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Abstract 
Recent work has leveraged massive datasets and advanced harmonization methods to construct normative 
models of neuroanatomical features and benchmark individuals’ morphology. However, current harmonization 
tools do not preserve the effects of biological covariates including sex and age on features’ variances; this 
failure may induce error in normative scores, particularly when such factors are distributed unequally across 
sites. Here, we introduce a new extension of the popular ComBat harmonization method, ComBatLS, that 
preserves biological variance in features’ locations and scales. We use UK Biobank data to show that 
ComBatLS robustly replicates individuals’ normative scores better than other ComBat methods when subjects 
are assigned to sex-imbalanced synthetic “sites”. Additionally, we demonstrate that ComBatLS significantly 
reduces sex biases in normative scores compared to traditional methods. Finally, we show that ComBatLS 
successfully harmonizes consortium data collected across over 50 studies. R implementation of ComBatLS is 
available at https://github.com/andy1764/ComBatFamily. 
 
Introduction 
Neuroimaging research’s recent shift towards large sample sizes necessitates pooling data collected across 
many sites and scanners1–3. Both large consortia and multisite studies often use statistical methods to correct 
batch effects resulting from subtle differences in MRI acquisition, hardware, or collection protocols across 
sites4,5. One popular technique is ComBat6, which estimates and removes site-specific offsets in feature 
distributions while preserving the linear effects of prespecified covariates7,8. This framework has been 
extended to create several new methods, including ComBat-GAM, which preserves nonlinear covariate effects 
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via generalized additive models9. Collectively, these methods perform well in large samples across a range of 
imaging modalities10,11 and increase statistical power12,13. However, while they preserve covariate effects on 
features’ means, no existing harmonization methods preserve the effects of biological covariates on 
neuroanatomical features’ variances.  

These biological sources of variance are integral to brain phenotypes’ distributions across a population. 
Recent literature has demonstrated that factors such as age and biological sex impact the variances of 
neuroanatomical features14–18. While mean differences have received greater attention, sex differences in brain 
structures’ inter-individual variabilities are common and may impact disease prevalence14–16,19. Similarly, 
assessments in adolescents18, elderly populations17, and across the lifespan20,21 have found age-related 
differences in the variances of several neuroanatomical features.  

 Biologically valid models of features’ scales, or distributional dispersions, and robust harmonization are 
critical for generating normative trajectories of neuroanatomical features. This longstanding goal of 
neuroimaging research has recently become feasible thanks to massive consortia and open-access datasets20–

23. Besides mapping a normative trajectory of brain structure throughout life, these models make it possible to 
quantify each individual’s offset from this norm as a percentile (centile) or Z-score. Crucially, these scores 
depend on accurate models of population-level variance relative to factors like age and sex, making them 
highly susceptible to the loss of biological variability imposed by current harmonization methods.  

Existing techniques’ failure to preserve biological scale effects may be particularly problematic when 
such variance-altering phenotypes are distributed unequally across sites24. For example, current ComBat 
methods would force sites with male-dominated and female-dominated samples to target the same variance 
despite known sex differences in features' scales8. While this may be avoided by harmonizing males and 
females separately, this comes at the expense of statistical power and is not possible for continuous covariates 
like age. Thus, by removing biological effects on feature variance, harmonization may produce inaccurate or 
biased estimates of normative scores, which in turn could yield inaccurate or biased associations with 
phenotypes such as clinical diagnosis. Therefore, preserving the effects of covariates like age and sex on 
feature variance is crucial to estimating accurate normative scores for all individuals.  
 In this work, we extend the ComBat framework to perform batch correction while flexibly preserving 
covariates’ effects on each feature’s location and scale. This new method, ComBatLS, integrates generalized 
additive models for location, scale, and shape (GAMLSS)25 to preserve complex, nonlinear effects in both the 
first and second order of a feature’s distribution during harmonization. We first assess ComBatLS’s ability to 
preserve covariate effects on scale by applying it to synthetic “sites” containing unequal numbers of males and 
females, which we created from UK Biobank data26. Here we focus on sex since it is commonly imbalanced in 
biomedical research samples27–29 and its effects on neuroanatomical variance are well-documented, including 
in this sample15.  We hypothesized that normative scores calculated from data harmonized across synthetic 
sites with ComBatLS would recapitulate subjects’ true scores more accurately than those derived from data 
harmonized with other ComBat methods. We also conducted several tests for sex biases in how each method 
impacts score estimates, hypothesizing that ComBatLS would reduce sex-related biases more effectively than 
other ComBat methods. Finally, we validated that ComBatLS successfully harmonizes massive datasets with 
varying demographics by applying it to data from the Lifespan Brain Chart Consortium (LBCC)20 collected by 
over 50 primary studies. We have released ComBatLS as part of the ComBat family of R methods at 
https://github.com/andy1764/ComBatFamily.   

 
Results 
The ComBatLS method for multi-site harmonization 
CombatLS extends the original ComBat framework by flexibly modeling and preserving the effects of specified 
covariates on each feature’s location and scale. The effect of selected covariates is fit using a generalized 
additive model for location, scale, and shape (GAMLSS)25. This framework directly models the first and second 
moments of each feature’s distribution before shrinking site parameter estimates towards their mean estimate 
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across features, enabling ComBatLS to preserve non-linear covariate effects in both mean and variance
removing batch effects. 
 
To assess ComBatLS’s ability to preserve the biologically-derived variance necessary for calculating cen
scores, we randomly sampled data from the UK Biobank (N=28,619, 49.7% female) to create three synth
sites, two with unequal sex ratios (Figure 1). We used ComBatLS to “harmonize” neuroanatomical featu
across these synthetic sites while preserving the effects of age and sex. Then, we compared subjects’ c
scores from brain charts fit on these data to true centile scores derived from the unharmonized dataset. 
centile scores are defined by the population’s distribution, recapitulating these true centile scores require
harmonization preserve any between-site differences in variance resulting from the samples’ imbalanced
compositions. We quantified the offset of each subject’s ComBat-derived centile scores from their true c
as “centile error”, with smaller errors indicating better variance preservation. We then compared the 
distributions of centile errors and their magnitudes when data were harmonized by ComBatLS and three
methods: linear ComBat, ComBat-GAM, and ComBat without any covariate preservation. Results from 
ComBat without any covariate preservation – a theoretical “lower bound” to harmonization which perform
worst across all analyses – are presented in the Supplement (Section I, SFig 1-10). To account for the 
randomness in creating synthetic sites, we resampled subjects’ site assignments and repeated these an
100 times, which produced highly consistent results across replications (Supplement Section I). 
 

Figure 1. Summary of Methodological Approach.  
A) Subjects from the UK Biobank (UKB) sample are randomly assigned to one of 3 simulated “study site
such that sites have a Male:Female ratio of 1:1, 1:4, or 4:1. B) Brain structure feature data are “harmoniz
across these simulated sites using different configurations of ComBat, preserving covariates’ effects on 
mean (ComBatLS, ComBat-GAM, linear ComBat) and/or variance (ComBatLS). C) Brain growth charts a
for brain features using the original true structural data and data harmonized by each ComBat pipeline, w
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are then used to calculate personalized centile scores describing each subject’s percentile relative to the 
population distribution. Centile error, defined as the difference between a subject’s centile score when 
benchmarked on a brain chart modeled on “true” data and one fit on ComBat-harmonized data, was calculated 
for each brain feature across all subjects. Lines represent brain charts of the 75th, 50th, and 25th percentiles 
for the feature given age; the solid point represents a single subject’s brain feature, which has a “true” centile 
of 75% but corresponds to different centile scores when data is harmonized. D) We analyzed the distributions 
of centile errors within and between ComBat configurations to assess the degree to which each harmonization 
method preserved biological variability in the simulated sites, thus minimizing centile errors. 
 
ComBatLS recapitulates centile scores across sex-imbalanced sites better than other ComBat methods 
We first fit GAMLSS models to derive centile scores from 208 neuroanatomical features – four global tissue 
volumes and 68 cortical regions’ volume, surface area, and thickness measures – harmonized by each 
ComBat method (Figure 2A, see Methods). Using non-parametric, paired, two-sample tests of absolute centile 
errors, we found that in nearly all features, ComBatLS had significantly lower absolute centile errors than linear 
ComBat or ComBat-GAM (Figure 2B-C; Supplement Section I: Table 1, SFig. 1-3), indicating that this method 
induces less error in centile scores when harmonizing across sex-imbalanced simulated sites. Across our 100 
replications, all volume and surface area features’ absolute centile errors were lowest when fit with ComBatLS. 
However, a small number of cortical thickness features were fit better by ComBat-GAM or ComBat (SFig. 2), 
which both performed better in cortical thickness than other features. This is expected because, as in prior 
studies14–16,30, the variance of cortical thickness features is less impacted by sex than the variances of other 
features modeled in this sample (Supplement Section II, SFig. 11); therefore less information is lost when 
harmonization does not preserve these effects. ComBatLS’s added utility beyond other ComBat methods is 
thus proportional to the degree to which preserved covariates impact features’ variances, though it performs 
well even in the absence of substantial scale effects. In sum, these results demonstrate that ComBatLS is 
highly effective in preserving biological covariates’ effects on features’ scales, even when those covariates are 
not distributed evenly across study sites.  
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Figure 2. ComBatLS best replicates centile predictions across simulated sex-imbalanced sites. A) Brain 
charts of ventricular volume in females and males when derived from data harmonized across simulated sites 
with ComBat, ComBat-GAM, or ComBatLS relative to unharmonized (“true”) data. Line color corresponds to 
ComBat configuration, black dotted line corresponds to true data. Age values jittered slightly for visualization. 
B) Absolute centile errors, or distance in centile space between subjects’ true centiles and centiles derived 
from data harmonized with different ComBat configurations, of global volumetric features. C) Median absolute 
centile errors across brain features in data harmonized with varying ComBat configurations. Abbrv: WMV, 
white matter volume, GMV, cortical gray matter volume, sGMV, subcortical gray matter volume, CT, cortical 
thickness; SA, surface area; ***, p < 0.001, FDR-corrected.   
 
In addition to replicating these analyses after re-sampling subjects’ site assignment 100 times (Supplemental 
Table 1), we assessed whether extreme phenotypes drove the observed results by removing centile scores 
>95% or <5% when calculated on the original data. Again, these results were highly similar to those of the full 
dataset (Supplement Section III, SFig. 12-14). We also repeated these analyses using Z-scores (theoretical 
range (-inf,inf)) which yielded a nearly identical pattern of results to centile scores (range (0,1))(Supplement 
Section IV, SFig. 15-25). Together, these analyses indicate that ComBatLS is consistent and robust to extreme 
phenotypes and choice of deviation score. 
 
Sex differences induced by ComBatLS are small and less directionally biased than other ComBat methods 
We next assessed whether the centile errors induced by each ComBat method vary by subject sex, producing 
centile estimates that could bias associations of interest. We first mapped significant effects of sex on variance 
estimated by each feature’s brain charts, which revealed that models fit on ComBatLS-harmonized synthetic 
data closely match effects quantified in the true data (Figure 3A). To see whether these discrepancies in sex 
estimates affect centile scores, we used Wilcoxon tests to compare males’ and females’ centile errors across 
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ComBat methods within each feature. For all methods, most of the 208 features exhibited significant sex 
differences in centile errors (ComBatLS: 199 features, ComBat-GAM: 140 features, ComBat: 138 features, 
FDR-corrected across features and methods; Supplemental Figure 5). Next, to test whether these differences 
produced sex biases by consistently over- or under-estimating either sex’s centiles, we examined the 
distributions of these sex-differences’ medians across 100 sampling replications. This revealed that linear 
ComBat and ComBat-GAM tend to produce slightly more negative sex differences in centile errors, 
corresponding to a systematic underestimation of males’ centile scores relative to females’ (Figure 3B; 
Supplemental Figures 6 and 7). ComBatLS produced a very small but significant negative male bias only in 
global tissue volume centiles (β = -3.1e-04 centiles, p=0.0075, FDR-corrected across method and feature 
categories), while again, cortical thickness was exceptional in that significant biases were also absent in 
ComBat-GAM’s and ComBat (ComBat-GAM: β = -9.13e-05 centiles, p=0.52, ComBat: β = -9.57e-05 centiles, 
p=0.48, FDR-corrected). We further visualized whether these biases resulted in over-representation of either 
sex among subjects with very high (>80%) or very low (<20%) average centiles in any feature category. 
Interestingly, we found that while ComBatLS, ComBat-GAM and ComBat all tend to slightly over- or under-
represent females among those with extreme average centiles, ComBatLS showed less bias compared to 
other harmonization methods (Figure 3C). Together, these results suggest that ComBatLS-harmonized data 
preserves sex’s effects on variance and thus induces the smallest and least-biasing differences in males’ and 
females’ centiles. 
 

 
Figure 3. ComBatLS induces less sex biases in centile scores than other ComBat methods. A) Brain 
features with significant sex effects in scale, as determined by the second moment of GAMLSS growth charts. 
Fill represents the difference in males’ and females’ predicted variance at the sample’s mean age (64.94 
years), standardized by dividing by females’ predicted variance. Positive effects indicating that males’ variance 
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is higher than females’. Gray regions indicate non-significant sex effects. B) Density plots of median sex 
differences in centile errors induced by different ComBat methods within phenotype categories across 100 
replications. C) Bias in the proportion of females with low (<20th percentile) or high (>80th) mean centiles 
across 100 sampling replications. Positive values indicate a higher proportion of females than “true” mean 
centiles calculated from unharmonized data (dashed line). Abbrv: CT, cortical thickness; SA, surface area; ***, 
p < 0.001; **, p < 0.01, FDR-corrected two-sided, one-sample t-tests. 
 
ComBatLS preserves covariate effects across a wide range of sex imbalances in synthetic sites  
To test how each ComBat method’s performance is affected by varying degrees of covariate imbalances, we 
again drew eleven samplings of UK Biobank participants to create two synthetic sites: one with an even sex 
ratio and one in which the percentage of males ranged from 0% to 100% in 10% increments (Figure 4A). We 
then repeated the same procedures as in our main analyses to obtain and compare centile errors between 
ComBat methods when harmonizing each of these eleven samples. 
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Figure 4. ComBatLS best preserves the effects of biological sex on centile scores across varying 
degrees of site-level sex imbalance. A) Distribution of Female and Male UKB subjects across two simulated 
sites, permuted 11 times to assess the performance of ComBat configurations across varying degrees of site-
level sex imbalance. B) Distributions of absolute centile errors of global brain features harmonized across sites 
simulated with varying degrees of sex imbalance using ComBat, ComBat-GAM, and ComBatLS. Abbrv: WMV, 
white matter volume, GMV, cortical gray matter volume, sGMV, subcortical gray matter volume, CT, cortical 
thickness; SA, surface area; ***, p < 0.001; **, p < 0.01, FDR-corrected. 
 
For most features, ComBatLS produced significantly smaller absolute centile errors than other ComBat 
methods when one site was imbalanced for sex (Figure 4B). As above, these gains are less apparent in 
cortical thickness measures and when both sites are perfectly balanced for sex (Supplemental Figure 9). Our 
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assessment of sex biases in each method’s centile errors was again consistent with our main analyses 
(Supplemental Figure 10; Supplement Section I). 
 
These analyses demonstrate that ComBatLS adaptively preserves biological covariates’ effects on variance in 
a range of simulations and becomes more beneficial for ensuring centile accuracy as samples’ compositions 
become increasingly imbalanced. 
 
ComBatLS effectively harmonizes massive real-world datasets 
To assess its utility in real-world samples, we applied ComBatLS and ComBat-GAM to data from the Lifespan 
Brain Chart Consortium, a global sample of structural MRI from healthy individuals across the human 
lifespan20. Here we used scans from 52,098 (51.2% female) unique subjects aged 3.2 to 99.9 years collected 
by 51 primary studies over 199 sites (Figure 5A, see Methods for data curation). Both ComBatLS and 
ComBat-GAM mitigated batch effects across all features as indicated by comparing residual study effects to 
those in unharmonized data (Cohen’s F-squared: ComBatLS median=0.0087, IQR=0.030; ComBat-GAM 
median=0.0092, IQR=0.030; Unharmonized median = 0.083, IQR = 0.090; Supplemental Figure 26). However, 
there are differences in the resulting centile scores when the data is harmonized with ComBatLS or ComBat-
GAM (mean absolute difference in centile scores = 0.456, range = 0.032 - 8.42 centiles) with 46.9% of subjects 
having discrepant categorization of extremely high ( < 5%) or low ( > 95%) centiles in at least one feature 
(mean=0.91 features per subject, range = 0 - 49 features). We conducted exploratory analyses to assess 
whether mean differences in subjects’ ComBatLS- and ComBat-GAM-harmonized centile scores varied as a 
function of the primary studies’ characteristics, revealing a subtle association with the mean age of the sample 
and how much an individuals’ age deviated from that sample mean (Supplement Section V, SFigs 26-28). The 
simulation studies described above (Figures 1-4) suggest that ComBatLS’s accurate preservation of scale 
effects, including age effects, contributes to the observed differences in centile scores from consortium data 
harmonized with ComBatLS compared to ComBat-GAM.  
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Figure 5. ComBatLS and ComBat-GAM both effectively remove batch effects from consortium data 
containing over 50 studies. A) Characteristics of curated LBCC sample by primary study and summarized 
across the full sample. B) Distributions of subjects’ mean centiles across all brain features within each primary 
study. Centiles are calculated from brain charts fit on data harmonized using ComBat-GAM or ComBatLS, or 
on unharmonized data, and averaged within subjects across features. 

  
Discussion 

Here we introduce and validate ComBatLS, a novel location- and scale-preserving method to harmonize data 
across batches. Neuroimaging has begun to answer long-standing questions about the brain’s normative 
structure across the lifespan and to quantify individuals’ deviation from this norm20–22,31. However, such studies 
require integrating vast quantities of MRI scans collected across studies, sites, and scanners, which are highly 
unlikely to have similar sample characteristics. While ComBat and its extensions preserve the effects of such 
biological covariates on features’ means8,9, failure to preserve variance effects during harmonization may 
increase error and induce biases in downstream analyses. This includes normative scores derived from growth 
charts and estimates from brain-age models, which are known to be impacted by harmonization32,33. 
Furthermore, while additional work is needed to quantify ComBatLS’s impact outside of normative modeling, 
the relationship between variance and effect size implies that errors in scale could impact group-level 
inferences34. By integrating scale preservation in a robust batch-correction framework and illustrating its ability 
to improve individuals’ normative scores, this study and corresponding open software represent a significant 
advance in neuroimaging harmonization. 
 
Leveraging structural features derived from nearly thirty thousand UK Biobank participants, we found that 
ComBatLS recapitulates subjects’ true normative scores better than ComBat or ComBat-GAM. We first used 
weighted sampling to create synthetic batches that were male-dominated, female-dominated, or balanced for 
sex. We then applied ComBatLS and several existing ComBat methods to “harmonize” these data and 
assessed how each method offset subjects’ centile and Z-scores from their true values. Across 100 sampling 
replications and 208 brain features, we found that ComBatLS consistently produces normative scores closest 
to the ground-truth, unharmonized data. This result remained stable across a range of sensitivity analyses, 
including removing subjects at the extreme ends of the normative distribution and when synthetic samples’ sex 
differences were as small as 10%. These results indicate that by preserving the effects of biological covariates 
on distributions’ scales, ComBatLS enables highly accurate quantifications of individuals’ deviations from 
neuroanatomical norms. 
 
ComBatLS’s preservation of this critical intersubject variability is demonstrated by its performance in features 
with variances that are both strongly and minimally affected by sex. Across our analyses, harmonization 
methods were most comparable when applied to cortical thickness features, whose variances are less 
impacted by sex than other neuroanatomical phenotypes14–16,30 (Supplement Section II). Yet, even in cortical 
thickness, we found that ComBatLS still recapitulates each feature’s true centiles better than the other 
methods in more than half of replications. Thus, the relationship between ComBatLS’s performance and the 
strength of sex effects on scale only emphasizes how important such effects are for centile estimation and 
should not discourage ComBatLS’s use in features with minimal biological impacts on variance. 
 
One motivation in developing ComBatLS was to prevent harmonization from inducing sex biases in normative 
scores by systematically inflating or deflating the centiles of either sex. Interestingly, our analyses reveal that 
none of the covariate-preserving methods – ComBat, ComBat-GAM, and ComBatLS – induce large differences 
in males’ and females’ centile scores (Supplement Section I). However, ComBatLS induces less bias in centile 
errors across 100 replications, suggesting that covariate preservation in scale does mitigate harmonization-
induced biases. 
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We also validated that ComBatLS can harmonize neuroanatomical data across more than 50 real-world 
studies with heterogeneous sample demographics, clearly demonstrating the practical scalability of ComBatLS 
to large, heterogeneous studies. Exploratory assessment of differences in the centiles calculated from 
ComBatLS or ComBat-GAM, which was developed to harmonize studies spanning wide age ranges9, reveals 
that subjects’ mean absolute differences increase with the mean age of their primary study’s sample and when 
that mean age is further from their own. Alongside our simulation analyses, these results suggest that by 
preserving the impact of age on variance, ComBatLS may produce more accurate centile score estimates than 
ComBat-GAM in real-world datasets.  
 
This work has several limitations. First, as with all ComBat methods, ComBatLS will only preserve covariates 
that have been pre-specified. Similarly, ComBat methods rely on some degree of between-batch variation to 
accurately estimate covariate effects, as illustrated by the slight increase in absolute centile errors for all 
methods when our simulated sites were balanced for sex (see Figure 4B). Thus, while even small sampling 
imbalances seem sufficient for ComBatLS, researchers should take care when preserving covariates to avoid 
overfitting. Additionally, ComBatLS does not preserve covariate effects in or remove batch effects from higher-
order moments such as skew or kurtosis, which will necessitate new methods to resolve35. Finally, while 
popular, the existing cross-sectional ComBat methods assessed here only represent one flavor of multi-site 
harmonization4,5,36,37. It will be important for future work to compare ComBatLS to – or potentially integrate it 
with – other innovative and emerging frameworks38–40. 
 
The current study introduces ComBatLS, an R-based harmonization tool that extends the ComBat framework 
by preserving the effects of biological covariates on both location and scale. Its ability to robustly estimate 
individuals’ normative scores may enable sensitive identification of disease effects, increasing the power of 
future clinical research20. Furthermore, widespread sex differences in the variances of measures beyond 
neuroanatomy41–43 indicate that ComBatLS may be useful for correcting batch effects across a broad range of 
disciplines. ComBatLS is openly available at https://github.com/andy1764/ComBatFamily. 
 
Methods 
ComBatLS 
ComBatLS is an extension of ComBat-GAM9 that leverages the GAMLSS framework to model and preserve 
covariate’s effects in feature’s locations and scales. Specifically, ComBat-GAM assumes that for site i, subject 
j, and feature k, ����~��0, ���� in  

	��� 
  ��    ��������  ���  �������   
In ComBatLS, we modify our model to incorporate a log-linear relationship44 between the error standard 
deviation and the covariates 

����~ ��0, ����� �������� 
 ��  ������ 

Denote the standard data as ���� 
 ������	�
 ����
���

 �	�� 
 ������	�
 ����
���

 �������
��
������

. We then obtain our harmonized 

observations as 

	����������� 

��������  ����� ��

� ���
����� � �!��� ���  ��� �����  

An important consideration arises in how to regress out site during the standardization step. Johnson, Li and 

Rabinovic6 obtain least-squares estimates ���� by constraining ∑�  ����� 
 0 for all ! 
  1, 2, . . . , �. ComBatLS, 
the log-linear model of the error’s standard deviation and covariates is estimated from the site-influenced errors 
�������~ ��0, ��������� , which implies 
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 ��  ������  �������� 

For this to be identifiable6,8, we first fit the model without an intercept to obtain estimates ��and ��. Then, we 

estimate the intercept as the pooled mean ��� 
 ∑�
"�

" ��������. Finally, our estimates ���� are obtained as 

deviations from the estimated grand means ��� via ���� 
 ���/��������. Importantly, ComBatLS retains the 
strengths of prior ComBat iterations, including empirical Bayes methods to improve batch effect estimates for 
small sites6,8. Similarly, users can interrogate models’ diagnostic plots using the plot.comfam() wrapper. See 
Hu et al5 for recommendations on how to assess harmonization performance. 
 
Software 
All code used to perform analyses and create figures is available at https://github.com/BGDlab/combat-biovar. 
ComBatLS can be found at https://github.com/andy1764/ComBatFamily. Subject sampling, main analyses, and 
visualizations were done in R v 4.1.1. ComBat harmonization, sampling, and analyses for replications were 
done in R v 4.1.2.  
 
Simulation experiments: 
 
UK Biobank Data 
Our analyses leveraged structural MRI from the UK Biobank (UKB), a large, deeply-phenotyped population 
sample of adults. Details of neuroimaging data acquisition are available elsewhere26. Importantly, while data 
were collected across three scan sites, exhaustive measures were taken to harmonize acquisitions, including 
identical scanner hardware, software, and acquisition sequences, as well as comprehensive, standardized staff 
trainings26.  
 
T1- and T2-FLAIR weighted images were obtained from the UK BioBank portal (application 20904) and 
processed with FreeSurfer 6.0.1. We incorporated all scans that were defined as ‘usable’ by the UK Biobank’s 
in-house quality control26 and completed FreeSurfer processing within 20 hours. ‘Recon-all’ processing 
included bias field correction, registration to stereotaxic space, intensity normalization, skull-stripping, and 
segmentation. T2-FLAIR images were used to improve pial surface reconstruction when available. A triangular 
surface tessellation fitted a deformable mesh model onto the white matter volume, providing grey-white and 
pial surfaces with >160,000 corresponding vertices registered to fsaverage standard space. Surface area, 
thickness, and volumetric features were obtained for each of 68 cortical regions (34 per hemisphere) in the 
Desikan-Killiany atlas45 from the aparc.stats files output by the ‘recon-all’ pipeline. Global cerebrum tissue 
volumes were extracted from the aseg.stats files output by the recon-all process: 'Total cortical gray matter 
volume' for GMV; 'Total cerebral white matter volume' for WMV; and ‘Subcortical gray matter volume’ for sGMV 
(inclusive of thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens 
area; https://freesurfer.net/fswiki/SubcorticalSegmentation).  
 
Analyses were restricted to individuals who had never had mental health problems as diagnosed by a mental 
health professional, per their response recorded in data-field 20544 
(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20544) of the UKB mental health questionnaire. We 
further restricted the age range of our sample to subjects ages 50 to 80 years, removing 411 individuals. This 
was done to reduce the possibility that inadequate representation of both males and females at each end of 
the sample would induce age differences between the synthetic sites.  
 
Synthetic Site Assignments 
Main analyses: 
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For our main analyses, each UKB subject in our sample was assigned to one of three synthetic sites using 
random sampling without replacement in which the probability of a subject being assigned to a given site 
depended on sex. Female subjects were assigned a 33%, 58.75%, and 8.25% chance of being assigned to 
Sites A, B, and C, respectively; male subjects had a 33%, 8.25%, and 58.75% likelihood of assignment across 
these same three sites. Thus the sampling was constructed to create artificial sites of roughly equivalent size 
but with Male:Female ratios of 1:1 in Site A, 1:4 in Site B, and 4:1 in Site C. This sampling was permuted 100 
times for our replication analyses. 
 
Varying Male:Female Ratios: 
In addition, we assessed how the relative performance of ComBat methods varied with varying degrees of 
imbalance in sites’ Male:Female ratio by reassigning subjects to one of two synthetic sites: one with an equal 
number of males and females, and one with a sex ratio that varied across 11 permutations. Each site was 
limited to N=9,400 subjects, so that the 14,213 female UKB participants, who were a slight minority in the 
sample, could be assigned to one sex-balanced site and one entirely female site without replacement. We 
used R’s slice_sample() function to assign the appropriate number of randomly selected males and females to 
each site, with the number of males assigned to the second site increasing by 940 (10% of the site’s sample) 
from zero to 9,400 over 11 permutations. 
 
ComBat Harmonization 
For each sampling permutation, we harmonized across the synthetic sites, or batches, using 4 ComBat 
methods: ComBat, ComBat-GAM, ComBatLS, and linear ComBat without any covariate preservation. 
Harmonization was performed in R using the ComBatFamily package 
(https://github.com/andy1764/ComBatFamily). ComBat was fit while accounting for linear effects of age and 
sex while ComBat-GAM was fit with a thin plate regression spline for age and linear effect of sex. For 
ComBatLS, the first moment was fit with a penalized b-spline for age and linear effect of sex and the second 
moment was fit with linear effects for both sex and age. Empirical Bayesian estimation was used within each 
category of features – global tissue volumes and regional cortical volumes, thicknesses, and surface areas – to 
improve site effect estimates.  
 
Centile score calculation 
For our simulations in UKB, we fit simple brain chart models of each feature using GAMLSS such that: 

���� = Box-Cox Cole-Green(&, �, ') with 
&���  
  �#,%(����  �#,�(�����  �#,&(����&   )#*����   ����  

���������  
  ��,%(����  ��,�(�����  ��,&(����&   )�  *����   ����    
+���  
  ,���   

 
As above, age is calculated in days, and sex is binarized with the reference level as ‘female’. We chose the 
default Box-Cox Cole-Green distribution method to allow for z-score estimation (see Supplement Section IV).  
 
This model was fit on every feature’s true, unharmonized distribution and on data harmonized with each 
ComBat method using the gamlss package. For each model, we obtained subjects’ centile scores using the 
predictAll() function. This resulted in centile scores for each subject on all features’ true values, as well as their 
values when harmonized by the four ComBat methods. 
 
Evaluating relative accuracy across ComBat methods 
To assess the ability of each ComBat method to preserve biologically relevant sources of interindividual 
variability, even when they are distributed unequally across sites, we tested how closely subjects’ centile 
scores matched “ground-truth” centiles derived from unharmonized data. This within-subject accuracy was 
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quantified by subtracting the ground-truth centile from the centile derived from harmonized data for each 
feature, referred to as “centile error”. Negative centile scores indicate that the ComBat method caused an 
underestimation of the centile score, while positive scores indicate ComBat-induced centile inflation.  
 
As our primary goal was to assess the overall efficacy of each harmonization method, we evaluated the 
magnitude of inaccuracy within each feature using pairwise comparisons of the absolute values of centile 
errors between methods. As these distributions were paired, skewed, and unequal in variance, we converted 
the absolute centile errors into ranks before conducting paired, two-tailed t-tests with Welch’s correction46,47. 
Significantly smaller absolute centile errors indicated that a ComBat method preserved covariate effects in that 
feature more accurately than the ComBat method with larger absolute centile errors. Within each sampling 
replication, we applied FDR correction across 6 pairings of the four ComBat methods and 208 features for a 
total of 1,248 comparisons. We applied these same methods to evaluate ComBat methods’ accuracy in our 11 
samples with varying male:female ratios, using FDR correction to account for 1,248 comparisons * 11 
male:female ratios simulated. 
 
Assessing sex-biases in centile scores induced by ComBat methods 
We first visualized the effect of sex for each feature’s scale. We used the drop1() function to assess the 
significance of the sex term in sigma for each feature’s brain charts, as recommended48. We then defined the 
effect of sex on variance as the difference in variance predicted for a male minus the variance predicted for a 
female at the average age of the sample, 64.94 years. We calculated a standardized effect of sex that would 
be comparable across brain features by dividing this sex effect by the predicted variance for females (the 
reference level for sex). 
 
To determine whether ComBat harmonization differentially affected males and females when applied to sites 
with imbalanced sex samples, we conducted within-feature, two-tailed t-tests of ranks with Welch’s 
correction46,47 comparing males’ and female’s centile errors. These analyses were corrected for comparisons of 
four ComBat methods across 208 features using FDR adjustment and were repeated across our 100 sampling 
replications as well as 11 simulated male:female ratios. We defined the size of this sex-effect within a feature 
as the male centile error’s median minus the female centile error’s median, which produces a single sex-
difference metric. 
  
We conducted several further analyses to determine whether sex-differences were systematic across features 
such that centile scores would be biased in a particular direction.  
 
First, summarized sex differences within each feature type – global tissue volumes, regional cortical volumes, 
regional cortical thickness, and regional surface area – by taking the median of their sex-difference metrics. 
Finally, we repeated this procedure across our 100 sampling replications to create a distribution of median sex 
differences for each ComBat method and feature type, then used one-sample t-tests to assess whether these 
distributions’ means differed from zero. A non-zero mean would indicate that, for a given feature type, that 
ComBat method tends to bias centile scores by sex, with more negative distributions indicating that males’ 
centiles tend to be underestimated relative to females’. Analyses were corrected for 16 comparisons using 
FDR adjustment.  
 
Next, we determined whether ComBat-induced errors led to one sex being overrepresented among those with 
extreme centile scores, which could mask or skew associations between centiles and other phenotypes of 
interest. We first calculated subjects’ average centile scores within global tissue volume, regional cortical 
volume, regional cortical thickness, and regional surface area features. We considered average centiles below 
20% as “low” and above 80% as “high”. We used centiles derived from the true, unharmonized data to 
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calculate what proportion of individuals in each category was expected to be female. Finally, we compared this 
expected proportion to the distribution of proportions calculated across 100 replications of harmonized data 
using two-sided, one-sample t-tests, FDR corrected across four ComBat methods, four phenotype categories, 
and two high/low groupings. 
 
Finally, we assessed directional sex-biases across our 11 sampling permutations with varying sex ratios by 
calculating the sex difference in medians for each feature’s centile errors, as in our main analyses. We first 
used within-feature, two-tailed t-tests of ranks with Welch’s correction to compare males’ and females’ centile 
errors using FDR correction, as above. We then used one-sample t-tests to assess whether the mean of these 
significant within-feature sex differences differed from zero in any of the sex-imbalanced permutations tested. 
FDR was corrected for testing sex-difference distributions from 4 ComBat methods across 11 levels of sex-
imbalanced sampling.  
 
Harmonization of neuroanatomical features from the LBCC dataset: 
Lifespan Brain Chart Consortium sample 
The Lifespan Brain Chart Consortium (LBCC) is an aggregated collection of structural MRI scans including 
data from individuals across the range of the human lifespan and the globe. Details of the dataset and primary 
studies, including diagnostic criteria, can be found elsewhere20. For these analyses, we used data from healthy 
individuals collected by 60 studies. We first excluded all subjects under age of 3, removing a total of 728 
individuals. We then assessed image quality using the Euler index, an automated measure of reconstructions’ 
surface continuity often used as a robust, quantitative assessment of scan quality49. As in prior work20, we 
applied an adaptive threshold of the Euler index, excluding scans with Euler indices greater than two median 
absolute deviations above the primary-study median. This quality threshold removed a total of 6,282 scans 
(8.46% of a study’s primary sample on average), while a further 1981 subjects with missing values were 
removed via listwise deletion. Following quality control procedures, a total of 52,098 scans from 51 studies and 
199 sites remained for analysis.  
 
ComBat Harmonization 
We applied ComBat-GAM and ComBatLS to harmonize this curated LBCC sample, treating primary collection 
sites as batches. Harmonization was performed on log-transformed feature values to prevent ComBat from 
estimating negative feature values. We preserved the effects of age, sex, and their interaction by estimating as 
follows study i, subject j, and feature k: 

 
ComBat-GAM: &���  
 *���'�(�����  )(��*����  ��"��(���� - *�����  ����  

Where s(.) signifies thin plate regression splines 
 

ComBatLS: Normal�&, �� with 
&��� 
 �.��#,�'�(�����  )#,(��*����  ��"��(���� - *����� ����  

��������� 
 �.���,�'�(�����  )�,(��*����   ����  

Where pb(.) signifies penalized b-splines, with 20 knots allowed in the mu term and 5 knots in sigma. Models 
that failed to converge using the gamlss package-default RS() algorithm were attempted using CG()48. 

 
Empirical Bayesian estimation was used within each category of cortical features – volumes, thickness, and 
surface area – to improve site effect estimates, while effects for each global tissue volume were estimated 
individually.  
 
Centile score calculation 
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We used ComBatLS and ComBat-GAM harmonized datasets as well as raw data to estimate each feature’s 
normative trajectory across the LBCC sample with the following GAMLSS model: 
 

���� = Box-Cox Cole-Green(&, �, ') with 
&��� 
 �.��#,�'�(�����  )#,(��*����  �.��#,�"�(���� - *�����  �#,�(�/��*0/��/��  ����  

��������� 
 �.���,�'�(�����  )�,(��*����  �.���,�"�(���� - *�����  ��,�(�/��*0/��/��  ����  

+��� 
 �.��),�'�(�����  )),(��*����  �.��),�"�(���� - *�����  �),�(�/��*0/��/��  ,���  

 
Where pb(.) signifies penalized b-splines. As above, age is calculated in days, and sex is binarized with the 

reference level as ‘female’. We also controlled for variation in image-processing software (‘freesurfer’) and the 
corresponding sums of all brain volume, cortical gray matter volume, cortical thickness, and surface area 

features when modeling global tissue volumes and regional cortical measures (‘global’).  
 
Models failed to converge for two features in the ComBatLS dataset, and one feature in the ComBat-GAM 
dataset, and one feature in the raw dataset, for a total of two features excluded from further analysis. Subjects’ 
centile scores were derived from each model using the predictAll() function. 
 
Site-Effect Quantification 
We conducted two tests to assess how well ComBatLS harmonizes real world data, using data harmonized by 
ComBat-GAM as a “silver standard” and the raw data as a lower bound. Within each dataset, calculated each 
subjects’ average centile score across all available features, then used ANOVA to assess whether a subjects’ 
average centiles varied across primary studies. To directly quantify the residual effects of primary study within 
each feature, we re-fit the gamlss brain chart models specified above on the ComBatLS- and ComBat-GAM-
harmonized datasets, this time including fixed effects of study in the mu and sigma moments. From there, we 
used generalized pseudo R-squared48,50 to calculate the local effect size of “study” via Cohen’s F-squared51 . 
 
Comparison of ComBatLS and ComBat-GAM and associations with sites’ sample characteristics 
While no “ground truth” for harmonized LBCC data exists, we evaluated whether differences in subjects’ centile 
scores when harmonized with ComBatLS and ComBat-GAM were related to the distribution of biological 
sources of variability across studies. Specifically, as studies tended only contain subjects from a relatively 
narrow age range, we assessed whether a subject’s average magnitude of difference in ComBatLS- and 
ComBat-GAM-derived centiles was associated with the mean age of its primary study or how greatly that 
individual deviated from their primary study’s mean age. For each subject, we calculated differences in centiles 
from the two methods and took the mean of their absolute values across features. We also calculated the 
mean age of each site’s sample and the absolute difference between that mean age and ages of each 
individual in the study sample. Finally, we used linear regression to test subjects’ mean absolute centile 
differences against the study’s mean age and their absolute deviation from that mean age, respectively, while 
controlling for study sample size. 
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