient: 0.089) indicate
less pronounced negative associations.

Table 2. Final elastic net regularization model.

Feature Coefficient

Skewness 0.47
8 Range of Sum average 0.27

8 Range of Sum of squares Variance 0.24
8 Range of Sum entropy 0.21

Volume 0.18
16 Range of Sum average 0.16

256 Angular Variance of Homogeneity 0.14
256 Angular Variance of Entropy 0.089

256 Average of Homogeneity 0.072
32 Average of Information measure of

correlation 1 0.045

16 Range of Sum of squares Variance 0.040
8 Average of Cluster Prominence 0.0055

8 Angular Variance of Sum average 0.0033
64 Average of Cluster Shade 0.00080

16 Angular Variance of Sum average 0.00030

The provided table presents the coefficients for various radiomic features and the
outcome to represent EC. A coefficient indicates the strength of association between a
feature and the outcome of interest. For instance,

• Skewness: A one-unit increase in skewness corresponds to a roughly 52.89% decrease
in the odds of the outcome, indicating a link between lower skewness values and
the outcome.

• Various features, such as the range of sum average, range of a sum of squares/variance,
and range of sum entropy (8 bins), are associated with odds decreases of around
73.40%, 75.77%, and 79.07%, respectively.

• A higher volume leads to an approximately 82.37% decrease in the odds of the outcome.
• Angular variance of homogeneity (256 bins) is linked to an odds reduction of about

86.12% and angular variance of entropy (256 bins) to a decrease of about 91.08%.
• A higher average of homogeneity (256 bins) and an average of information measure of

correlation (32 bins) are associated with odds decreases of approximately 92.78% and
95.49%, respectively.

• Similar odds reductions are seen for other features, such as the range of sum of
squares/variance (16 bins) and average of cluster prominence (8 bins).

• Higher values of the average cluster shade (64 bins) and angular variance of the sum
average (8 and 16 bins) correspond to significant odds decreases of up to 99.97%.

These coefficients provide insights into how changes in the radiomic features are
associated with changes in the odds of the outcome, suggesting which features might be
more significant to the studied outcome.

Interestingly, some features present near-zero or very low coefficients, implying a
minimal impact on the odds of the event. For instance, ‘8 Average of Cluster Prominence’
(coefficient: 0.005) and ‘8 Angular Variance of Sum average’ (coefficient: 0.003) have
minimal relevance. Moreover, the ‘64 Average of Cluster Shade’ (coefficient: 0.0008) and
‘16 Angular Variance of Sum average’ (coefficient: 0.0003) demonstrate weak associations
with the event. These coefficients derived from elastic net regularization provide valuable
insights into the varying degrees of influence that different features have on the odds of the
event. The results aid in understanding the relative importance of individual components
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in predicting the outcome and contribute to feature selection and model refinement in the
context of the analyzed dataset.

3.5. Overall Survival Prognosis

The survival analysis reported notable disparities in the overall survival rates between
these malignancies (Table 3). The overall survival was significantly longer (p < 0.022) in
patients with EC versus those with MMMT (Figure 2).

Table 3. Overall survival of those with EC versus MMMT.

Time
(Years)

EC MMMT

Survival (%) L CI (%) U CI (%) Survival (%) L CI (%) U CI (%)

2 94.3% 86.9% 100% 70.1% 53.7% 91.5%
5 73.9% 58.1% 93.9% 45.6% 27.5% 75.6%
7 65.6% 47.1% 91.6% 36.5% 18.7% 71.2%

Confidence interval (CI); endometrial carcinoma (EC); malignant mixed Müllerian tumor (MMMT).
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Figure 2. Overall survival probability of EC versus MMMT patients with EC showed a significantly
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survival time.

3.6. Multivariate Cox Regression

An independent association between radiomic features and overall survival within
the EC and MMMT subgroups was analyzed using a multivariate Cox regression model.
The 256 Angular Variance of Energy was an independent predictor of overall survival,
particularly within the EC versus MMMT grouping p < 0.004 (Table 4).

Table 4. Multivariate Cox regression analysis for odds ratio using texture features.

HR CI Lower HR CI Upper HR p Value

256 Angular
Variance of

Energy
1.081 1.025 1.140 0.004

Group (MMMT
as reference) 2.297 0.925 5.702 0.073

256 Angular variance of the energy was significantly associated with the odds ratio (OS) and was independent of
the pathological diagnosis of EC vs. MMMT.

4. Discussion

Our study provides valuable insights into the application of MRI-based radiomics in
distinguishing between malignant mixed Müllerian tumors (MMMTs) and endometrial
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carcinoma (EC). Our findings reveal distinctive radiomic features that can aid in this
differentiation. Specifically, we observed that EC exhibited higher skewness values and
lower tumor volumes than MMMTs, which agrees with emerging evidence highlighting
the potential of radiomics to characterize these malignancies.

Our results align with recent research in the field. A similar trend of elevated skewness
values was observed in endometrial carcinoma cases, supporting our finding and emphasiz-
ing the consistent role of skewness in reflecting tumor heterogeneity across different cancer
types [10–15]. Additionally, recent work by Juan et al. underscored the significance of
skewness variations in stratifying breast cancer patients based on Ki-67 expression, further
supporting our finding of skewness as a marker of prognostic value [16]. Our study’s
integration of skewness and tumor volume into a predictive model with a high AUC aligns
with the direction of radiomics research. Recent studies by Qian et al. and Jajodia et al.
demonstrated the utility of similar integrated models in enhancing diagnostic accuracy for
various cancer types, including ovarian and cervical cancers [17,18]. This collective body of
work underscores the potential of combining radiomic features to achieve robust predictive
models in gynecological oncology.

While our study is pioneering in directly comparing radiomic features of EC with
MMMT, recent investigations have explored related avenues—for instance, a study by
Zheng et al. [19] evaluated the diagnostic performance of radiomics in distinguishing
EC subtypes. Additionally, the study by Fasmer et al. [20] comparing single-slice ver-
sus whole-tumor-derived radiomic signatures aligns with our emphasis on considering
the entire tumor volume for improved predictive performance. Our study’s relevance
extends beyond diagnosis, mirroring broader trends in radiomics research. The success
of radiomic–clinical models in differentiating endometrial carcinoma from hyperplasia,
as demonstrated by Zhang et al., [21] underscores the clinical applicability of radiomics
beyond distinguishing malignancies.

Recent advancements in medical imaging and data analysis have highlighted the
crucial role of tumor volume in understanding and managing various cancers. Tumor
volume has been used as a prognostic tool in multiple malignancies, including endometrial
carcinoma. Studies have shown that tumor volume can effectively distinguish high-grade
and low-grade endometrioid adenocarcinomas, with a sensitivity of 88% and specificity of
89% [22]. Tumor volumetry has been used in the initial staging of endometrial cancer and
has shown correlations with deep myometrial invasion, tumor grade, and lymphovascular
invasion [23,24]. Preoperative tumor size determined using magnetic resonance imaging
(MRI) has also been associated with lymph node metastases and survival [25]. Furthermore,
tumor volume on preoperative MRI has been found to correlate with poor prognostic
factors, making it a valuable biomarker for managing endometrial carcinoma [26].

Our study suggested the 256 angular variance of energy was significantly associated
with OS and was independent of the pathological diagnosis of EC vs. MMMT. Angular
second-order statistics have been used to classify magnetic resonance brain images and
provide quantitative information about the internal structure of tissues and lesions, which
can be helpful in medical diagnosis and treatment planning [27]. In some studies, texture
features derived from MRI have been associated with patient survival and outcomes in
various conditions, such as glioblastoma [28]. In abdominal MRI, texture analysis has been
applied to multiple conditions, such as liver fibrosis [29], hepatocellular carcinoma [30],
and Crohn’s disease [31]. However, the specific role of angular second-order statistics as a
significant predictor in abdominal MRI depends on the context and the condition being
studied. For example, in a study on liver fibrosis, noncontrast MRI scans with texture
analysis were viable for classifying the early stages of liver fibrosis, exhibiting excellent
performance [29]. In another study on hepatocellular carcinoma [30], texture analysis was
performed on retrospective CT/MRI images, and the results suggested that texture features
could help predict the progression of the disease. In the case of Crohn’s disease [31],
texture analysis parameters of contrast-enhanced MRI were found to differ according to
the presence of histological markers of hypoxia and angiogenesis.
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5. Limitations

This study acknowledges that its sample size is relatively small, which could limit
the generalizability of the findings. The rarity of MMMT contributes to this limitation. A
larger sample size might provide more robust and representative results. The study design
is retrospective, which can introduce biases and limit the control over data collection and
variables, potentially affecting the accuracy and reliability of the results. The study data
are collected from a single institution, which could lead to selection bias and limit the
diversity of patient populations and imaging protocols. Multi-center studies might provide
a more comprehensive view of the problem. MRI studies were conducted on machines with
varying parameters, including other coils and field strengths. This variability in hardware
might introduce confounding factors that could affect the radiomic features extracted.
The tumor was segmented manually, introducing subjectivity and potential variability in
delineating the regions of interest. Automated or semi-automated segmentation methods
enhance accuracy and reproducibility. The patient distribution between the EC and MMMT
groups is unbalanced, with fewer EC patients. This could affect the statistical analyses
and interpretations. Radiomic studies often include highly correlated features, which may
provide redundant information and affect the performance of predictive models. The lack
of external validation results limits the generalizability and reproducibility of the findings
in different patient populations and imaging settings.

6. Future Directions and Clinical Implications

The application of radiomics analysis in endometrial carcinoma and malignant mixed
Müllerian tumors has shown promising results in differentiating these two types of tumors
and predicting clinical outcomes. However, further research is needed to validate these
findings in larger cohorts and explore the potential clinical implications of these radiomic
features in diagnosing and managing patients with MMMT and EC. Additionally, integrat-
ing radiomic features with other clinical, pathological, and molecular data may provide a
more comprehensive understanding of tumor biology and improve the accuracy of risk
stratification and treatment planning.

7. Conclusions

This study demonstrates an initial step to investigate MRI-based radiomics to differ-
entiate between MMMT and EC. The radiomic analysis revealed specific features such as
volume and particular gray-level co-occurrence matrix (GLCM) features that distinguish
these malignancies. Increased skewness and decreased volume were associated with EC
and angular variance was an independent factor for OS. This study also highlights the
importance of analyzing radiomic features in predicting patient survival outcomes. The
findings support the idea that radiomics may offer valuable insights into distinguishing
between MMMT and EC and potentially aid clinical decision-making and patient man-
agement. Given the small sample size further research is needed with more extensive
and diverse datasets, prospective designs, and standardized imaging protocols to validate
and refine the proposed radiomic approach for differentiating and for the prognosis of
these gynecologic malignancies. Integrating radiomics with other clinical and pathological
indicators may offer a more comprehensive understanding of the diseases and potentially
enhance patient care.
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www.mdpi.com/article/10.3390/cancers16152647/s1, Supplement Table S1: Univariate analysis
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net regularization model.
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