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Abstract: Honey authentication is a complex process which traditionally requires costly and time-
consuming analytical techniques not readily available to the producers. This study aimed to develop
non-invasive sensor methods coupled with a multivariate data analysis to detect the type and
percentage of exogenous sugar adulteration in UK honeys. Through-container spatial offset Raman
spectroscopy (SORS) was employed on 17 different types of natural honeys produced in the UK over
a season. These samples were then spiked with rice and sugar beet syrups at the levels of 10%, 20%,
30%, and 50% w/w. The data acquired were used to construct prediction models for 14 types of honey
with similar Raman fingerprints using different algorithms, namely PLS-DA, XGBoost, and Random
Forest, with the aim to detect the level of adulteration per type of sugar syrup. The best-performing
algorithm for classification was Random Forest, with only 1% of the pure honeys misclassified as
adulterated and <3.5% of adulterated honey samples misclassified as pure. Random Forest was
further employed to create a classification model which successfully classified samples according to
the type of adulterant (rice or sugar beet) and the adulteration level. In addition, SORS spectra were
collected from 27 samples of heather honey (24 Calluna vulgaris and 3 Erica cinerea) produced in the
UK and corresponding subsamples spiked with high fructose sugar cane syrup, and an exploratory
data analysis with PCA and a classification with Random Forest were performed, both showing clear
separation between the pure and adulterated samples at medium (40%) and high (60%) adulteration
levels and a 90% success at low adulteration levels (20%). The results of this study demonstrate the
potential of SORS in combination with machine learning to be applied for the authentication of honey
samples and the detection of exogenous sugars in the form of sugar syrups. A major advantage of
the SORS technique is that it is a rapid, non-invasive method deployable in the field with potential
application at all stages of the supply chain.

Keywords: honey; SORS; random forest; classification; regression

1. Introduction

Honey is a sweet substance produced naturally by honeybees and is a popular food
product consumed globally for its taste, nutritional value, and perceived health benefits [1].
UK domestic production is far from self-sufficient, and recently, the UK was listed as one
of the top four countries worldwide importing honey [2] and the second-largest importer
in Europe, with 51,912 tonnes of honey imported in 2022, valued at EUR 122 million [3].
However, the total honey imports in Europe are expected to show little growth in the
coming years, with consumer concerns around the purity and authenticity of honey cited
as one of the main reasons [3]. These concerns were further exacerbated by the recent
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European Commission’s Joint Research Centre (JRC) report published in 2023, which
identified that 46% of the 147 samples tested were suspected of being adulterated [4].
Current analytical methods are inadequate for definitively detecting adulteration, requiring
additional research and traceability information collection.

A recent review commissioned by the UK government highlighted the need for re-
search into new standard analytical tests for honey authentication, partly due to the high-
level interpretation needed in existing approaches [5,6]. The same report identified some of
the possible malpractices associated with honey, including direct adulteration with sugar
syrups and mislabeling of origin.

Sugar adulteration of honey involves diluting pure honey with cheaper sugar syrups,
which not only results in inferior taste but also alters the nutritional properties and chemical
composition [7]. The standard method for exogenous sugar detection in honey is based on
a stable carbon isotope ratio analysis (SCIRA), which relies on identifying the presence of
adulterant C4 plants by assessing the 13C/12C ratio [8]. However, SCIRA is not suitable
for syrups derived from C3 plants such as rice and sugar beet, with the recent 2023 EU
JRC technical report indicating that SCIRA methods (AOAC method 991.41) were not
effective in detecting honeys suspicious of non-compliance, suggesting that sugar syrups
from corn or sugar cane are no longer being used to adulterate honey for the European
consumption [4]. An additional issue with this method is the presence of false positives
and differences between testing labs reported by beekeepers [9], which ultimately means
samples require additional and more costly analyses to prove authenticity; hence, it is
evident that more robust and repeatable standard tests are needed.

Recently, spectroscopic methods including infrared (IR), Raman, fluorescence spec-
troscopy, and nuclear magnetic resonance (NMR) spectroscopy have been proposed as
alternative methods for the rapid determination of the sugar adulteration of honey. These
methods rely on mapping the spectral fingerprint of pure and adulterated honeys and
applying multivariate data analysis techniques to build predictive classification and regres-
sion models able to identify adulterated samples. Notably, H-NMR was one of the methods
employed during honey testing in the recent 2023 EU JRC technical report.

Raman spectroscopy has also been proposed as a suitable technique for honey authen-
tication. It has been used as a rapid, non-destructive method for adulteration detection in
honey using the spectral fingerprint of each component. Oroian et al. (2018) used Raman
spectroscopy and PLS-DA to detect sugar adulterants in honey, such as fructose, glucose,
malt must, etc. [10]. Raman spectroscopy has also been combined with machine and deep
learning algorithms such as Convolutional Neural Networks (CNNs) to detect the type and
amount of adulterant in honey [11,12] or LDA to discern the botanical origin of monofloral
Italian honeys [13].

In this work, we employed spatially offset Raman spectroscopy (SORS), a truly non-
invasive technique which has been explored for a wide range of applications, including med-
ical diagnostic tests, through-container detection of explosives, and non-destructive analysis
of pharmaceutical products, among others [14–16]. SORS has also shown promising results
for food authentication applications, including through-container detection of counterfeit
alcohol [17] and authentication of dairy products such as butter and cheese [18,19]. SORS
offers several advantages in analytical applications. It is non-invasive, allowing measure-
ments of samples in situ [20] and analysis through barriers or packaging and providing
subsurface information without the need for sample preparation or disturbance [21]. More-
over, SORS results in a higher sensitivity compared with conventional Raman spectroscopy
by suppressing interfering signals emanating from the jar’s glass wall [22]. These prop-
erties make SORS a rapid portable screening method, which is particularly important for
traceability purposes along the food supply chain [19].

This study aims to develop a novel methodology using SORS combined with machine
learning to authenticate UK honeys and detect sugar syrups from various plant sources,
including rice, sugar beet, and sugar cane.
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2. Materials and Methods
2.1. Chemicals

Methanol (LC-MS grade) and acetonitrile (≥ 99.9%) were obtained from Fisher Scien-
tific, UK. D-(−)-fructose (> 99%), D-(+)-glucose (> 99.5%), sucrose ≥ 99.5%), and maltose (>
95%) were sourced from Sigma Aldrich, Gillingham, UK.

2.2. Sample Collection and Preparation

Honey samples from the UK were collected in different years. In Year 1 (2019),
different heather honeys were sampled from beekeepers and small producers across the UK
(n = 27) with the majority of samples produced in Scotland, Wales, and the North of
England. The floral origin of the honeys characterised as ling heather by the producers
(n = 24) was further tested by Minerva Scientific Ltd. (Derby, UK) to determine the
percentage of ling heather pollen (Calluna vulgaris) through microscopy. Three honeys
which were characterised mainly as bell heather (Erica cinerea) by the producers were not
tested for pollen. In Year 2 (2023), different floral types of UK honey (n = 17) were collected
directly from UK beekeepers, with the aim to represent all different seasons of honey
collection in the UK. Tables 1 and 2 contain more details regarding the honey samples used
in this study. Figure S1 shows a picture of the 17 honeys collected in Year 2.

Table 1. Heather honeys collected in Year 1, and the percentage of ling heather (Calluna vulgaris)
pollen detected using the pollen count method.

Sample Code Label Area Calluna vulgaris Pollen (%)

S1 Sample1 Scotland 52
S2 Sample2 Shropshire 77
S3 Sample3 Scotland 19
S4 Sample4 Dorset NA *
S5 Sample5 Scotland 55
S6 Sample6 Dorset NA *
S7 Sample7 Wales 10
S8 Sample8 Yorkshire 37
S9 Sample9 Yorkshire NA *

S10 Sample10 Devon 4
S11 Sample11 Devon 9
S12 Sample12 Scotland 11
S13 Sample13 Scotland 7
S14 Sample14 Wales 20
S15 Sample15 Shropshire 12
S16 Sample16 Shropshire 43
S17 Sample17 Yorkshire 20
S18 Sample18 Wales 3
S19 Sample19 Scotland 13
S20 Sample20 Yorkshire 12
S21 Sample21 Scotland 10
S22 Sample22 Wales 70
S23 Sample23 Shropshire 16
S24 Sample24 Sheffield 11
S25 Sample25 Scotland 69
S26 Sample26 Derbyshire 4
S27 Sample27 Scotland 37

* NA = not available (honey named as predominantly bell heather by producers).

Commercially available sugar syrups derived from rice (n = 7), sugar beet (n = 4), and
sugar cane (n = 1) were purchased from online retailers or grocery stores in an effort to
obtain sugar syrups from known plant sources (Table 3, Figure S2). The pure honey samples
were liquified at 45 ◦C for 60 min and stirred until homogenous. In Year 1, a subsample
of 6 randomly selected heather honeys were spiked with partially inverted sugar cane
syrup (golden syrup) at the 20%, 40%, and 60% adulteration levels to a total mass of
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10 g (w/w) and further incubated at 45 ◦C for 60 min in a water bath, with constant
agitation to obtain a homogenous mixture before being transferred to 7 mL Pico Glass vials
with 16.7 mm diameter (Perker Elmin, Beaconsfield, UK) for SORS measurements. In Year
2, each honey was spiked with rice syrup (r01) and sugar beet syrup (b05) (Table 3) at
the 10%, 20%, 30%, and 50% adulteration levels to a total mass of 10 g (w/w) and further
incubated at 45 ◦C for 60 min, as previously described, and subsequently transferred to
7 mL Pico Glass vials with 16.7 mm diameter (Perker Elmin, Beaconsfield, UK) for SORS
measurements.

Table 2. Description, season, floral sources, and UK origin of the honey samples collected in Year 2.

Sample Number Honey Description Season Floral Sources * UK Region

H1 woodland summer

Woodland trees and nearby flowers,
including lime (Tilia), horse chestnut
(Aesculus hippocastanum), and sweet

chestnut (Castanea sativa).

Yorkshire

H2 sycamore spring predominantly sycamore with a bit of
hawthorn and bean Yorkshire

H3 phacelia spring Phacelia tanacetifolia Yorkshire

H4 ivy autumn Hedera helix Yorkshire

H5 Himalayan balsam autumn Impatiens glandulifera Yorkshire

H6 spring set spring multifloral Yorkshire

H7 borage summer Borago officinalis Warwickshire

H8 buckwheat autumn Fagopyrum esculentum Yorkshire

H9 meadowfoam summer Limnanthes alba Warwickshire

H10 sea lavender summer Limonium vulgare Norfolk

H11 heather autumn Calluna vulgaris Exmoor

H12 echium summer Echium plantagineum Warwickshire

H13 field and forest blend
a heather blend multifloral honey with

moor, woodland, and wild pasture
flower honey

Yorkshire

H14 hedgerow blend hedgerows, meadows, and farmland Norfolk

H15 English blossom spring and summer blend of blossoms from spring and
summer Yorkshire

H16 apple blossom spring Malus domestica Norfolk

H17 wildflower summer

mixture of wildflowers including
Bluebell, Cowslip, Gorse, Orchids,

Honeysuckle, Meadowsweet, Lime,
Rosebay willow herb, and St John’s

Wort

Warwickshire

* Indicates floral sources of a sample as obtained from a honey producer.

Table 3. Sugar syrup product information.

ID Product Details *

r01 rice syrup Spanish rice molasses (organically grown rice molasses), 460 g

r02 rice syrup Spanish rice syrup (water, organic rice (35%)), 400 g

r03 rice syrup Korean rice syrup (rice starch 100%), 700 g

r04 rice syrup Korean rice syrup (rice 100%), 700 g

r06 rice syrup German rice syrup (organic rice flour (82%), water, non-EU), 1.4 kg
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Table 3. Cont.

ID Product Details *

r07 rice syrup UK organic rice syrup, non-EU agriculture (93% rice, 7% water), 250 g

r08 rice syrup UK organic rice syrup, EU/non-EU agriculture (rice (93%), water), 350 g

b01 sugar beet molasses German sugar beet syrup (sugar beet 100%—organic), 1 L

b05 sugar beet syrup Swedish light syrup (syrup from Swedish sugar beets, salt), 750

b06 sugar beet syrup UK golden syrup (partially inverted sugar syrup), 680 g

b07 mix of sugar beet syrup and
sugar cane syrup

Swedish dark syrup (syrup from Swedish sugar beets, cane sugar syrup,
and salt), 750 g

Sugar cane refiner’s syrup UK golden syrup (partially inverted refiners’ syrup), 325 g

* Details obtained from the product packaging, including country of company of purchase.

Apart from the honey and syrup samples, a set of individual sugar standards were
prepared consisting of 50, 25, and 12.5% aqueous solutions (w/v) of fructose, glucose,
sucrose, and maltose. Two HPLC water samples were also used as “blanks”.

2.3. SORS Data Acquisition

The SORS measurements took place at The Central Laser Facility (CLF, Rutherford
Appleton Laboratory, Didcot UK) using a custom-made setup optimised to perform
Raman measurements in a conventional point-like spatial offset Raman spectroscopy
(SORS) described in detail elsewhere [21,23]. Briefly, the excitation source consisted of an
830 nm wavelength with a maximum power of 400 mW output power focused on a
~0.5 mm diameter size spot on the sample surface. The Raman signal was collected from
a spot with an ~1.5 mm diameter at different spatial displacements (i.e., ‘so’) from the
excitation location (Year 1: so = 0 mm; so = 2.5 mm, Year 2: so = 0 mm; so = 4 mm). For
each sample, three different locations were measured as shown in Figure S3. Each SORS
spectrum was acquired for both 0 and 4 mm spatial offsets using, for the Year 1 dataset,
200 mW laser power, an acquisition time of 10 s, and 4 accumulations (i.e., total time
400 s) and, for Year 2, 35 mW laser power, an acquisition time of 1 s, and 10 accumulations
(i.e., total time 100 s). The reason for using different experimental parameters in Year 1 and
Year 2 was that the SORS system was recently upgraded with new optical components,
including a charged-coupled device (CCD) detector that improved the illumination and
signal collection performance, which allowed us to reduce the power and acquisition time
without compromising the Raman spectra quality.

2.4. Data Pretreatment and Exploratory Data Analysis

All data analyses were conducted using the R environment (R version 4.3.2). The
dataset from Year 1 consisted of 47 samples measured in random order (pure honeys = 27,
spiked honeys = 18, sugar cane syrup = 1, water (blank) = 1, with all measurements taken in
triplicate) and 5 random samples measured again at different timepoints to account for any
batch effects. The Raman spectra consisted of 1024 data points corresponding to the Raman
shift (cm−1) between 112 and 1934 cm−1. The dataset from Year 2 consisted of 179 samples
(pure honeys = 17, spiked honeys = 136, rice syrups = 7, sugar beet syrups = 4, individual
sugar solutions = 4 at 3 different concentrations (50, 25, 12.5%), blank (water) = 2, with all
measurements taken in triplicate plus 3 samples repeated at different timepoints).

The wavenumbers at the peripheries were cut so that the spectral range was restricted
from 337.8 to 1470.9 cm−1 for Year 1 and 585 cm−1 to 1550 cm−1 for Year 2, which contained
the structural information-rich areas of the spectra.

A baseline correction was subsequently performed using a modified polynomial
fitting method from the R package baseline (version 1.3-4) [24]. This method subtracts
the fluorescence signal from the fluorophores within the honey or syrup matrix, which
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suppresses the Raman signal, helping to improve the performance and robustness of the
statistical and machine learning models.

The matrix of the baseline-corrected spectra was smoothed using the Savitzky Golay
method for smoothing (differentiation order = 0, polynomial order = 7, and window
size = 31) and differentiation included in the R library prospectr (version 0.2.6). This method
reduces a signal high-frequency noise by smoothing and reduces the low-frequency signal
using differentiation [25].

Following baseline correction, the spectra were normalised using the standard normal
variate (SNV) method from the prospectr package. This method normalises each row of the
smoothed matrices (corresponding to a single SORS measurement) by subtracting each row
by its mean and dividing it by its standard deviation. It effectively eliminates the constant
offset and multiplicative differences between spectra.

Finally, the mean of the three technical replicates was then taken for each sample.
Figure 1 shows the average SORS spectra at spatial offset (4 mm) for the 17 pure honeys
measured in Year 2 before and after preprocessing.

2.5. Exploratory Data Analysis Using Principal Component Analysis (PCA)

PCA is an unsupervised multivariate analysis which performs data reduction and
denoising and can be used to visualise the natural clustering of the samples for exploratory
data analysis purposes and quality control. PCA was performed separately for the Year 1
samples (pure and adulterated heather honey) and the Year 2 samples (17 types of pure
and adulterated honey). Based on the PCA results for Year 2, a total of 14 honey types
which showed similar spectral fingerprints were selected for developing machine learning
classification and regression models.

2.6. Predictive Modelling Using Machine Learning

Predictive modelling was performed primarily on the SORS data obtained in Year 2
due to the availability of more extensive datasets representative of the UK origin honey
production. A range of different classification and regression models were constructed
based on the SORS spectra, with the aim of selecting the best-performing algorithm and
assessing the potential of detecting the type and level of adulteration in UK honeys. The
process was divided in the three stages described below:

(a) The first stage focused on creating separate models for rice and sugar beet adul-
teration detection. The process for selecting the training and test sets is displayed in
Figure S4. The dataset for developing the rice syrup adulteration model consisted of the
SORS spectra for the 14 pure honeys and the respective rice-spiked honeys at the 10%,
20%, 30%, and 50% adulteration levels (70 samples in total). Similarly, the dataset for sugar
beet adulteration model consisted of the SORS spectra for the 14 pure honeys and the
respective sugar beet-spiked honeys (70 samples in total). Next, each dataset was separated
into training and test sets for the purpose of developing a classification model and testing
its performance with an independent test set. For each syrup group, the training set was
formed of 12 randomly selected pure honeys and their corresponding spiked samples (with
rice or sugar beet syrup), while the test set consisted of the remaining two pure honeys and
their corresponding spiked samples. A total of 91 possible combinations for separating the
data into training and test sets were tried, and 91 models were subsequently built—per
algorithm and adulteration type—in order to assess how small changes in the training and
test data affect model performance.

The ML algorithms selected for performing the classification for rice and sugar
beet syrup adulteration were the following: partial least squares–discriminant analysis
(PLS-DA), Random Forest (RF), ordinal RF, and eXtreme Gradient Boosting (XGBoost).
The resulting models for rice syrup adulteration assigned unknown samples to one of
the following 5 classes: honey, 10% rice-spiked, 20% rice-spiked, 30% rice-spiked, and
50% rice-spiked. Similarly, the sugar-beet syrup adulteration models assigned samples to
5 classes consisting of pure honey and sugar beet syrup adulterated honeys.
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Figure 1. SORS spectra corresponding to the 17 pure honeys collected in Year 2 before (A) and after
(B) preprocessing.

The selection of algorithms was based on their strong track record for high prediction
accuracy and suitability for high dimensional datasets.

PLS-DA is a popular algorithm widely used for classification tasks, particularly in
complex datasets with high dimensionality and multicollinearity, such as spectroscopic
data. It combines partial least squares regression with discriminant analysis, seeking to
maximise the separation between classes while reducing the number of variables used
for prediction [26]. In this study, PLS-DA was performed using the mixOmics library
(version 6.24.0).

The RF algorithm is a robust ensemble learning method that operates by constructing
multiple decision trees during training and outputs a pattern of classes (classification) or
an average prediction of the individual trees (regression). In addition, the ordinal forest
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(OF) method allows ordinal regression for ordinal target values (categorical variables
which can be ordered). Since the percentage of adulteration can be considered, an ordinal
value OF was also tested in this work. By aggregating predictions from different trees,
the RF algorithm minimises the risk of overfitting and improves prediction accuracy and
generalisation to unseen data. Furthermore, by considering random subsets of features
for each tree, it promotes diversity among individual trees, contributing to its efficiency in
handling high-dimensional data and reducing variance [27]. All RF models were trained
and optimised using the caret library in R (version 6.0-94). Prior to training the RF models,
a feature extraction pretreatment step was also considered using RF to select the most
important features; however, the performance results were considerably worse compared
to the models built on the whole feature space, and therefore, this step was abandoned.

XGBoost is another ensemble technique based on decision trees which has gained
popularity due to its effectiveness and efficiency. The algorithm works by iteratively build-
ing an ensemble of weak prediction models, typically decision trees, and adding them to
the ensemble in a sequential manner. XGBoost utilises gradient descent optimisation tech-
niques for model training and incorporates regularisation techniques such as shrinkage and
pruning to prevent overfitting and improve generalisation performance [28]. The XGBoost
models were trained using the xgboost library (version 1.7.7.1). An added benefit of using
XGBoost is that the output for each prediction, consists of the respective probabilities of the
sample belonging to each of the possible classes included in the model.

An additional advantage of all three selected algorithms is their ability to identify
relevant features or predictors contributing to the classification or regression outcomes,
enhancing the interpretability of the prediction models. This can be achieved by studying
the variable importance graphs for each model.

(b) The second stage consisted of building a combined classification model for identify-
ing both the type of adulterant (rice or sugar beet syrup) and the level of adulteration. The
dataset for developing the combined adulteration model consisted of the SORS spectra for
the 14 pure honeys and the respective rice and sugar beet spiked honeys at the 10%, 20%,
30%, and 50% adulteration levels (126 samples in total). Then, the dataset was separated
into training and test sets (91 combinations) following the same approach described in
stage 1, except this time, each test set included two pure honeys and the respective spiked
honeys with both rice and sugar beet syrup. The algorithm employed for developing this
model was RF (classification).

(c) The final stage consisted of building regression models for rice syrup and sugar beet
syrup adulteration, with the aim to predict the percentage of adulteration as a continuous
numerical value rather than a categorical value. The algorithm employed for regression
purposes was RF (regression).

Finally, we used the SORS data obtained in Year 1 in combination with RF to build a
binary classification model for predicting “pure” vs. “adulterated” heather samples and an
ordinal regression model for categorising the samples into the “pure”, “low”, “medium”,
and “high” adulteration levels.

2.7. Performance Metrics

For each of the classification models, the confusion matrix for each of the 91 data
combinations was used to extract the model accuracy, i.e., the ratio of correct predictions
over the total number of predictions and the total error = 1-accuracy. However, to gain more
information on the ability of each model to differentiate between pure and adulterated
honey, we introduced two more metrics, the “hard” and “soft” misclassifications. Among
the “hard” misclassifications were the ratio of pure honey misclassified as adulterated and
the ratio of adulterated honeys misclassified as pure. These are considered as the most
serious types of misclassifications; thus, they were captured separately. In contrast “soft”
misclassifications were considered less serious errors and represented the cases where an
adulterated sample was classified as adulterated but under the wrong adulteration level.
The soft misclassification ratio was also captured during this study.
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The metric used for the regression models was the root mean square error (RMSE), as
shown in Equation (1).

RMSE =

√
∑n

i=1(ŷ − y)2

n
(1)

where n = the number of samples in the test set;
ŷ = the predicted value;
y = the actual value.

2.8. Sugar Analysis Using HPLC-ELSD

A sugar analysis was also undertaken during the project to identify and quantify
the concentration of individual sugars present in the syrup samples. All samples were
prepared and analysed according to the Harmonised Methods of International Honey
Commission [29] with some modifications. A chromatographic analysis was performed
using a mobile phase comprising acetonitrile–water (80:20, v/v) with a flow rate of
0.8 mL/min and a sample injection volume of 10 µL. The column and detector tem-
perature were held at 35 ◦C during the whole run. Detection was performed using an
evaporative light scattering detector (ELSD) connected to an Agilent 1200 infinity HPLC
(Agilent Technologies, Stockport, UK) fitted with a prevail carbohydrate ES 5 mm size of
250 nm × 4.6 mm diameter and a guard column of the same type. Fructose, glucose, sucrose,
and maltose were quantified using external calibration curves of commercial standards.

3. Results
3.1. PCA Results for Rice and Sugar Beet Adulterated Honey Samples

Following the initial data pretreatment and normalisation (Figure 1), PCA was em-
ployed to visualise the clustering of samples for each of the two datasets acquired during
the study. Figure 2 shows a PCA plot containing the 17 pure honey samples, the sugar
beet and rice syrups, the individual sugar standards (50, 25, and 12.5% w/v) and the water
samples (blanks). By observing the sample clustering, it becomes obvious that the majority
of the pure honeys formed a tight cluster on the bottom left side of the PCA score plot,
indicating similar biochemical profiles. The 14 honeys that clustered close together were
woodland, sycamore, phacelia, Himalayan balsam, spring set, borage, meadowfoam, sea
lavender, echium, field and forest, hedgerow, English blossom, apple blossom, and wild-
flower. Buckwheat (H8) and ivy honey (H4) were positioned away from the main cluster
towards the upper middle area of the PCA plot, while heather honey (H11) was positioned
in between. Figure S1 shows the colour differences among the different types of honey,
with the ivy (H4) and buckwheat (H8) having distinctly dark amber colours.

Most rice syrups formed a cluster at the left top side of the PCA plot, with the exception
of rice syrup r03 and r04, which were the darkest rice syrups, as shown in Figure S1.

Interestingly, maltose and glucose also clustered closely to the rice syrups, which
indicated that they were the dominant sugars in rice syrups. On the contrary, two of the
sugar beet syrups (b05 and b06) were positioned relatively close to the cluster formed by
the 14 pure honeys, together with the sucrose aqueous solutions, while the other two sugar
beet syrups were spread across the top left side of the PCA plot. Sugar beet syrups b05 and
b06 were marketed as high fructose golden syrups, which might explain their proximity to
the 14 honeys. On the other hand, b01 was marketed as molasses and b07 was a blend of a
sugar beet and sugar cane syrup. Both of these syrups had a distinct dark amber-brown
colour and produced a high-intensity SORS signal and strong fluorescence interference
similar to the signal from ivy and buckwheat honeys, which were also dark amber honeys,
as demonstrated in Figure S1.
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Figure 2. PCA plot of the SORS spectra acquired for honeys, sugar syrups, and sugar aqueous
solutions. Pure honeys (H1–H17) are coloured in green, sugar beet syrups (b01 and b05–b07) in blue,
and rice syrups (r01–r04 and r06–r08) in orange. The two blanks are water, while the individual
sugars fructose (f), glucose (g), sucrose (s), and maltose (m) are 50, 25, and 12.5% w/v aqueous
solutions.

The sugar composition of the sugar syrups and pure honeys was further confirmed by
HPLC-ELSD, and the results are displayed in Table S2. The sugar composition results show
that the dominant sugars in all rice syrups were maltose and glucose, with concentrations
ranging from 28.57 to 42.59 g/100 g−1 for maltose and from 9.54 to 28.11 g/100 g−1

for glucose. Rice syrup r01, which was used for spiking the honey samples, contained
31.90 g/100 g−1 maltose and 22.49 g/100 g−1 glucose. Rice syrups r03 and r04 exhibited
the lowest glucose concentrations among the rice syrups, at 17.34 and 9.54 g100 g−1,
respectively, while r04 also had the highest maltose concentration, indicating a lower
degree of maltose conversion to glucose in this syrup. Figure S5A, depicting the processed
Raman spectra for all the rice syrups along with maltose and glucose solutions (50%w/v),
also shows significant variations in the Raman profiles of r03 and r04. However, by looking
at the biplot in Figure S5B, showing the 150 most important variables for the PCA in
Figure 2, it becomes apparent that the clustering of maltose; glucose; and rice syrups r01,
r02, and r06–r08 are primarily driven by the Raman shifts around 1380–1390 cm−1, while
the Raman shifts around 1400 cm−1 were responsible for the separation of r03 and r04.
Therefore, despite the apparent differences between rice syrup spectra, the most important
features contributing to their separation on the PCA plot concentrate between 1380 and
1400 cm−1. For sugar beet syrups, the dominant sugar was sucrose, at concentrations
between 27.33 and 34.63 g/100 g−1, followed by fructose and glucose at roughly equal
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concentrations. For b05, which was used for spiking the honey samples, the concentrations
of sucrose, fructose, and glucose were 31.52, 24.74, and 24.37 g/100 g−1, respectively.

Based on the clustering patterns observed in Figure 2, the group of 14 closely clus-
tered pure honeys was selected for developing prediction models for honey adulteration
detection. Figure 3A shows the PCA plot of the 14 pure honeys with their corresponding
rice-spiked samples. The sample distribution in the PCA plot shows a very clear linear
separation according to the levels of adulteration, with the 20–50% adulterated samples
positioned separate from the pure honey samples.

A similar pattern was observed for the pure honeys and sugar beet-spiked samples,
although there was more overlap between samples belonging to different adulteration
level groups (Figure 3B). The samples belonging to the 20–50% adulteration level were also
clearly separated from the pure honeys, indicating a limit of detection around 10% for both
types of sugar syrups. In addition, Figure S6 shows the clustering of pure and adulterated
samples for both rice and sugar beet-spiked samples, which reveals that different levels
of the rice-spiked samples are separated over a longer distance along the PC1 axis while
sugar beet-spiked samples are much closer together, forming overlapping clusters.

Finally, the PCA in Figure 4 depicts the clustering of the pure heather honeys and the
subsample of sugar cane-spiked samples. In a similar manner to Figure 3, the clustering of
samples shows a linear separation between the pure honeys and the sugar cane-adulterated
samples stretching both along the PC1 and PC2 axes. The 60% adulterated group is
completely separated from the other samples and positioned close to the sugar cane syrup
at the bottom right corner of the PCA plot. As shown in Table S2, the sugar composition of
partially inverted sugar cane syrup was 21.83, 22.95, and 12.74 mg 100 g−1 fructose, glucose,
and sucrose, respectively, which was similar to the composition of sugar beet syrups, with
the exception of sucrose, which was present in lower concentrations.

Interestingly, most pure heather honeys form a cluster at the upper right side of the
PCA plot (Figure 4), with a smaller subgroup occupying the left middle part of the plot
separated along the PC1 and PC2 axes. Two of those honeys belong to the “bell heather”
group (S4 and S6), while the third bell heather honey (S9) is positioned within the main
cluster. The other two honey samples positioned separately (S13 and S24) are ling heather
but with a low Calluna vulgaris pollen content (7 and 11%, respectively), although this was
the case for other ling heather honeys as well within the main cluster. The pollen content of
heather honeys varied widely between the different samples, ranging from 3 to 77%.

3.2. Classification Model Results
3.2.1. Rice Syrup and Sugar Beet Syrup Adulteration

The performance metrics obtained for each of the algorithms employed for rice and
sugar beet syrup adulteration detection are summarised in Table 4. The first two columns
show the hard misclassification rates, i.e., the percentage of pure honeys misclassified as
adulterated and vice versa, which would be the most serious errors, for all 91 different
combinations. The third column summarises the percentage of soft misclassifications, i.e.,
adulterated samples assigned to the wrong adulteration level. The last column shows the
total error rate, i.e., the percentage of misclassified samples out of all the samples tested
(n = 910).

For the rice syrup classification models, the RF classification algorithm had the best
performance overall compared to the other algorithms tested. Only 1.1% of pure honeys
were misclassified as adulterated, which corresponds to 2 instances out of the total 182
(91 combinations of 2 pure honeys derived out of 14 pure honeys). In contrast, XGBoost
had the highest percentage of pure honeys misclassified as adulterated, at 7.69%, while for
PLSA-DA and RF-ordinal, it was 2.2% and 4.4%, respectively.
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Figure 3. PCA plots showing the clustering of the 14 pure honeys and their corresponding rice
syrup-spiked samples at different adulteration levels (A) and the clustering of the 14 pure honeys
and their corresponding sugar beet syrup-spiked samples at different adulteration levels (B). Orange
diamonds = pure honeys, red circles = 10% adulteration, blue triangles = 20% adulteration, green
crosses = 30% adulteration, and purple exes = 50% adulteration. The ellipses represent 95% confidence
ellipses for each group.
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Table 4. Results of the classification models for the rice syrup-adulterated and sugar beet syrup-
adulterated samples, as well as the results for the RF classification model for the adulterated samples
combined (rice and sugar beet).

Models Pure Honey Misclassified
as Adulterated

Adulterated Misclassified
as Pure Honey

Soft
Misclassifications

Total
Misclassifications

Rice Syrup Models

PLSDA 2.20% 8.79% 16.07% 20.33%

RF_Classification 1.10% 2.61% 14.15% 13.63%

RF_Ordinal 4.40% 5.63% 14.97% 17.36%

XGBoost 7.69% 1.79% 26.10% 23.85%

Sugar Beet Syrup Models

PLSDA 1.10% 1.92% 19.51% 17.36%

RF_Classification 1.10% 2.06% 17.31% 15.71%

RF_Ordinal 1.10% 1.92% 17.72% 15.93%

XGBoost 9.89% 4.53% 31.73% 30.99%

Rice and Sugar Beet
Combined Model

RF_Classification 1.10% 3.64% 17.86% 19.23%
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When considering the hard misclassification rates for the adulterated samples, XG-
Boost was marginally better, at 1.79%, followed by the RF classification algorithm, at 2.61%.
It is also notable that for all algorithms considered, the only adulterated samples misclas-
sified as pure honey belonged to the 10% adulteration level, indicating that the level of
detection (LOD) is approximately 10% for all methods.

Regarding the soft misclassifications, both RF algorithms performed better compared
to the other algorithms, with 14.15% and 14.97% soft misclassification rates, respectively,
exhibiting a higher ability to differentiate between adulteration levels. The PLSDA had
similar performance at 16.07% soft misclassifications, while the XGBoost algorithm had
the highest misclassification rate at 26.10%. As expected, all samples belonging to the 50%
adulteration level were correctly classified by all algorithms.

The total error rate confirmed that the RF classification algorithm performed best, with
a 13.63% total error rate, while XGBoost exhibited the highest error rate at 23.85%.

Table 4 also displays the results for the sugar beet classification models, where again,
the RF classification model had the best results, with 15.71% total misclassifications, while
the XGBoost algorithm had the lowest accuracy out of all, with almost 31% misclassifica-
tions. The hard misclassifications for the RF classification model were almost 1% of the pure
honey misclassified as adulterated and almost 2% of the adulterated samples misclassified
as pure.

The XGBoost results for each sample consisted of the predicted probabilities for each
class of adulteration level. Table S1 shows an example of the XGBoost results. The highest
probability was chosen as the predicted class of the sample.

Since RF consistently outperformed the other algorithms, it was selected as the algo-
rithm of choice for building a model based on the combined dataset for rice and sugar beet
spiked samples. As seen in Table 4, only 1.10% of the pure samples were misclassified as
adulterated and 3.64% of the adulterated samples were misclassified as pure. The total
misclassifications were 19.23%. In addition, 2.2% of the rice-adulterated samples were
misclassified as sugar beet-adulterated and 4.9% of the sugar beet-adulterated samples
were misclassified as rice-adulterated.

The spread of total classification accuracy results for the 91 iterations per algorithm
and syrup type was further visualised in box plots, as shown in Figure S7. The box plots
further demonstrate the superior performance of the RF algorithm, with all the models
built with RF (classification and ordinal) having a median accuracy of around 90% and
exhibiting left skewness (median > mean), meaning the majority of values were “large”,
with a few values towards the low end of the accuracy spectrum. The only exception was
the RF classification models for rice syrup adulteration, which had a median around 80%
and exhibited right skewness.

3.2.2. Heather Honey Adulteration Detection

As described in Section 3.1, heather honey was among the honey types that exhibited
different metabolic fingerprints compared to the 14 honeys which were used to develop
the honey authentication models. Heather honey is among the most popular monofloral
honeys produced in the UK, and therefore, it would be of interest to develop separate
models to capture the unique properties of this special type of honey. For this purpose,
we used the data acquired with SORS for the pure and sugar cane syrup-spiked samples
to develop preliminary models to showcase the potential of employing SORS for authen-
ticating heather honey. Initially, a binary model was developed using RF algorithm for
distinguishing between adulterated and pure heather honey. A total of 100 different models
were developed on variations of the training and test data in order to assess the stability of
the model performance. The mean accuracy for the binary model was 92% ± 0.01, with 31%
of the models having 100% accuracy. Furthermore, the total number of misclassifications
per class was extracted, showing that 96.7% of pure honeys were assigned under the correct
class, while the success rate for adulterated samples was 86.4%, with some samples in the
20% adulteration group misclassified as pure honey. In addition, we created a model using
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the RF ordinal algorithm, which correctly predicted the level of adulteration for the samples
in the test set. Despite the limited number of samples available, these results showcase that
SORS could be used in combination with RF algorithms for developing models similar to
the ones presented in Section 2.1 for predicting the level and type of adulteration in heather
honeys.

3.3. Regression Model Performance

Table 5 shows the mean, max, and min RMSE values acquired for the rice and sugar
beet regression models after validating with the test set. RMSE is one of the most widely
used measures for the performance of a regression model and the lower the RMSE, the
closer the predicted value is to the ground truth. This was also demonstrated by calculating
the RMSE values which were similar for both rice and sugar beet, with a mean value of
around RMSE = 3.7.

Table 5. Summary statistics of the RMSE results obtained for the rice and sugar beet adulteration
regression models with RF based on the test set validation. SD = standard deviation.

RF Regression Mean RMSE SD RMSE Mean R2 SD R2

Rice Syrup 3.69 1.67 0.96 0.0049
Sugar Beet Syrup 3.67 1.09 0.97 0.0035

Figure 5 shows a scatterplot of predicted vs. actual values for 1 of the 91 models for
rice syrup adulteration (Figure 5A) and 1 of the sugar beet adulteration models (Figure 5B).
A line, x = y, representing perfect agreement between the predictions and the ground truth,
has been fitted in each plot, surrounded by y = x ± 3 lines, which represent a 6% mismatch
boundary between the predicted values and ground truth, which contained the majority of
the predictions for both types of syrups. These plots could also provide a useful indication
of bias or large variance indicative of undertraining or overtraining of the models. The
absence of these trends from our results provides further proof of the optimised model
training process. The spread of the RMSE for the 91 iterations for the rice and sugar beet
regression models is displayed through box plots (Figure S8). The plot shows that both
have very similar means, with the rice models’ RMSEs having more variation than the
sugar beet models.

3.4. Variable Importance

The variable importance for each RF model was also calculated to determine the
Raman shifts responsible for the predictive power of the classification and regression
models. The results showed general agreement between the Raman bands identified as the
most important for the prediction and the areas in the SORS spectra with visible differences
between the pure and adulterated honeys. These wavenumbers also correspond to the
characteristic peaks identified in the individual sugar spectra, i.e., maltose, glucose, and
sucrose, which are the dominant sugars in the sugar syrups. Figure 6 shows an example of
the variable importance for one of the rice and sugar beet models developed alongside their
corresponding SORS spectra. For rice adulteration, the Raman bands mainly responsible
for the predictive power of the classification RF models ranged from 860 cm−1 to 890 cm−1

and 920 cm−1 to 950 cm−1, with the peaks at 933–937 cm−1 having the highest contribution.
For the sugar beet models, the highest peaks were in the range from 700 cm−1 to 850 cm−1

with the wavenumbers at 808, 711, 839, 718, and 715 cm−1 showing the highest contribution
in order of importance. Figure S9 shows that the most important variables for the combined
model were located between 700 cm−1 and 950 cm−1, with the highest peak at ~935 cm−1,
which corresponds to a combination of the important variables for the individual models.
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Figure 5. A scatter plot showing actual vs. predicted adulteration percentage for a random RF
regression model for rice syrup adulteration (A) and sugar beet syrup adulteration (B). The solid line
represents y = x (perfect agreement between predictions and ground truth), while the top and bottom
dashed lines represent y = x + 3 and y = x – 3 respectively.

The variables identified as most important for the RF regression models were also
similar to the classification models (Figure S10). The most important variables for the rice
adulteration model were the Raman shifts at 873, 870, and 939 cm−1, in order of importance,
while for the sugar beet adulteration models, the most important variables in order of
importance were the Raman shifts at 781, 775, 708, 808, and 839 cm−1.
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Figure 6. Variable importance for rice and sugar beet classification models. Plot (A) shows the
variable importance for one of the rice models, and (B) shows the SORS spectra for one of the pure
honeys and its rice-spiked corresponding samples. Plot (C) shows the variable importance for one
of the sugar beet models, while (D) shows the SORS spectra of one of the pure honeys with its
sugar beet-adulterated samples. The arrows and boxes point to the Raman shift areas identified as
significant for the model accuracy.

Finally, the ordinal RF model for heather honey adulteration with sugar cane syrup
revealed that the area between 1047 and 1126 cm−1 was important for the predictive ac-
curacy of the model, with 1060 cm−1 having 100% relative importance compared to the
other variables. Another area of importance was the Raman shift at around 838 cm−1,
which had the most significant contribution to the predictive capacity of the model
(55% relative contribution).

4. Discussion

In this study, we successfully employed through-container SORS measurements cou-
pled with machine learning predictive modelling to achieve non-invasive detection of
exogenous sugar adulteration in UK honeys. Different levels of adulteration, between 10
and 60%, were employed to train various machine learning algorithms, including PLSDA,
RF, and XGBoost. The syrups used for adulteration were rice, sugar beet, and sugar cane.
Among them, rice and sugar beet syrups derive from C3 plants, which are not easily de-
tected with existing methods. Thus, it is important to develop methods targeting these
sources of exogenous sugars.

The results revealed that SORS successfully differentiated honeys from plant-based
syrups according to their spectral fingerprint. Moreover, the majority of honey samples
had a similar biochemical profile, mainly characterised by the presence of fructose and
glucose, with the exception of three honey types (heather, ivy, and buckwheat), which
were positioned away from the main cluster of pure honeys in the PCA plot (Figure 2).
This difference could be attributed to biochemical differences, as indicated by their colour
differences and characteristic SORS signals. Indeed, the 14 honeys in the main cluster
were all white—light—amber-coloured honeys, while the other 3 honeys (heather, ivy, and
buckwheat) ranged between amber and a dark amber colour, resulting in higher intensity
SORS signals as well as strong fluorescence interference (Figure S1). Heather honey is



Foods 2024, 13, 2425 18 of 22

known to have distinct physicochemical properties among honeys, such as higher moisture
contents and sucrose/glucose ratios. In addition, it is rich in bioactive compounds such as
phenolics [30,31], which possibly contribute to the high signal intensity and fluorescence
interference. The same trend was observed for the 27 heather honeys from Year 1, which
despite the high variability in Calluna vulgaris pollen content ranging between 3 and
77%, exhibited similar metabolic fingerprints, as shown by their SORS signal and PCA plot
(Figure 4), indicating it would be possible to build a single model for authenticating this type
of honey. It is notable that while honeys from other floral sources are considered monofloral
when ≥45% of the pollen belongs to a single species, heather pollen is considered an
underrepresented pollen, and as a result, heather honeys can be characterised as monofloral
at a ≥20% Calluna vulgaris [32] pollen content as long as they exhibit the physicochemical
characteristics of heather honey.

RF Algorithm Successfully Discriminates Pure Honey

Classification models built with the RF classification algorithm consistently outper-
formed alternative algorithms, exhibiting misclassification rates of 1.1% for pure honey
misclassified as adulterated and 2.0% to 2.6% for adulterated honey misclassified as pure
(hard misclassifications). The total misclassification rates ranged from 13.6% to 15.7%.
Conversely, XGBoost displayed higher misclassification rates, ranging from 7.7% to 9.9%
for pure honey and an overall misclassification rate of approximately 23.9% to 31.0%. The
utilisation of XGBoost was motivated by its ability to provide probability-based results
for each adulteration class (refer to the example in Table S1). However, its performance
was less than that of RF despite both being decision tree-based ensemble algorithms. A
possible cause for this could be the slow training process of XGBoost due to the many
hyperparameters involved, which can lead to overfitting if not adequately optimised.
Another defining difference was the fact that XGBoost employs regularisation to avoid
weight overinflation to reduce the risk of overfitting. Indeed, the final XGBoost models
following the training and optimisation process only contained 79 features out of the
670 original features. RF, in contrast, builds hundreds of trees using different combinations
of training samples and features for each of the trees, therefore minimising the risk of
overfitting without eliminating features. In fact, our efforts to reduce the feature space
prior to performing RF model training were less successful compared to employing the
whole feature space, as described in Section 2.6, possibly indicating the presence of complex
interactions between features in the SORS spectra. Other studies on honey authenticity
have compared the performance of several machine learning algorithms, with both RF
and XGBoost reaching similar performances. XGBoost exhibited 90% accuracy in discrimi-
nating between monofloral Spanish honeys of different botanical origins based on honey
physicochemical parameters as compared to 83% accuracy for RF [33]. In another study
employing hyperspectral imaging to study adulteration detection in Pakistani honeys, RF
had superior performance in identifying both the botanical origin and adulteration level,
reaching a maximum prediction accuracy of 99.69%, while XGBoost attained similar levels
of performance [34].

In addition to its increased performance, another advantage of using RF was that it
provides a variable importance matrix ranking the features in order of their impact in the
model’s prediction accuracy. The wavenumbers of highest importance for the different
rice syrup classification models ranged from 860 to 890 cm−1 and 920 to 950 cm−1. These
wavenumbers correspond to two peaks characteristic of maltose, which were also present in
rice syrup, showing that the algorithm correctly identified maltose as the sugar responsible
for differentiating between natural honey and honey adulterated with rice syrup. Shuhan
et al. (2022) [12] have also identified two Raman peaks at 865 and 915 cm−1 among the
most important features for the identification of the maltose syrup adulteration of native
Suichang Chinese honey, which indicate the presence of C-H and C-H and C-OH bond
bending vibrations. The regression models for rice syrup adulteration also showed that the
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wavenumbers around 865 cm−1 contributed more than 50% to the prediction of adulteration
level (Figure S10).

The bands responsible for the prediction accuracy of the RF sugar beet models (both
classification and regression), ranged from 700 to 850 cm−1. The band around 706 cm−1

has been previously associated with C-O stretching and C-C-C-O and O-C-O bending
vibrations of glucose [35]. The area around 840 cm−1 also coincided with a dominant
peak in the sucrose SORS spectrum—attributed to the ν(C-C) stretches of glucose—and
is in agreement with previous observations by Mosca et al. (2023) [22]. The SORS results
were further validated by HPLC analysis, which revealed distinctive sugar profiles for
rice and sugar beet syrups, with the rice syrup predominantly consisting of glucose and
maltose, while the sugar beet and sugar cane syrups predominantly containing sucrose,
glucose, and fructose. Furthermore, the main Raman bands around the 840 and 1060 cm−1

Raman shifts associated with sugar cane adulteration can be attributed to the presence of
sugars and possibly proteins. More specifically, the band at ~840 cm−1 is attributed to the
presence of glucose and the torsion motion of the CH2 groups (as reviewed by Wiercigroch
et al. (2017) [36]), while the 1048 cm−1 band is thought to have originated from the ν(C-O)
vibration of the glucose ring. The 1057 cm−1 shift could be caused by a major contribution
by the bending vibration of C(1)-H and COH in carbohydrates and a minor contribution by
the vibration of C-N bond in proteins and amino acids [10].

RF was further used to develop a classification model, with the aim of discerning the
type of sugar syrup used for adulteration, as well as predicting the level of adulteration.
This model also exhibited a high success rate, with only 1.10% of pure samples misclassi-
fied as adulterated and 3.64% of adulterated samples misclassified as pure. In addition,
it exhibited superior performance in distinguishing the type of adulterant, with up to a
4.90% misclassification rate. The fact that this model was able to successfully identify
the type of adulteration was of high importance, as it showcases that SORS accurately
captures differences in chemical composition between different syrup types and honeys.
As demonstrated in Figure S11, the Raman bands with the highest importance for the
combined model ranged between 700 and 950 cm−1, which encompasses the most impor-
tant variables previously identified for the individual rice and sugar beet classification
models. In addition, a band around 1127 cm−1 has previously been suggested to arise from
a combination of the stretching vibration of the C-O bond (major) and the vibration of the
C-N bond of protein and amino acids (minor), while the band around 1264 cm−1 has been
associated with the vibration of C(6)-OH and C(1)-OH bonds [37].

While previous studies have shown promising results of employing Raman spec-
troscopy to identify honey adulteration with sugar syrups, they are not able to specify the
type of sugar syrup used for adulteration [22], or in some cases, they show poor perfor-
mance compared to individual models [37]. In contrast, the SORS methodology exhibited a
high discriminatory capacity with potential applications in testing unknown honey samples
in non-controlled commercial settings where the type of adulterant would be unknown.

Similar to the results observed for classification purposes, the regression models em-
ploying RF regression methods demonstrated very low RMSE values, around 3.7, for both
rice and sugar beet syrups, with SDs of 1.67 and 1.09, respectively. These results demon-
strate the efficacy of these models in predicting adulteration levels with high accuracy,
adding a valuable quantitative dimension to the study.

Finally, as shown in the present study, the majority of pure honey types in the UK
had a similar metabolic fingerprint, which allowed us to group them together in a single
model. Additionally, individual models can be constructed in the future to characterise
more diverse types of honey with unique fingerprints, such as heather, ivy, and buckwheat.
The results we obtained for heather honeys from the UK support this hypothesis.

This study emphasises the potential of SORS and machine learning as a cost-effective
and rapid method for honey authentication. The deployment of SORS in the field and
a through-container analysis offers practical applications for adulteration detection and
quality monitoring in the honey supply chain. Future research is recommended to refine
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the models, reduce misclassifications, and broaden the study to encompass a diverse range
of commercial honey types.

In addition, SORS exhibited quantitative potential, showing that the proposed new
methodology could be used both for a qualitative analysis to detect the presence/absence
of adulterant and to quantify the percentage of adulteration. More work on blended honeys
would be required if this approach is to be extended to imported honeys, which constitute
the majority of honey available in the UK market [2]. This would involve constructing
reference databases with commercially relevant samples.

5. Conclusions

In conclusion, the results of this study demonstrate the potential of SORS coupled
with multivariate analysis methods for the authentication of UK honey and adulteration
detection at a ~10% LOD. The portability and ease of use of SORS makes it an attractive
screening tool for testing honey, enhancing traceability and quality control. The proof of
concept demonstrated for UK honeys could be extended to other regions and types of
honey in the future. A prerequisite for this would be the construction of comprehensive
databases with a large selection of different types of honey sourced at various stages of
the supply chain, including harvest, blending, heat treatment, and transport until the final
retail destinations, as well as different types of sugar syrups, which would be used to build
representative predictive models able to generalise well to future samples. A SORS-based
screening method could serve as a quick tool to differentiate between pure and “suspicious”
samples, which would then undergo further tests before a decision is reached based on the
weight of evidence. This approach could improve the capability of regulators and industry
to protect consumer and verify supply chains.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/foods13152425/s1, Figure S1: Honey samples (left to right:
1: woodland, 2: sycamore, 3: phacelia, 4: ivy, 5: himalayan balsam, 6: spring set, 7: borage,
8: buckwheat, 9: meadowfoam, 10: sea lavender, 11: heather, 12: echium, 13: field & forest,
14: hedgerow, 15: blossom, 16: apple blossom, 17: wildflower); Figure S2: Syrup samples used
for SORS (left to right rice syrup r01-r04 and r06-r08, and sugar beet syrup b05, b01, b06 and b07).
Figure S3. An example of the raw SORS spectrum for the three technical replicates acquired for
one of the honey samples in Year2 (woodland honey); Figure S4: Schema describing the selection
of the training and test sets in Year2. The dataset consisted of 14 pure honeys and their rice-spiked
and sugar beet-spiked samples. In each iteration, 12 honeys and their spiked samples were chosen
as the training set, and the remaining 2 honeys and their spiked samples were chosen as the test
set. This process was done separately for the rice and sugar beet models; Figure S5: Pre-processed
SORS spectra of rice syrups, maltose and glucose aqueous solutions 50% w/v (A). PCA biplot of the
SORS spectra acquired for honeys, sugar syrups and sugar aqueous solutions. The arrows represent
the 150 most influential variables in the SORS spectra for the PCA; Figure S6: PCA showing the 14
pure honeys with their rice-spiked and sugar beet-spiked samples; Figure S7: Boxplots showing
accuracy dispersion for all the 91 classification models created for rice (red boxplots) and sugar
beet (blue boxplots) syrups per algorithm (plsda = PLS-DA, rf_classification = RF classification,
rf_ordinal = RF ordinal, xgboost = XGBoost). The dots within the boxes represent the mean, while
the horizontal line represents the median; Figure S8: Box plots showing the RMSE spread for all
91 combinations for the rice (red) and sugar beet (blue) models. The dots in the boxes represent the
mean, while the horizontal line represents the median; Figure S9: Variable importance for one of
the rice and sugar beet combined classification models; Figure S10: Variable importance for rice and
sugar beet regression models. Plot A shows the variable importance for one of the rice models, and B
shows the variable importance for one of the sugar beet adulteration models. The dashed horizontal
line divides the Raman shifts having relative variable importance ≥ 50% from the Raman shifts with
variable importance ≤ 50%; Figure S11: SNV Normalised spectra of three pure heather honeys and a
partially inverted sugar cane syrup (orange line); Table S1: Example of a confusion matrix for one of
the XGBoost classification models for rice adulteration showing results in the form of probabilities for
each class; Table S2: Sugar concentrations (g/100g-1) in rice syrup, sugar beet and partially inverted
sugar cane syrup (SC) samples.
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