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Abstract 
Recent advancements in spatial imaging technologies have revolutionized the acquisition of high-resolution multichannel images, 
gene expressions, and spatial locations at the single-cell level. Our study introduces xSiGra, an interpretable graph-based AI model, 
designed to elucidate interpretable features of identified spatial cell types, by harnessing multimodal features from spatial imaging 
technologies. By constructing a spatial cellular graph with immunohistology images and gene expression as node attributes, xSiGra 
employs hybrid graph transformer models to delineate spatial cell types. Additionally, xSiGra integrates a novel variant of gradient-
weighted class activation mapping component to uncover interpretable features, including pivotal genes and cells for various cell 
types, thereby facilitating deeper biological insights from spatial data. Through rigorous benchmarking against existing methods, xSiGra 
demonstrates superior performance across diverse spatial imaging datasets. Application of xSiGra on a lung tumor slice unveils the 
importance score of cells, illustrating that cellular activity is not solely determined by itself but also impacted by neighboring cells. 
Moreover, leveraging the identified interpretable genes, xSiGra reveals endothelial cell subset interacting with tumor cells, indicating 
its heterogeneous underlying mechanisms within complex cellular interactions. 

Keywords: explainable AI; spatial cell recognition; hybrid graph transformer; interpretable features 

Introduction 
Recent advances in spatial transcriptomic techniques have 
enabled commercially available platforms to measure mRNA 
expression in a tissue at molecular level spatial resolution, allow-
ing biologists to gain novel insights about diseases [1]. Spatial 
locations of expressions are critical in understanding of cell– 
cell interactions and cell functioning in tissue microenvironment 
[2, 3]. Molecular imaging-based in situ hybridization approaches 
such as NanoString CosMx Spatial Molecular Imaging (SMI), 
an automated microscope imaging system, allows spatial in 
situ detection on formalin-fixed paraffin-embedded samples. 
CosMx SMI is capable of detecting both RNAs and proteins on 
the same tissue slide, allowing three-dimensional subcellular 
resolution image analysis with an accuracy of ∼50 nm in 
the XY plane and high throughput (up to 1 million cells per 
sample) [4]. MERSCOPE [5], another commercial platform, utilizes 
the MERFISH [6] (multiplex error-robust fluorescence in situ 
hybridization) platform that captures hundreds to thousands of 
RNAs at the same time. Other noticeable commercial platforms 
that provide single-cell or subcellular spatial resolution include 
the 10x Genomics’ Xenium system and BGI’s SpaTial Enhanced 

REsolution Omics-Sequencing (Stereo-seq) in situ sequencing 
system using the DNA Nanoball technology. 

The emerging spatial imaging technologies require tailored 
computational methods for data analysis, clustering, and 
enhancement. Some deep learning (DL)-based methods have 
been proposed for spatial transcriptomics data [7]. For example, 
one method [8] designed based on Graph Convolutional Neural 
Network (GCN), takes both gene expression data and spatial infor-
mation of single cells as input, to cluster spatial transcriptomics 
data. The SiGra [9] method enhances the transcriptomics data 
and identifies spatial domains from the spatial multimodality 
data. SpaGCN [10] provides gene expression, spatial information, 
and histology information to the GCN network to identify 
spatial domains and spatially variable genes. stLearn [11] is  
developed for spatial transcriptomics to identify cell types, 
reconstruct cell trajectories, and detect microenvironment. 
BayesSpace [12] uses Bayesian approach and spatial information 
to enhance gene expression signals. STAGATE [13] combines gene 
expression and cell locations to train a graph autoencoder for 
low-dimensional embedding and spatial domain detection. conST 
[14] integrates gene expression, histology features extracted
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using MAE [15] model, and spatial information using GCN 
and contrastive learning to learn embeddings, which aid in 
several downstream tasks like trajectory analysis and spatial 
domain identification. ConGI [16] utilizes contrastive learning 
to jointly learn common representations across gene expression 
and histology image features for spatial domain identification. 
Other methods such as Seurat [17] and Scanpy [18] also provide 
functionalities for analysis of spatial transcriptomics data and 
domain identification. Clustering methods such as Louvain [19] 
perform domain recognition using expression data but do not 
utilize spatial information. 

Although the above DL-based methods prove to identify spatial 
cells or domains with high accuracy, their intrinsic black-box 
nature inhibits explainability, making it unclear which genes and 
cells are utilized by these methods to achieve accurate spatial 
identities [20]. Such explainability issue is common when applying 
advanced deep learning approaches [21]. Explaining the model 
decisions can aid to find any limitations and validate model func-
tioning using known knowledge [22]. Several works are done to 
make the graph neural network models interpretable. For exam-
ple, Saliency [23] assigns the square of gradients as importance 
scores for the input features. Guided backpropagation [24] uses  
only positive gradients for backpropagation while setting negative 
gradients to 0. Those positive gradients at the input layer are used 
as the importance score of input features. InputXGradient [25] 
assigns importance score for input features as gradients multi-
plied by input. Deconvolution [26, 27] computes the gradient of 
output class with respect to the input selectively propagating only 
the non-negative gradients and utilizes that as the importance 
score for input features. 

In this study, we have proposed a novel method, i.e. xSiGra, 
to identify interpretable features contributing to the identifica-
tion of spatial cell types. xSiGra takes advantage of the multi-
modality spatial data including multichannel histology images, 
spatial information, and gene expression data. xSiGra not only 
demonstrates its superior performance than existing state-of-
the-art methods in the identification of spatial cell types, but 
also provides explainable information about the importance of 
cells and genes for the identification. The explainable capability 
of xSiGra also shows better performance than existing several 
graph-explainable algorithms, which facilitates biological insights 
from spatial imaging data. 

Results 
Overview of the xSiGra model 
The primary function of the xSiGra model is to elucidate the 
significance of each gene for biological annotations, such as cell 
identities, within high-resolution spatial data. As depicted in the 
overall diagram (Fig. 1), cells of the same type exhibit diverse 
gene expression patterns and interact with their environment dif-
ferently across various spatial locations and microenvironments. 
We illustrate this conceptually through two types of endothelial– 
stromal interactions: firstly, via growth factors secreted by stro-
mal cells and receptors expressed on endothelial cell surfaces, 
and secondly, through the expression of specific structural pro-
teins in the extracellular matrix (ECM) by stromal cells and the 
endothelial integrins responsible for recognizing and binding to 
these proteins. 

The xSiGra model is composed of a SiGra+ module and an 
explainable module. The explainable module uses a novel graph 
gradient-weighted class activation mapping (graph Grad-CAM) 

algorithm to understand the contribution of each gene for differ-
ent cell types within the spatial slides. The SiGra+ module learns 
the latent representation of multimodal spatial transcriptomics 
data, which is used by the explainable module to explain which 
spatial gene expression patterns are used by SiGra+ for spatial 
cell type identification. The SiGra+ module also further enhances 
the original SiGra [9] model by using a VGG feature extractor 
[28] to improve histochemistry image feature extraction, and by 
introducing a Kullback–Leibler (KL) divergence loss [29] to better 
balance the contributions from the transcriptomics and the imag-
ing data. 

xSiGra accurately identifies spatial cell types in 
various datasets 
We have compared our method with nine state-of-the-art 
methods, i.e. SiGra [9], SpaGCN [10], stLearn [11], BayesSpace [12], 
STAGATE [13], conST [14], ConGI [16], Seurat [17], and Scanpy [18]. 
Here, we use 8 NanoString CosMx lung tissue slices (see Data 
Availability) for performance comparisons. Adjusted Rand index 
(ARI) score and normalized mutual information (NMI) are used 
for evaluation of the detected spatial cell types, including tumor, 
fibroblasts, lymphocyte, myeloid, mast, neutrophil, endothelial, 
and epithelial cells. Figure 2a shows the ARI results of each of 
the methods across eight lung cancer NanoString CosMx SMI 
tissues. xSiGra achieved a median ARI of 0.565, better than SiGra 
(ARI = 0.505), stLearn (ARI = 0.360), Seurat (ARI = 0.315), ConGI 
(ARI = 0.305), and BayesSpace (ARI = 0.265), as well as STAGATE 
(ARI = 0.245), Scanpy (ARI = 0.235), SpaGCN (ARI = 0.20), and conST 
(ARI = 0.07). Specifically for Lung-13 tissue, which consists of 20 
field of views (FOVs) and 77 643 cells, Fig. 2b presents the spatial 
cell types identified by different methods. The cell types identified 
by xSiGra match well with the ground truth with an overall 
ARI of 0.64, higher than SiGra (ARI = 0.45), stLearn (ARI = 0.60), 
Seurat (ARI = 0.35), Scanpy (ARI = 0.32), STAGATE (ARI = 0.29), 
BayesSpace (ARI = 0.28), ConGI (ARI = 0.26), SpaGCN (ARI = 0.26), 
and conST (ARI = 0.07). Figure 2c shows the spatial cell types at 
the FOV level for better clarity. The cells identified by xSiGra show 
consistency with the ground truth, identifying the continuous 
tumor region along with infiltrated immune cells. On the contrary, 
in FOV1, BayesSpace mislabels some lymphocytes and fibroblast 
as mast and endothelial cells while stLearn identifies some 
tumor cells and fibroblast incorrectly as mast and epithelial 
cells. In FOV5, BayesSpace misrecognizes some tumor cells as 
neutrophils; fibroblasts are mislabeled as mast cells. stLearn 
mixes fibroblasts with neutrophil cells as well as tumor cells with 
mast cells. 

In addition to single-cell spatial data, xSiGra also proves to 
perform better in spot-based spatial data such as 10x Visium spa-
tial slices. As shown in Supplementary Fig. 1a, xSiGra achieves a 
higher ARI score compared to the state-of-the-art methods across 
12 Visium datasets (see Data Availability). Supplementary Fig. 
1b–d present the spatial domains accurately identified by xSiGra. 
This demonstrates that in comparison with the existing methods, 
our method can more accurately identify the spatial domains in 
spot-based spatial data and distinguish the different domains in 
the complex microenvironment. Moreover, xSiGra also enhances 
gene expression data for downstream analysis. From the Uni-
form Manifold Approximation and Projection (UMAP) analysis on 
enhanced data and raw data, enhanced data present clearer sepa-
ration of different cell types than raw data (Fig. 2d). The enhanced 
gene expression data are further supported by the cell type mark-
ers whose expressions are highly expressed in their corresponding 
cell types (Fig. 2e). Supplementary Fig. 2a shows the NMI results of
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Figure 1. Overview of xSiGra model. (a) xSiGra uses spatial transcriptomics data to gain insights about the cellular microenvironment. Spatial 
transcriptomics profiles are represented by graph structure with each cell in spatial graph having associated gene expression and multichannel images. 
xSiGra generates enhanced gene expressions and identifies spatial cell types, with related interpretable features for biological insights. (b) xSiGra 
performs image augmented learning to enhance transcriptomics data (SiGra+) and recognize spatial cell types. It also provides interpretable features 
that can be used for biological interpretation. 

each of the methods across eight lung cancer NanoString CosMx 
SMI tissues. xSiGra achieved a median ARI of 0.54, better than 
SiGra (ARI = 0.43), stLearn (ARI = 0.42), ConGI (ARI = 0.4), Seurat 
(ARI = 0.39), and BayesSpace (ARI = 0.335), as well as STAGATE 
(ARI = 0.31), Scanpy (ARI = 0.33), SpaGCN (ARI = 0.3), and conST 
(ARI = 0.07). In Supplementary Fig. 2b, xSiGra achieves a higher 
NMI score compared to the state-of-the-art methods across 12 
DLPFC Visium datasets. 

We also compared the performance of xSiGra on spot-based 
data, which did not provide ground truth information using 
clustering metrics Silhouette coefficient (SC), Caliniski–Harabasz 
index (CH), and Davies–Bouldin index (BD). For SC and CH, 
larger values indicate better clustering performance while for 
BD smaller values indicate better performance. 

Supplementary Fig. 3 provides the comparison results on 
spatial domain detection of tissue slices from human breast 
cancer, mouse brain anterior, and mouse brain coronal sections, 
respectively. For example, in the human breast cancer tissue 
(Supplementary Fig. 3a), each method was evaluated based on 
their SC, CH, and BD. Notably, xSiGra exhibited the highest SC 
and CH value (SC: 0.22, CH: 1074.76), and the lowest BD value 
of 1.32, compared with SiGra (SC = 0.13; CH = 912.34; BD = 1.37), 
ConGI (SC = 0.14; CH = 276.59; BD = 1.53), STAGATE (SC = 0.10; 
CH = 632.52; BD = 2.07), conST (SC = 0.12; CH = 583.83; BD = 1.41), 
Seurat (SC = 0.10; CH = 385.03; BD = 1.98), BayesSpace (SC = 0.09; 
CH = 415.11; BD = 2.46), stLearn (SC = 0.09; CH = 208.27; BD = 2.90), 
SpaGCN (SC = 0.06; CH = 308.84; BD = 2.60), and Scanpy (SC = −0.05; 
CH = 33.20; BD = 6.75). This confirms the superior performance of
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae388#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae388#supplementary-data


4 | Budhkar et al.

Figure 2. Performance evaluation on lung cancer slices. (a) Box plot of adjusted Rand index for 8 NanoString SMI datasets is shown for each of the 
methods, i.e. conST, SpaGCN, Scanpy, STAGATE, BayesSpace, ConGI, Seurat, stLearn, SiGra, and xSiGra. The middle line represents the median and limits 
are first and third quartiles. (b) Spatial cell types of ground truth and those identified by stLearn and BayesSpace are shown. (c) Spatial cell types for 2 
FOVs of ground truth and those identified by stLearn and BayesSpace are shown. (d) UMAP visualizations for raw and enhanced gene expressions are 
shown for non-tumor cells. (e) Violin plot of raw and enhanced gene expressions of marker genes in different cell types. 

xSiGra than other methods in identifying spatial domains. In 
addition, for the mouse brain anterior tissue ( Supplementary Fig. 
3b) and mouse brain coronal section (Supplementary Fig. 3c), 
xSiGra still achieves the best performance in identifying spatial 
domains. These findings underscore the outperformance of 
xSiGra in delineating spatial domains across diverse tissue types, 
providing valuable insights into cellular organization within 
complex microenvironment. 

xSiGra presents better interpretability for 
explainable features 
Our method uses a novel graph Grad-CAM to identify the 
important cells and genes for spatial cell types. The model inter-
pretability can be evaluated with two key metrics: fidelity and 

contrastivity [30]. Fidelity measures how much the detection 
accuracy is reduced when the important genes are excluded. Con-
trastivity measures the differences in important genes identified 
across different spatial cell types. Based on these two metrics, we 
have compared xSiGra with four existing explainable methods, 
including Saliency [23], InputXGradient [25], GuidedBackprop 
[24], and Deconvolution [26] on each of the lung tissue slices 
(see Data Availability). Specifically, Fig. 3a shows the fidelity 
and contrastivity scores of each of the methods on the Lung-
13 tissue slice, where xSiGra achieved a higher median fidelity 
score of 0.16, which is the best compared to Saliency (median: 
0.10), InputXGradient (median: 0.09), GuidedBackprop (median: 
0.05), and Deconvolution (median: 0.04). xSiGra also obtained 
better contrastivity score (median: 0.77) than the other methods,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae388#supplementary-data
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Figure 3. Evaluation results of model explainability. (a) Box plot of fidelity and contrastivity of deconvolution, GuidedBackprop, Saliency, InputXGradient, 
and xSiGra methods on Lung-13 tissue slice. (b) Box plot of fidelity and contrastivity of those methods on Lung 5-rep3 tissue slice. 

especially Deconvolution (median: 0.18). Figure 3b shows that the 
fidelity and contrastivity scores of different methods on this Lung-
5 rep3 tissue slice. Across all eight lung cancer tissue slices (Fig. 3 
and Supplementary Fig. 4), xSiGra presents superior performance 
in both fidelity score (median = 0.16) and contrastivity score 
(median = 0.76), compared to the other methods (Saliency: 0.09, 
0.45; InputXGradient: 0.08, 0.46; GuidedBackprop: 0.06, 0.16; 
and Deconvolution: 0.05, 0.23). Collectively, xSiGra demonstrates 
superior performance of interpretability than other explainable 
methods. 

xSiGra identifies important genes and cells for 
spatial cell types 
Given the strong interpretability of xSiGra, it is able to reveal the 
important genes and cells contributing to the identified spatial 
cell types. To visualize the cell-level contributions, as shown in 
Fig. 4a, we use gradient colors representing cells ranging from 
low to high contribution for each of the major cell population 
(tumor, fibroblast, myeloid, and lymphocytes). It is observed that, 
for a specific cell type, not only the cells within this cell type, 
but also some neighboring cells contribute to the identification 

of this specific cell type. To further confirm this observation, 
we utilize four distinct colors to differentiate cells of the par-
ticular cell type that exhibit importance and those not belong-
ing to the specific cell type but still demonstrate importance 
(Fig. 4b). 

Specifically, in the case of tumor cells, the majority of these 
cells, along with a few non-tumor cells, exhibit significant con-
tributions to the identification of this cell type. However, there 
are also a few tumor cells that do not contribute to its identifi-
cation. Similarly, for fibroblasts, most of these cells contribute to 
their identification along with a few non-fibroblast cells. Com-
parable patterns are observed for myeloid and lymphoid cells 
as well. Notably, for each spatial cell type, the cells that con-
tribute to it despite not belonging to that specific cell type are 
primarily neighboring cells. Figure 4c provides quantitative mea-
surements of the contributions of eight different cell types for 
identifying a particular spatial cell type. In tumor identification, 
tumor cells make the major contribution, while fibroblasts, along 
with a few myeloid and lymphocyte cells, contribute significantly 
to the identification of the fibroblast cell type. Myeloid cells, 
as well as some lymphocytes and fibroblasts, contribute to the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae388#supplementary-data
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Figure 4. Spatial figure to visualize cell-level contribution in identifying spatial cell types. (a) Visualization of the contribution of cells in identifying 
spatial cell types. (b) Contribution of cells in identifying the specific cell type. (c) Violin plot to visualize the contribution of cells to each cell type. 

identification of the myeloid cell type. Similarly, lymphocyte cells, 
along with some myeloid and fibroblast cells, show contribu-
tions to the identification of the lymphocyte cell type. Over-
all, xSiGra offers valuable insights into spatial cell type iden-
tification, providing specific information about how cells and 
their neighboring cells are involved in deciphering spatial cellular 
heterogeneity. 

Explainable xSiGra uncovers endothelial subset 
involved in ECM-related interactions 
With the interpretable features and their importance scores, we 
delve deeper into the analysis of cell–cell interactions (CCIs) 
involving known ligand–receptor (L-R) pairs between adjacent 
cells (Materials and Methods). The CCI analysis reveals signif-
icant L-R pairs along with their associated cell types, provid-
ing valuable biological insights (Fig. 5a). Figure 5b illustrates the 
quantification of L-R interactions within CCIs across different 
cell types, highlighting a strong interaction between endothelial 
cells and tumor cells, particularly driven by ECM-related inter-
actions. Through interrogation of the ECM-related interactions, 
notable receptors such as FLT1 and integrins (ITGA2, ITGA3, 
ITGA6, ITGAV) in endothelial cells were identified. Specifically, in 
FOV 14, spatial visualization of FLT1 and integrins’ importance 
scores in endothelial cells is shown (Fig. 5c), with further visu-
alization across the whole tissue slice and individual FOVs pro-
vided in Supplementary Fig. 5. These observations underscore the 

diverse importance of FLT1 or integrins among endothelial cells, 
suggesting their distinct roles in ECM-related interactions. Subse-
quently, we conduct a comparative analysis between endothelial 
cells with higher and lower importance scores through differen-
tial expressed gene analysis, revealing overexpressed genes and 
enriched pathways in endothelial cells with high FLT1 impor-
tance scores (Fig. 5d), as well as the enriched pathways in those 
with high integrins importance scores (Fig. 5e). The top enriched 
ECM-related pathways emphasize that endothelial cells with high 
importance scores play a pivotal role in their interaction with 
tumor cells, indicating a heterogeneous underlying mechanism 
within this cell type in the complex cellular communications. 

Discussion 
Recent advances in spatial transcriptomics technologies have 
enabled subcellular RNA profiling in tissue slice [1, 31]. Platforms 
like NanoString CosMx SMI [5] and Vizgen MERSCOPE [4] have  
enabled the spatial profiling of thousands of RNA targets. How-
ever, such spatial imaging data faces challenges of missing values 
and data noise, which can negatively affect downstream analysis 
such as spatial domain detection [31, 32]. Several deep learning 
models have been proposed to improve noisy transcriptomics data 
and perform data analysis [7], but most of them are black-box 
approaches that lack transparency and interpretability [21, 33]. 
To address this challenge, we have proposed xSiGra, which not

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae388#supplementary-data
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Figure 5. Downstream analysis using the identified important cells and genes. (a) Circular plot of cell–cell interactions. (b) Heatmap of cell–cell 
interactions with the number of involved L-R interactions from both raw data and importance scores. (c) Spatial visualization of blood vessel endothelial 
cells in FOV 14. The zoom-in panels show the importance scores of FLT1 and integrins. (d) Gene enrichment analysis of endothelial cells with high 
importance scores of FLT1. (e) Gene enrichment analysis of endothelial cells with high importance scores of ECM receptors ITGA2, ITGA3, ITGA6, and 
ITGAV. 

only accurately identifies spatial cell types and enhances gene 
expression profiles, but also offers quantitative insights about 
which cells and genes are important for the identification of 
spatial cell types, thus making it an interpretable model. 

Morphology features have been shown to be linked with gene 
expression data and combining information from both can lead to 
better cell prediction performance [34, 35]. xSiGra is engineered 
to use the potential of multimodal data such as multichannel
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cell images and their microenvironment. It includes two major 
modules, i.e. SiGra+ and graph Grad-CAM. The SiGra+ mod-
ule is evolved from our recently published SiGra model with 
an improvement by using a VGG28 feature extractor to better 
leverage the histochemistry images, which are as part of the 
spatial imaging data, and by introducing a KL divergence loss 
item to better balance the contributions from transcriptomics and 
imaging. xSiGra learns the latent space representation, which is 
used to identify the spatial cell types by Leiden clustering [36]. 
To make the model explainable, we use a variant of gradient-
weighted class activation map (Grad-CAM) [30, 37]. To integrate 
Grad-CAM with SiGra+, we introduce two linear layers with inter-
mediate nonlinear transformation. We train these layers to pre-
dict the cell type membership probability through minimizing 
the cross-entropy loss, using the latent representation as input 
and vendor-provided cell types as ground truth. With the new 
layers replacing Leiden clustering, xSiGra is able to provide the 
cell and gene importance scores for the spatial cell types. The 
derived quantitative measures of gene and cell importance for 
each cell type facilitates downstream analysis like cell–cell inter-
actions and gene enrichment analysis. Importantly, xSiGra is one 
of the first attempts to quantitatively measure the gene and cell 
importance to spatial cell types, making it a transparent and 
trustworthy solution for users. 

xSiGra’s strength lies in its comprehensive integration of mul-
timodal data including gene expression, spatial information, and 
histology features leading to better performance than existing 
methods. While most of the existing methods utilize black-box 
models providing little insights into their decision-making pro-
cesses, xSiGra’s unique strength lies in providing interpretable 
features that aid researchers in gaining deeper biological insights 
and understanding the underlying mechanisms driving model’s 
predictions. In addition to the advantages, xSiGra holds consid-
erable promise for continuous improvement in the future. It can 
be adapted and expanded in several ways. Due to its hybrid 
architecture, it can easily incorporate emerging modalities in 
omics data including novel image modalities. It can be further 
improved by integrating with 3D images and spatial information 
to use richer information for data analysis. xSiGra relies on pre-
trained VGG models with ImageNet weights for feature extraction. 
While effective, these models may not be optimized for histology 
images, potentially limiting performance. Future improvements 
could involve using models pretrained specifically on histology 
data to enhance feature extraction accuracy. While the current 
focus of xSiGra is on providing explanations for spatial imaging 
data, it can be easily extended to provide interpretability for other 
spatial omics data such as spatial proteomics data. The adapt-
ability of xSiGra for ongoing evolution in spatial technologies is 
anticipated to empower its utility in the field. 

Biologically, xSiGra offers a robust tool for comprehensive 
insights into tissue architecture and cellular interactions. This 
is particularly valuable in understanding the spatial hetero-
geneity of tissues, which can reveal crucial information about 
disease mechanisms, developmental processes, and cellular 
microenvironments. The interpretability provided by xSiGra 
further enhances the biological relevance of the findings. 
The potential real-world implications of xSiGra are profound. 
In clinical settings, the model can aid in the diagnosis and 
prognosis of diseases by providing detailed spatial maps of 
gene expression and histological features. For instance, xSiGra 
could help identify tumor subregions with distinct molecular 
characteristics, leading to more targeted and effective treatment 
strategies. Additionally, xSiGra can be used to evaluate the spatial 

effects of drug candidates on tissues, enhancing the precision 
and efficacy of therapeutic interventions. Overall, xSiGra serves 
as a pivotal tool in advancing both basic research and clinical 
applications. 

Materials and Methods 
Data processing 
Single-cell spatial transcriptomics datasets including 8 lung can-
cer tissue slices of NanoString CosMx SMI, 12 brain tissue slices 
of 10x Visium DLPFC, human breast cancer, mouse brain anterior, 
and mouse brain coronal tissue slices are used. Gene expressions 
are first normalized by multiplying by 10 000 and then log-
transformed. (1) For the NanoString datasets, each whole tissue 
sample includes a certain number of FOVs. For each cell within a 
FOV, a 120-pixel ×120-pixel image is cropped with the cell at the 
center. For NanoString SMI data, a spatial graph is constructed 
using spatial locations of cells. Cells at a distance <80 pixels 
(14.4 μm) are considered as neighbors in the graph. Consider the 
graph as G = (V, E) where each vi ∈ V is a cell node (i = 1 . . . N 
and N is the total number of cells) and each eij ∈ E is the distance 
between cell vi and vj. Each node has gene expression gi =

{
gi,k

}
(k = 1 . . . K and K are total genes) and image features mi =

{
mi,f

}
where f = 1 . . . F. (2) In 10x Visium DLPFC data, for each spot, 50-
pixel ×50-pixel image is cropped with the spot as the center. To 
construct the spatial graph for 10x Visium data, spots at a distance 
<150 pixels (116 μm) are considered as neighbors in the graph. (3) 
In 10x Visium human breast cancer data, for each spot, 132-pixel 
×132-pixel image is cropped with spot as the center. For the spatial 
graph, spots at a distance <400 pixels (116 μm) are considered 
as neighbors. (4) For mouse brain anterior and coronal tissue 
sections, for each spot, 31-pixel × 31-pixel image is cropped with 
spot as the center and spots at a distance <188 pixels (116 μm) are 
considered as neighbors. Similar to NanoString datasets, for 10x 
Visium datasets the graph G = (V, E) has node vi ∈ V representing 
a cell (i = 1, . . . N and N is the total number of cells) and eij ∈ E 
representing the edge between the neighboring cell vi and vj. Each 
node has gene expression gi = {

gi,k
}

(k = 1 . . . Kand K are total 
genes) and image features mi =

{
mi,f

}
where f = 1, . . .  , F. 

The xSiGra model 
The xSiGra model consists of the (1) SiGra+ to reconstruct gene 
expressions and (2) graph gradient-weighted class activation 
mapping (graph Grad-CAM) model to identify interpretable 
features. 

(1) SiGra+ 
SiGra+ is a hybrid graph encoder-decoder framework, consist-

ing of three modules: (i) the image module, (ii) the gene module, 
and (iii) the hybrid module. Specifically, (i) in the image module, 
for each node vi in the graph, features from the images miare 
first extracted using a pretrained VGG-16 network. The extracted 
image features are then passed through graph transformer layers 
[38, 39] to obtain the latent space zm,i. This latent space represen-
tation further goes through additional graph transformer layers 
to reconstruct the gene expressions of node vi. Here,  ̂gm,i repre-
sents the reconstructed gene expression from zm,i. (ii) In the gene 
module, for each node vi in the graph, gene expression features 
are passed through graph transformer layers to obtain the latent 
space zg,i. This latent space representation goes through graph 
transformer layers T(l) (l denotes the l-th layer) to reconstruct 
the gene expression counts for the node vi. Here,  ̂gg,i represents 
the reconstructed gene expression from zg,i. (iii) In the hybrid 
module, the two latent space features zm,i, zg,i are concatenated
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and provided as input to graph transformer layer, which projects 
it to new latent space zh,i. The hybrid embedding zh,i is further 
passed through graph transformer layers to reconstruct the gene 
expressions of the node vi. Here,  ̂gh,i represents the reconstructed 
gene expression from hybrid embeddings. 

With the input graph G = (V, E), the multimodal features 
(image and gene expression) of neighboring nodes also contribute 
to the reconstructed gene expressions of node vi. 

The hybrid graph encoder-decoder is trained to learn gene 
expressions with the loss function (L) as  

L = Lm,i + Lg,i + Lh,i + λ ∗ KL, 

where Lm,i = 1 
N

∑N 
i=1

(
gi − ĝm,i

)2 , Lg,i = 1 
N

∑N 
i=1

(
gi − ĝg,i

)2 , Lh,i = 
1 
N

∑N 
i=1

(
gi − ĝh,i

)2 . Meanwhile, 

KL (P || Q) = 
N∑

i=1 

P(i) log
(
Q(i)/P(i)

) + 
N∑

i=1 

Q(i) log
(
P(i)/Q(i)

)

where P and Q are reconstructed gene expressions pairs (ĝm,i, ĝg,i), 
(ĝm,i, ĝh,i), and  (ĝh,i, ĝg,i). Here,  λ is chosen as 0.001 using hyper-
parameter tuning. ĝh,iis used as the final reconstructed gene 
expression and zh,i is used for clustering to identify spatial cell 
types using the Leiden algorithm [36]. 

(2) Graph Grad-CAM model 
xSiGra uses a novel post hoc graph Grad-CAM model to reveal 

the importance of genes and cells for biological functions of 
interest, such as the identified spatial cell types. Since the 
spatial cell types are identified through unsupervised clustering 
of the latent space zh,i, it is challenging to directly interpret 
the results. Herein, we first train an auxiliary AI classifier 
component to map spatial cell types to the corresponding ground 
truth, then use graph Grad-CAM to explore the importance of 
genes and cells for the predicted probabilities of spatial cell 
types. 

For the auxiliary classifier component, we choose a dense mul-
tilayer perceptron as the classifier, with intermediate nonlinear 
ReLU [40] activations as the hidden layers and a log softmax 
activation layer to predict probabilities of spatial cell types. The 
log softmax activation is used as it shows better stability and 
faster gradient optimization over softmax activation [41]. Briefly, 

Classifier
(
zh,i

) → ŷi, 

where, for cell i, ŷi ≡ {
ŷi,1, ŷi,2, · · ·  , ŷi,C

} ∈ RC×1 is a vector of the 
predicted probabilities of cell i belonging to each of the C spatial 
cell types. For the NanoString CosMx data, the vendor-provided 
cell type annotations yi ≡ {

yi,1, yi,2, · · ·  , yi,C
}

are used as ground 
truth for training the classifier, where yi,c ∈ {0, 1} is the cell type 
label and for each cell there is only one non-zero label. The cross-
entropy loss used for training is 

LXAI = −  
N∑

i=1 

C∑
c=1 

yi,c log ŷi,c 

This classifier maps each cell from the latent space zh,i to its 
corresponding cell type and thus allows interpreting the gene and 
cell importance. 

Then, we developed a novel graph Grad-CAM algorithm to 
explore the contributions of each gene in each cell to the predic-
tion of each cell type with backpropagation. Consider the spatial 

graph with N cells (nodes) and K genes, the k-th feature at l-th 
layer in the SiGra+ module for cell iis denoted as T(l) 

i,k. For spatial 
cell type c, its specific weights for gene k (or latent feature k for 
l > 0) of cell  i at the l-th layer T(l) of the SiGra+ gene module is 
given by 

σ (l),c i,k = 
∂ ̂yi,c 

∂T(l) 
i,k 

The feature importance at the l-th layer is determined through 
backward propagation: 

w(l),c 
i,k = ReLU

(
σ (l),c i,k T(l) 

i,k +
(
W(l)

)−1 
w(l+1),c 

i,k

)

where W(l) is the learned parameter of l-th transformer layer T(l). 
The importance score of gene k in cell i for spatial cell type c is 
determined as 

wc 
i,k ≡ w(0),c 

i,k 

Similarly, the importance score of cell i for spatial cell type c is 
determined as 

w(l),c 
i = ReLU 

⎛ 

⎝ K(l)∑
k=1 

σ
l,c 
i,kT(l) 

i,k +
(
W(l)

)−1 
w(l+1),c 

i 

⎞ 

⎠ , 

where K(l) is the number of latent features at the l-th layer, and 
K(0) = K. For simplicity, in xSiGra, we only use the input layer, 
i.e. l = 0, to compute gene and cell importance. Specifically, the 
importance of gene k in cell i is computed as 

wc 
i,k = ReLU

(
σ

0,c 
i,k T(0) 

i,k

)
, 

and the importance of cell i for determining cell type c is 

wc 
i = ReLU

(
K∑

k=1 

σ
0,c 
i,k T(0) 

i,k

)
, 

where T(0) 
i,k ≡ gi,k is gene expression count at layer 0 for cell i 

and gene k. Thus, the importance of genes and cells for each 
spatial cell type is determined. In this work, through fine-tuning, 
we determine the hyperparameters as two layers for the auxiliary 
classifier with the dimensions of each layer as 1024 and 8. 

Performance benchmarking 
(1) For benchmarking on the accuracy of identified spatial cell 
types or domains with ground truth, we compare our method with 
nine existing methods, including SiGra [9], SpaGCN [10], stLearn 
[11], BayesSpace [12], STAGATE [13], conST [14], ConGI [16], Seurat 
[17], and Scanpy [18]. The performance of different methods is 
evaluated using the ARI score and NMI. That is, suppose Ŷ ={
ŷi

}n 
i=1 represent the spatial cell types or domains, and Y = {

yi
}n 

i=1
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represent the ground truth, i.e. k cell types or spatial domains 
from n cells or spots, ARI is calculated as 

ARI =

∑
ls

(
nls 

2

)
−

∑
l 

⎛ 

⎜⎝nl 

2 

⎞ 

⎟⎠∑
s 

⎛ 

⎜⎝ns 

2 

⎞ 

⎟⎠ 

⎛ 

⎜⎝n 
2 

⎞ 

⎟⎠

∑
l 

⎛ 

⎜⎝nl 

2 

⎞ 

⎟⎠+∑
s 

⎛ 

⎜⎝ns 

2 

⎞ 

⎟⎠ 

2 −
∑

l 

⎛ 

⎜⎝nl 

2 

⎞ 

⎟⎠∑
s 

⎛ 

⎜⎝ns 

2 

⎞ 

⎟⎠ 

⎛ 

⎜⎝n 
2 

⎞ 

⎟⎠ 

where l and s denote the k cell types or domains, nl = ∑n 
i I

(
ŷi = l

)
, 

ns = ∑n 
i I

(
yi = s

)
, nls = ∑n 

i,jI
(
ŷi = l

)
I
(
yi = s

)
, and  I

(
x = y

) = 1 when 
x = y, else I

(
x = y

) = 0. 
NMI is calculated as 

NMI = 
2 × MI

(
Y, Ŷ

)
H(Y) + H

(
Ŷ

)

where MI
(
Y, Ŷ

)
denotes the mutual information between Y and 

Ŷ and H(Y), H
(
Ŷ

)
denotes their entropies. 

(2) For benchmarking on the accuracy of identified spatial 
domains without ground truth annotations, we compare our 
method with nine existing methods, including SiGra [9], SpaGCN 
[10], stLearn [11], BayesSpace [12], STAGATE [13], conST [14], ConGI 
[16], Seurat [17], and Scanpy [18]. The performance of different 
methods is evaluated with the clustering metrics such as SC, 
CH, and BD, which are used for benchmarking performance on 
datasets when ground truth information is not available. 

SC measures clustering performance using pair-wise distance 
within and between clusters and a higher value of the score 
denotes well-defined clusters. SC is calculated as 

SC = 
1 
k 

k∑
l=1 

1 
nl 

⎛ 

⎝ ∑
x ε Cl 

b(x) − a(x) 
max

(
b(x), a(x)

)
⎞ 

⎠ 

where k is the number of clusters, nl denotes number of samples 
in cluster l, a(x) denotes average distance between sample x and 
all samples from same cluster, b(x) denotes average distance 
between sample x and all samples from nearest cluster, and Cl 

denotes cluster l. 
CH measures the closeness within clusters and a higher value 

of CH index refers to better grouped clusters. CH is calculated as 
follows: 

CH = 
trace (Bk) 
trace (Wk) 

× 
n − k 
k − 1 

where n is number of samples in data, k is the number of clus-
ters, trace (Bk) denotes between-cluster dispersion matrix, and 
trace (Wk) denotes within-cluster dispersion matrix. 

BD computes the similarities between clusters and a lower 
value of this index denotes better separation between different 
clusters. BD is calculated as 

BD = 
1 
k 

k∑
l=1 

d (Cl) + d (Cs) 
d (cl, cs) 

where d (Cl) , d (Cs) denote the average distance between each cell 
in cluster Cl and its centroid cl and the average distance between 

each cell in cluster Cs and its centroid cs, respectively, where Cl �= 
Cs. d (cl, cs) denote the distance between cluster centroids cl and cs. 

(3) To evaluate the explainable power of xSiGra, we have com-
pared it with the existing explainable methods, namely, Saliency 
[23], InputXGradient [25], GuidedBackprop [24], and Deconvolu-
tion [26]. The model explainability is measured with two metrics, 
i.e. fidelity score and contrastivity score. Specifically, (1) fidelity 
score is computed as the differences between the model’s C-index 
score (area under the receiver operating characteristic curve) 
when all genes are used and when the top 30 important genes 
are masked. The fidelity score is computed separately for different 
spatial cell types and the median value of fidelity scores is used for 
comparison. A higher fidelity score indicates better explainable 
capability. (2) Contrastivity score is computed as 1 − Jaccard 
similarity for each pair of different spatial cell types. Specifically, 
if Ii represents the list of top 30 important genes identified for cell 
type i, Ij is the list of top 30 important genes identified for cell type 
j, then the contrastivity score for cell types i and j is computed as 
1 − |Ii∩Ij | 

|Ii∪Ij | . The median value of contrastivity scores across all pairs 
of spatial cell types is used for performance evaluation. 

Enrichment analysis 
Gene sets of the Reactome and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway database are downloaded from the 
MSigDB Collections [42, 43]. Functional enrichment based on the 
above respective databases is assessed by hypergeometric test, 
which is used to identify an a priori–defined gene set that shows 
statistically significant enrichment. The test is performed by the 
Scanpy package. We further correct the P-values by Benjamini–  
Hochberg and those with <.05 are considered as statistically 
significant. 

Cell–cell interaction analysis 
To conduct the cell–cell interaction analysis, we first built a spatial 
graph using cell location. Cells at a distance <80 pixels (14.4 μm) 
are considered as neighbors in the graph. Then, we use a known 
set of ligand–receptor pairs [44] to compute interaction scores for 
all cells in the spatial graph. For each neighbor cell pair vi and vj, 
we have Liand Lj as the ligand-related expression or importance 
score in cell vi and cell vj, while Ri and Rj as the receptor-related 
expression or importance score in cell viand cell vj, respectively. 
The interaction scores are computed as score 1 = Li × Rj and 
score 2 = Lj × Ri. Next, the interaction scores for each unique 
ligand gene–cell type and receptor gene–cell type neighbor pairs 
are aggregated using average. To select the statistically significant 
interactions, we compute z-scores and choose the interactions 
having False Discovery Rate (FDR) adjusted P-value <.05. The 
significant interactions identified using the analysis are further 
used to gain biological insights. 

Key Points 
• xSiGra leverages histology images, gene expression data, 

and spatial cell locations to identify spatial cell types 
along with their interpretable features. 

• xSiGra incorporates explainable artificial intelligence to 
gain insights about the interpretable cells and genes. 
xSiGra is provided as an open-source tool for spatial 
imaging data processing. 

• The application of xSiGra on lung cancer tissue reveals 
that the activity of each cell type is not only influenced 
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by itself but also by its neighbors. Furthermore, it high-
lights the pivotal role of an endothelial cell subset in 
ECM-related interactions with tumor cells. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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Data availability 
In this study, we have used the NanoString CosMx SMI non-small-
cell lung cancer (NSCLC) formalin-fixed paraffin-embedded 
(FFPE) Dataset, 10x Visium datasets from human dorsolateral 
prefrontal cortex (DLPFC) [45], 10x Visium data from human 
breast cancer tissue, and mouse brain coronal and anterior tissue 
sections. NanoString dataset contains eight different samples 
from five NSCLC tissues, Lung 5-rep1, Lung 5-rep2, Lung 5-rep3, 
Lung6, Lung 9-rep1, Lung 9-rep2, Lung-12, and Lung-13. For 
each dataset, gene expression data and multichannel images are 
provided with five channels: MembraneStrain, PanCK, CD45, CD3, 
and DAPI. For each staining, a rich gray-scale image composed 
of a combination of multiple FOVs is also provided. Along with 
that, metadata about cells such as identified cell coordinates, cell 
area, width, and height is provided. Lung-13 sample consists of 20 
field of views (FOVs) and 77 643 cells. The cells were grouped into 
eight cell types: tumor, fibroblasts, lymphocyte, mast, neutrophil, 
and endothelial and epithelial cells. 10x Visium DLPFC dataset 
consists of 12 samples, 151676, 151675, 151674, 151673, 151672, 
151671, 151670, 151669, 151510, 151509, 151508, and 151507, with 
up to 6 cortical layers and white matter manual annotation. 
The hematoxylin and eosin (H&E) images of the tissue sections 
along with the transcriptomics data are provided. Mouse brain 
anterior and coronal sections and human breast cancer 10x 
Visium datasets consist of one sample each with transcriptomics 
data and H&E images of the tissue sections. 
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Code availability 
The xSiGra model is provided as an open-source python 
package in GitHub (https://github.com/QSong-github/xSiGra), 
with detailed manual and tutorials. 
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