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Starting from one totipotent cell, complex multicellular organisms form through a series of differ-
entiation and morphogenetic events, culminating in a multitude of cell types arranged in a functional
and intricate spatial pattern. To do so, cells coordinate with each other, resulting in dynamics which
follow a precise developmental trajectory, constraining the space of possible embryo-to-embryo varia-
tion. Using recent single-cell sequencing data of early ascidian embryos, we leverage natural variation
together with modeling and inference techniques from statistical physics to investigate development
at the level of a complete interconnected embryo – an embryonic transcriptome. After developing
a robust and biophysically motivated approach to identifying distinct transcriptomic states or cell
types, a statistical analysis reveals correlations within embryos and across cell types demonstrating
the presence of collective variation. From these intra-embryo correlations, we infer minimal networks
of cell-cell interactions, which reveal the collective modes of gene expression. Our work demonstrates
how the existence and nature of spatial interactions along with the collective modes of expression
that they give rise to can be inferred from single-cell gene expression measurements, opening up a
wider range of biological questions that can be addressed using sequencing-based modalities.

I. INTRODUCTION

Development reliably produces complex and highly
structured organisms in the presence of external pertur-
bations and intrinsic stochasticity [1]. Strikingly, the
dynamics which give rise to these complex structures
are also constrained, or canalised in the language of
Waddington [2]. Yet phenotypic variation across individ-
uals must be present to facilitate evolution [3]; how the
nature of phenotypic variation is shaped by the nature
of the dynamical constraints is largely unknown. Sin-
gle cell gene expression measurements, though limited in
quality and an incomplete measurement of a cell’s state,
provide a high-dimensional cellular phenotype [4] that
has led to an avalanche of cell atlases focused on phe-
notypic identification of cell types across a multitude of
species [5–7]. Phenotypic variation, however, exists not
solely at the scale of cells but also at the scale of em-
bryos, producing variation in organismal function. Cells
within an embryo interact with one another through intri-
cate mechano-chemical mechanisms, which correlate the
states of cellular gene expression. Much like how the
couplings between infinitesimal material portions of a vi-
olin string sustain large-scale collective oscillations, we
expect the complex coupling of cells in embryos to give
rise to collective modes of gene expression. Far from
producing a pure note, we anticipate that the intricate
inter-cellular couplings creates a rich timbre of complex
collective modes of gene expression in embryos. Such
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modes are features, or phenotypes, of the embryo, exist-
ing at a scale above the individual cells that comprise
it. To our knowledge, the present study is the first at-
tempt to identify and characterize these collective modes
of embryonic gene expression using a combination of sim-
ple physical modeling and careful statistical analyses of
embryonic transcriptomic data. As such, we aim to bring
into focus the concept of an embryonic transcriptome and
the possibility of doing transcriptomic physics. Practi-
cally speaking, we wish to demonstrate that single-cell
sequencing data can be leveraged to study a far richer
canvas of biological questions than the identification of
cell types. In addition we wish to propose that, much
like in condensed matter systems, the lower-dimensional
phenotypic space spanned by the collective modes of gene
expression in an embryo are functionally relevant, encod-
ing a space in which developmental dynamics ensue and
where variation acts.

Statistical physics provides frameworks to quantify and
investigate the collective self-organization and fluctua-
tions of systems comprised of many individual compo-
nents, strongly interacting with each other. Such ap-
proaches are insightful for the study of complex systems,
from spin glasses [8] and bird flocks [9], to gene regulatory
networks [10] and biological neural networks [11]. Here,
we apply these frameworks to study collective behaviors
in the developing ascidian embryo observed using single-
cell RNA sequencing data of individuals at distinct stages
of development. We follow the tightly controlled program
from the initiation of zygotic transcription, where in-
creasing numbers of genes are transcriptionally activated
in precise spatial locations as development ensues, finding
that variation in gene expression is coupled across cells
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within the same embryo, even after accounting for differ-
ences in staging time and the finiteness of our datasets.
Moreover, we find spatial structure in the cell-cell corre-
lations for zygotic transcripts, in contrast to the variation
in maternal transcripts, which present no spatial struc-
ture in their variation. To ascertain the nature of cell-cell
couplings, whether through inheritance of transcripts via
cell divisions or inter-cell signalling, we use statistical
physics modeling to infer minimal, or sparse, networks of
cell-cell interactions that give rise to the observed com-
plex, or dense, set of cell-cell correlations. The inferred
network of interactions within the context of a simple
statistical physical model allows us to quantify and vi-
sualize the collective modes of gene expression, which
are not directly accessible from the single-cell sequencing
data. This work represents an attempt to combine data-
driven and physical modeling to reveal new perspectives
on the developing organism and to pave the way for doing
“transcriptomic physics”.

II. BACKGROUND

Biological Context: In order to ground our goals
and approaches in a concrete setting we focus on the
early development of the ascidian, or sea squirt, Phallu-
sia mammillata. This organism displays several attrac-
tive features, which we now discuss, that make it an ideal
setting to develop our approach. The ascidian cell lineage
is invariant, with the same series of synchronous cell di-
visions occurring in each embryo [12–14], Fig. 1A, which
also provides a consistent way to name cells across em-
bryos [12]. The physical arrangement, or adjacency ma-
trix, of these cells is conserved and even the geometry,
such as cell-cell contact areas, is broadly conserved, up
to an overall size scaling [15]. The patterning paradigm
of these embryos is one of immediate neighboring cells
interacting through mechano-chemical mechanisms. The
long-range patterning signals, which sculpt the dynamics
of fly and frog embryos are believed to be largely absent,
or at least, a higher-order effect that are sub-dominant
to nearest-neighbor interactions [15]. Providing addi-
tional context, initially, a handful of maternal mRNAs
are localized to the posterior pole of the zygote, defining
the anterior-posterior (head-to-tail) axis. From this rela-
tively unstructured start, and transcriptional inheritance
from the individual’s mother, cells self-organize into dis-
tinct transcriptomic states, precisely arranged in space;
there are 5 such states, referred to as cell-types, as early
the 16 cell stage, Fig. 1B. The fate map of each cell, the
set of terminal cell types its progeny will become, is re-
stricted [12], Fig. 1A, thus many of these cells remain di-
verged in gene expression permanently. As development
progresses, and the number of cells increases through
cell divisions, additional cell types appear and increas-
ing numbers of genes become zygotically expressed [16],
again, all in a precise spatial arrangement. The tempo-
ral window during which the activity of the embryo be-

comes dominated by the action of zygotically transcribed
genes is referred to as the Maternal-to-Zygotic Transition
(MZT), the initiation of zygotic transcription in ascid-
ian happens around the 8-cell stage and zygotic tran-
scripts dominate around the 112-cell stage [17]. A mul-
titude of molecular mechanisms are known or suspected
to contribute to the embryo’s feat of self-organization
including localized maternal mRNA, FGF signalling, β-
catenin gradients, and asymmetric mRNA partitioning
during cell-division. Major questions about the program
of self-organization remain and many would-be insight-
ful experiments, such as a complete space-time record-
ing of live signalling, remain intractable. Yet measuring
the gene expression, which is a proxy for the internal
“state” of the cell [4], of every cell in an embryo is pos-
sible through single-cell sequencing. A central question
addressed in this study is whether such measurements
can be leveraged to study a broader spectrum of biologi-
cal phenomena than identification of cell types. As such,
the ascidian with its stereotyped cellular topology, geom-
etry, and conserved lineages represents a simpler, but yet
authentic, developmental system where general quantita-
tive and physical approaches to identifying the collective
modes of gene expression can be developed.

Data: In addition to the developmental considerations
that make ascidian an attractive model system, there ex-
ists a publicly available and rich sequencing dataset [16].
Single-cell RNA sequencing was performed on individ-
ual P. mammillata embryos up to the 64-cell stage, with
multiple biological replicates at each stage. Here, we will
only consider the 8- to 64-cell stages. Notably, the se-
quencing platform used in Ref. [16] was Smart-Seq2 [19],
which, together with relatively large cells, results in a se-
quencing depth higher than typical scRNA experiments,
with on average 300 reads per gene at the 64-cell stage
(Table S1). This depth of sequencing presents a unique
opportunity to develop novel theoretical and computa-
tional frameworks.

The procedure of single-cell RNA sequencing creates
some difficulty in asking what are essentially spatially
minded questions that motivate our work. Before se-
quencing, embryos are dissociated into individual cells,
Fig. 1C, and the location and identity of each cell is lost.
Nevertheless, the cell type, and thus approximate spa-
tial location, of each cell can be reconstructed from gene
expression, as we will detail later (Fig. 2). Moreover,
each embryo was barcoded, hence which cell belongs to
which embryo is known, Fig. 1C, an essential require-
ment for identifying embryo-to-embryo variation. While
a careful dissection and sorting of cells pre-sequencing is
technically possible [20], it is tedious and impractical for
more than a handful of embryos. Altogether, the com-
bination of high-quality sequencing, a significant number
of biological replicates (Methods), and a relatively con-
strained space of variation due to invariant cell number
and geometry, make the ascidian an ideal model system
for exploring collective variation in development.
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FIG. 1. Developmental dynamics of the ascidian embryo: lineage, geometry, and single-cell gene expression
data. (A) Early development of the ascidian Phallusia mammillata. Representative morphologies (top) shown along with right
side of lineage tree (bottom) with the left being mirror symmetric. Cell fates at the larval stage indicated in blue for each 64-cell
stage cell (adapted from Ref. [12]). Time is in hours post fertilization at 18◦ [18]. (B) Representative cell geometry for the
16-cell stage (top), together with the cell-cell contact graph (bottom). Colors indicate transcriptomically distinct cell-states, as
discovered in Fig. 2, which are also conserved across embryos. The animal-vegetal, anterior-posterior, and left-right axes form
the 3 morphological axes of the embryo. (C) Experimental set up of Ref. [16], where large numbers of embryos at each cell-stage
are first dissociated and then single-cell RNA sequencing at high-depth was performed. The precise identity of each cell is lost
after dissociation, but the embryonic identity is retained through barcoding [16]. The resultant cell-by-gene expression matrix
is shown for the 16-cell stage and for genes that are differentially expressed across the embryo (Methods).

III. RESULTS

A robust statistical approach to cell type iden-
tification: Before any quantitative analysis, we need to
preprocess the data. Starting from the raw transcripts,
we align them to a reference genome (Methods), result-
ing in a cell-by-gene integer matrix of transcript counts,
from which we infer the level of gene expression. Specifi-
cally, if acg is the expected number of mRNA molecules of
gene g in cell c, then αcg = acg/

∑
g′ acg′ is the fraction of

mRNA molecules within that cell given to gene g, and we
will refer to logαcg as the “gene expression”, where the
log accounts for variation in fold change rather than ab-
solute value and serves to stabilize variance. There is un-
certainty in this inference due to fluctuations in the num-
ber of mRNA molecules arising from inherent biological
stochasticity, and from the measurement process, which
can be significant. A host of data processing pipelines
are used by the community, each one taking a different
approach to normalizing the data in some manner to ac-
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count for the uncertainty in the measurement [21, 22].
We normalize our gene expression data with Sanity [23], a
biophysically motivated Bayesian approach to estimating
a posterior distribution for gene expression. The result-
ing posterior is approximated as an independent Gaus-
sian for each cell and gene, so the estimate for expres-
sion is N (Xcg, ϵcg), effectively giving error-bars to the
inferred expression matrix Xcg. Throughout, we make
use of this uncertainty estimate, finding error bars for
statistics, such as covariances, and for robustly identi-
fying cell types. We have found that propagating the
uncertainty to downstream analyses greatly strengthens
the robustness of our statistical inferences and scientific
conclusions.

A major technical challenge is to find the distinct tran-
scriptomic states, or cell types, at each stage and iden-
tify which state each cell belongs to. Identification of
cell types allows us to partially reconstruct the embryo’s
spatial structure; an accurate classification of each cell is
crucial to compute quantities like mean expression levels
and cell-cell covariances around that mean. Despite this
being a relatively mature field, directly applying stan-
dard clustering approaches to the expression data does
not consistently recover cell types (SM Fig. S14). In
order to robustly recover clusters, we developed an al-
gorithm, Fig. 2A, which accounts for known properties
of the developmental system in focus, listed as follows.
Firstly, most genes are not expressed in an informative
way [24], either not expressed at all, or expressed equally
in every cell in the embryo. A few genes will be expressed
in some cell types but not others, and finding these infor-
mative genes is crucial to distinguishing clusters, this in-
formation gets lost when using all genes, Fig. 2A. At each
stage of clustering, we adapt the algorithm of Ref. [24] to
find a set of informative genes by generating trial clusters
and searching for genes that discriminate between these
trial clusters (SM Sec. III). Secondly, clusters must be
consistent across embryos, a cluster with 2 cells in every
embryo is conceivably a cell type, a cluster with 4 cells in
one embryo and zero cells in the others is not a cell type,
Fig. 2A. Throughout, we enforce all clusters to be con-
sistent with the known embryo structure (SM Sec. III).
Thirdly, we use uncertainty about expression to assess
whether a cluster is robust [25, 26] and is to be kept or
not. If a cluster is robust, then that cluster should be con-
sistently identified after perturbing the data and reclus-
tering. Hence, upon repeatedly resampling from the pos-
terior, subsampling the data, and clustering, we should
repeatedly find the same clusters, Fig. 2A. Having per-
formed this resampling, we compute a cluster consistency
score, which we then compare against cluster consistency
scores for null data sets generated by randomly assigning
cells to embryos. These null data sets preserve the vari-
ance in the expression but destroy the known structure
of cell types, a true cluster should have a significantly
better consistency score than these null data sets, and
this provides us a criteria to assess whether a cluster is
robust and should be rejected or not (SM Sec. III). Over-

all, we combine these three principles into a hierarchical
algorithm, motivated by the hierarchical nature of cell
differentiation [27]. We search for a small number of well
separated clusters before searching these for further sub-
clusters, potentially using a different set of genes to do so.
The 16-cell stage is shown as an example in Fig. 2B-C, for
full details of the algorithm and results for other stages
see SM Sec. III. Having found the clusters, it is straight-
forward to identify them with cell identities and their
position in the embryo, Fig. 2D, using existing in situ
hybridization data for select genes [28] (SM Sec. III). We
recover cell types previously identified [16, 29], but note
that the challenge is not only to identify cell types but to
accurately assign a cell type for every single cell including
those with seemingly ambiguous expression levels. Alto-
gether, the approach outlined here and described in detail
in the SM can be used directly for systems with invari-
ant cell lineage, such as ascidian, and many of the ideas
can be adapted broadly for a robust and principled ap-
proach to cell type identification. The Bayesian approach
to normalization as well as the resampling and shuffling
inherent to our method could make it computationally
expensive for large datasets, adapting the algorithm to
be feasible for large datasets is an outstanding challenge
worth overcoming.

Identifying the dimensionality of phenotypic
variation in the embryonic transcriptome: With
cell types recovered, we can combine embryos to get an
average transcriptomic state for the embryo at each cell
stage. This typical state, or wild type (WT), contains
information about the system. For instance, measur-
ing activation of the Otx gene in a specific cell at the
32-cell stage tells us that cell has received an FGF sig-
nal emitted by a neighbouring cell. Probing this usually
involves making a significant perturbation, e.g. genet-
ically knocking out or pharmacologically perturbing a
signalling pathway, and studying the result which may
differ significantly from the WT, Fig. 3A. Here, comple-
mentary to this approach, we study the system using
only the average WT trajectory and the natural pheno-
typic variation around it, Fig. 3B. Though cells occupy
a vast transcriptomic space spanned by the number of
genes in the organism, ngenes, embryos occupy an even
larger transcriptomic space, ncells × ngenes. This is the
dimensionality of the embryonic transcriptome that we
intend to build models for and study quantitatively. At a
particular developmental time along the one-dimensional
(parameterized by time) WT trajectory, embryos have a
ncells ×ngenes − 1 dimensional space to explore, Fig. 3B.
We refer to this form of variation in gene expression as
natural since each individual will deviate from the con-
sensus trajectory due to genetic and/or environmental
causes. Physics has a rich history of studying variation
and using it for inference, from correlation functions and
phase transitions, to fluctuation and dissipation. Here,
we will study the subspace that is accessible to typical
biological variation and, from quantitative analyses and
physical modeling, infer interactions between cells.
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FIG. 2. Principled and physically motivated clustering robustly recovers cell types. (A) Overview of clustering
algorithm highlighting the three key underlying principles. 1. Identify informative genes. Informative dimensions split the data
into separable clusters (green vs blue points, top left), uninformative dimensions do not, and make identifying clusters harder.
2. Cluster using known structural priors. A cell type should have equal numbers of cells in each embryo, a clustering without
that property is inconsistent (purple and green cells represent clusters, top right). 3. Assess robustness through resampling
and reclustering. We have a posterior for our expression levels [23] (purple points with error bars, bottom), and by repeatedly
resampling and clustering (blue vs green points, bottom), we assess how consistent the clusters are and decide whether to keep
or reject a cluster. For full details see SM Sec. III. (B) Worked example of the hierarchical clustering for the 16-cell stage.
Starting from all cells at node 1, the algorithm splits into 4 clusters using the 6 genes shown. The SHAP importance score is an
estimated measure of how useful each gene is when performing this round of clustering [30] (SM Sec. III). The algorithm then
splits cluster 3 into two further clusters using a different set of 5 genes. The algorithm terminates here as further clusters are
assessed to be not robust (SM Sec. III). (C) The two most important genes shown for both clustering stages, showing separation
between identified clusters (node 2 and 3 differ in their expression of Foxd.b). (D) 8-cell through 64-cell stages colored by cell
type, showing increasing transcriptomic specialization in time.

It is not obvious that the scRNA-seq measurement re-
veals any form of natural variation at all, perhaps all that
can be garnered from such measurements are cell types.
Said another way, is there any signal above the noise af-

ter cell types are identified? Can we indeed study natural
variation and the emergent patterns manifest in space?

Turning again to the experimental data, prior to any
modeling, we first ask whether we can even detect sig-
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FIG. 3. Studying the mechanisms underlying collective modes of gene expression through quantifying natural
phenotypic variation. (A) Development is thought to be canalised, implying that embryos robustly follow a typical wild
type trajectory (black). Typically, the tools of molecular biology used to study development produce perturbations that are
strong enough to kick the system far from it’s canalised trajectory. (B) Even though development is canalised, each embryo will
follow a unique trajectory, slightly deviating from the average. Taking a slice at a specific time point along the developmental
trajectory, there exists a high dimensional space of variation that embryos can explore.

natures of collective variation within an embryo. As a
point of comparison, and motivated by the biology at
hand, at each cell stage we consider two sets of genes:
(1) maternal transcripts, which are present in the zygote
but are not zygotically transcribed at the 64-cell stage or
earlier (we exclude the handful of maternal transcripts
that are localized to the posterior pole which determine
the germ cell lineage) (2) zygotic transcripts which are
not present in the zygote, but are expressed at subse-
quent stages of development (Methods). Each of these
genetic classes has a corresponding cell-by-gene matrix
of expression, Xcg. To see whether there is any collec-
tive signal in this matrix, we examine it’s singular values,
Fig. 4A-B, having subtracted the mean expression levels,
Xcg 7→ Ycg = Xcg −

∑
d Xdg/

∑
d 1. Before we can eval-

uate the singular values for signal, we must account for
various features of the biology that give rise to variation
distinct from the collective modes of phenotypic varia-
tion we wish to identify. For the maternal genes, there
will be variation arising from mother-to-mother differ-
ences in mRNA deposition, which we can subtract from
the expression matrix, Ycg 7→ Zcg = Ycg − νm(c)g, where
νmg is the mother specific mean expression and m(c) is
the mother of cell c. Further, we anticipate additional
embryo-to-embryo variation, which we subtract similarly,
Zcg 7→ Zcg−ηe(c)g, where ηeg is the embryo specific mean
expression and e(c) is the embryo containing cell c (SM
Sec. IV). For the zygotic genes, we know that each cell
type, whose identification we have described in the pre-
vious section, has specific expression patterns, which we
must remove, Ycg 7→ Zcg = Ycg − µt(c)g, where µtg is
the cell type specific mean and t(c) is the cell type of
cell c. We also expect that each embryo differs in devel-
opmental time or how far the embryo is along the WT
trajectory [3], even though care was taken to stage them
at a consistent time [16]. As we want to study variation

around the WT trajectory at a fixed time, not variation
along the WT trajectory itself, we remove the tempo-
ral variation by projecting onto one fixed developmental
time via fitting an embryo specific time τe, and a local
cell-type specific tangent vector to the developmental tra-
jectory αtg by minimizing the variance left in the matrix
Zcg 7→ Zcg − τe(c)αt(c)g, Fig. 4C (SM Sec. IV).
Having accounted for these known sources of variation,

we are in a position to address whether the maternal
and zygotic matrices have any remaining collective sig-
nal, or whether it can be explained by each entry being
an independent random variable. To do so, we compare
against a null distribution constructed by permuting the
rows of the matrix, preserving the marginal distribution
of each gene, but destroying the correlation structure.
For the zygotic genes at the 16- cell stage we find that
all the variation could be explained by the null distri-
bution, although for 32- and 64-cell stages this is not
the case; the data has non-trivial singular values, and
hence signal, Fig. 4A-B, (SM Sec. IV). For the zygotic
genes, the cell-type specific expression accounts for much
of the variance with the WT trajectory projection typi-
cally accounting for the largest remaining singular value,
Fig. 4A. For the maternal genes, we find non-trivial sin-
gular values at each stage. Additionally, the null model
informs us how many singular values we should keep, the
rest plausibly being noise [31] (SM Sec. IV). We project
the expression levels for each cell onto these principal
components (PCs), effectively setting to zero the singu-
lar values that were plausibly noise, and work in this low
dimensional space from here onwards.
We have not yet shown that genuine spatially-ordered

collective embryo-to-embryo variation is present, since
correlations between genes in the same cell could give
a matrix with significant singular values. To test this,
we compute covariances for cells within the same em-
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FIG. 4. A quantitative assessment of single-cell gene expression data demonstrates correlated expression be-
tween cells within an individual embryo. (A, B) Singular values of the gene expression matrix, for zygotic (A) and
maternal (B) genes at the 32-cell stage before and after known sources of variation, such as cell types, variations from mother-
to-mother or embryo-to-embryo, and variations in developmental staging (see C), is removed. To demonstrate that significant
variation remains, a null noise model is shown for comparison. The horizontal dotted line shows the largest singular value of
the null statistical model and provides an estimate for how many singular components to keep (SM Sec. IV). Other stages are
shown in SM Fig. S15. (C) Local developmental time, τe for each embryo (black points, full trajectories are blue lines) will
vary owing to slight discrepancies in staging. We remove this variation by projecting each embryo onto a common time (black
line) by identifying the axis tangent to the average trajectory, α, and then subtracting the temporal variation, τeα from the
gene expression matrix Z. (D) To test for cell-cell correlations within an embryo we shuffle cells of the same cell type between
embryos, as well as shuffling cells within an embryo to test whether such correlations have spatial structure. Color is cell type,
shape is embryo identification. (E) Results of shuffling within and across embryos as in (D) for both maternal and zygotic genes
at the 32 cell stage (other stages in Fig. S17). Each parameter configuration has 100 random shuffle trials. In every case, all
covariances were measured and the deviation ∆ from the average covariance values is plotted, note that while the covariance
vector remains the same for the unshuffled covariance matrix (orange) it has different deviation for within and across embryo
shuffles as it is being compared to a different average. Shuffling is not significant for maternal genes, but significantly affects
zygotic genes, indicating collective signal across and within embryos.

bryo and examine how this changes after shuffling cells
between embryos, Fig. 4D. Note that we cannot com-
pute the covariance between, say, neighboring a5.3 and
a5.4 cells since we only know that a cell is in the a5.3-
a5.4 cell type, not its exact location, Fig. 1B. Yet, we
can still compute the average covariance between a cell
in the a5.3-a5.4 cell type and one in the B5.1 cell type,
within the same embryo. Specifically, we can measure
the covariance

γtt′

ij =
1

ntnt′

∑
c∈t,c′∈t′

⟨xcixc′j⟩ (1)

for cell types t, t′, principal components i, j, where nt is
the number of cells in cell type t, and xci is the expression

after known variance has been removed. We can also
measure covariance within a cell for each cell type,

Ct
ij =

1

nt

∑
c∈t

⟨xcixcj⟩, (2)

Together, we say these make up the set of empirical
covariances {Cα}. For a robust empirical estimate of

γtt′

ij , and Ct
ij , we repeatedly resample expression from

the posterior to account for uncertainty from the expres-
sion measurement, as well as bootstrapping to account
for uncertainty from having finite data, see SM Sec. IV
for details.
To test for collective variation, we compute the inter-
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cell covariance statistics, γtt′

ij , before and after shuffling
the data, Fig. 4D. Taking 100 shuffles as well as the un-
shuffled data, we compute the component wise average
covariance, γ̄tt′

ij , as well as the component wise standard

deviation, σtt′

ij , from which we calculate the deviation ∆,

∆ =
∑

i,j,t,t′

(
γtt′

ij − γ̄tt′

ij

σtt′
ij

)2

. (3)

If the value of ∆ for the unshuffled data is significant
compared with values for the shuffled data, then there
is significant collective variation, see SM Sec. IV for
full details. For maternal genes, shuffling within an
embryo does not affect the covariance statistics at any
stage, ∆ is not significant, suggesting a lack of spatial
structure, Fig. 4E. Further, shuffling across embryos is
not significant after embryo-to-embryo variation is re-
moved. Hence, the variation can be explained by embryo-
to-embryo variations in initial mRNA deposition, with-
out needing to invoke spatial distributions or coupling
through cell divisions. The same is not true for the zy-
gotic genes, where cell types and temporal projection are
insufficient to explain the within embryo covariance, the
shuffle tests reveal genuine collective variation in gene
expression within and across embryos, Fig. 4E (see SM
Fig. S16 for all stages). This agrees with our biological

intuition, that the space of zygotic transcripts is tightly
controlled and thus the fluctuations that do occur are
coupled across cells within an embryo, in contrast to
the maternal transcripts which can vary from cell to cell
within an embryo and are not as tightly restricted in their
variation. Altogether, our detailed statistical approach
set out to ask whether there was measurable collective
fluctuations having accounted for known sources of vari-
ation. We find that for the set of zygotic genes there
exists embryo-wide variation with spatial structure.

Statistical physics modeling of phenotypic vari-
ation: So far, we have established the existence of collec-
tive fluctuations within an embryo for zygotic genes, in
contrast to the maternal transcripts. We now attempt to
understand the nature of this collective behavior. Con-
structing and then studying the empirical joint proba-
bility distribution of an embryo’s state of gene expres-
sion, the embryonic transcriptome, is impractical, since
each embryo counts as only one data point in a high-
dimensional space and we only partially know a cell’s
identity. Despite these limitations, statistical physics
gives us a way to rationalize statistics of this system,
making minimal assumptions about the nature of inter-
actions and using the statistics we can estimate, in par-
ticular the covariances between different cell types. In
short, we suppose there are certain important statistics
which are prescribed by the system. For instance, the
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FIG. 6. Comparing models with data identifies plausible families of statistical physical models for interactions.
(A) Correlations between different cells could arise from signaling resulting in interactions between spatial neighbors, cell division
resulting in interactions between sister cells, or variations in the zygote resulting in all-to-all coupling across the embryo. We
consider how well these different hypotheses explain the experimental data. (B) The inter-cell empirical covariances (IEC) are
covariances between different cell types measured from data. The model predicted covariances (MPC), are covariances between
different cell types in the maximum entropy model (Fig. 5D). A model which explains the data should have MPC values equal
to the IEC values. Here, we test models which assume that all cells within an embryo directly interact (gray) only sisters
interact (orange), or only spatial neighbors interact (green). Both the embryo-wide and spatial model are able to reasonably
explain the data, with points lying around x = y (black dashed line), whereas sister-cell interactions alone are not sufficient.
Without interactions between non-sister cells, many covariances are zero in the model despite being non-zero in the data. Error
bars are from the 25th to 75th percentile of covariance estimates.

variance of a gene within a cell is constrained by the
gene regulatory network, or the covariance between two
sister-cells is fixed by the mechanism of division. There
are infinitely many distributions that are consistent with
these statistics, but out of all such distributions there
is one that is makes minimal further assumptions: the
maximum entropy distribution [32–34]. Here, the first
non-trivial statistics we can consider to be constrained
by the system are covariances (including variances), as
we have already subtracted the mean.

For instance, we could take the average covariance be-
tween PC i and PC j for cells in cell type t,

Ct
ij =

1

nt

∑
c∈t

⟨xcixcj⟩ (4)

to be fixed by the system, where nt is the number of
cells in cell type t. Similarly, we could consider the co-
variance between cells p and q, Λ(pi)(qj) = ⟨xpixqj⟩ to be
fixed. Since there is a left-right symmetry in the embryo
at this early stage, there is no biological reason to vary
the left and right covariances independently. Instead if

p and q are on the left side of the embryo, with p̃ and q̃
their equivalent cells on the right side, then we may fix
Λij = 1

2 (⟨xpixqj⟩ + ⟨xp̃ixq̃j⟩). In general, we can intro-
duce an asymmetric directed adjacency matrix, Ωrs, to
fix covariances of the form

Λij =
1

|Ω|
∑
p,q

Ωpq⟨xpixqj⟩, (5)

with Ωsr ∈ {0, 1} keeping track of which cells are being
included.
Since ⟨xpixqj⟩ ≠ ⟨xpjxqi⟩, covariances between cells

can be directed, for example, the covariance between PC
1 in A5.1 and PC 2 in A5.2 can be different than the
covariance between PC 2 in A5.1 and PC 1 in A5.2. In-
deed, we might directly fix the covariance between PC
1 in A5.1 and PC 2 in A5.2, but not fix the covariance
between PC 2 in A5.1 and PC 1 in A5.2, implemented
by having an asymmetric adjacency matrix Ω. However,
in certain cases we might explicitly fix symmetric covari-
ances, for instance the covariance between PC i in one cell
and PC j in a neighboring cell, averaged over all pairs of

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.07.26.605398doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.26.605398
http://creativecommons.org/licenses/by/4.0/


10

neighbors without choosing a directional arrow between
these pairs. In this case we denote the adjacency matrix
as Ψ to explicitly indicate that it is symmetric. In general
there will be a set of such symmetric constraints and a
correponding set {Ψk} of symmetric adjacency matrices,
along with a set of asymmetric constraints and corre-
sponding set {Ωk} of directed adjacency matrices that
we consider to be fixed.

Whatever set of covariances we elect to fix, the distri-
bution with maximum entropy that is consistent with
those covariances is a Heisenberg-like model, p(x) =
N (0, J−1) with x = (xpi) with i indexing over princi-
pal components, p indexing over cells within an embryo,
x is flattened into a vector, and

J(pi)(qj) =
∑
t

M t
ijI

t
pq +

nΨ∑
k=1

Sk
ijΨ

k
pq (6)

+
1

2

nΩ∑
k′=1

(
Uk′

ij Ω
k′

pq + Uk′

ji Ω
k′

qp

)
,

where Itpq = δpqδq∈t is an indicator function with t a cell

type, Ψk and Ωk are adjacency matrices of which there
are nΨ and nΩ respectively, and M , S, U are interaction
parameters; M couples genes within the same cell, S sym-
metrically couples different cells, U is a general coupling
between different cells, all arise as Lagrange multipliers
enforcing the constraints (SM Sec. V). This distribution
arises as it is the simplest one consistent with biolog-
ically and physically motivated constraints on the sys-
tem, namely that principal components within the same
cell are coupled with a cell-type specific coupling, and
that principal components between cells can be coupled
through an adjacency matrix.

As an example, suppose the developmental dynamics
directly sets the intra-cell covariance matrix for each cell
type, as well as the covariance matrix for cells in spa-
tial contact, Fig. 5A. The interaction matrix, J(pi)(qj) =

M
t(p)
ij δpq + SijΨpq is sparse, where Ψpq is the spatial ad-

jacency matrix of an embryo at a given stage, Fig. 5B.
Yet the covariance matrix, J−1 is dense, Fig. 5C, as is
the matrix of observed covariances between cell types
Fig. 5D. The only assumption is that cells in spatial
contact have correlated gene expression, the form of the
distribution follows from the maximum entropy principle
and the parameters are fit to experimental measurements
of covariances (SM Sec. V). We can ask how well this
simple model explains the data, and compare against a
model which assumes sisters are interacting, so Ψpq = 1
when p and q are sister cells, or a model where all cells
are equally interacting, so Ψpq = 1 for any pair p ̸= q,
Fig. 6A. We quantify the quality of the fit by compar-
ing the empirical covariances, {Cα}, the set of covari-
ances measured from the data, to the model predicted
covariances {C̃α}, which we can directly compute from
the model (Fig. 5D). A perfectly fitting model would have

Cα = C̃α, ∀α, and we quantify the fit by measuring the
variance in {Cα} explained by {C̃α}, namely the quantity

η = 1−
∑

α(Cα−C̃α)
2/
∑

α C2
α. At the 32-cell stages, the

embryo-wide model and neighbor model can reasonably
explain the experimental data (η = 0.89 and 0.87 respec-
tively), Fig. 6B, with the spatial model fitting the data
better at the 64 cell stage (η = 0.79 embryo-wide vs 0.92
for spatial). In contrast, the sister model can not explain
the experimental observations, Fig. 6B, as this model can
never cause embryo-wide correlations, only correlations
between sister cells (η < 0.63).

While comparing these hypotheses for interactions is
revealing, there are embryo-wide, neighborhood, and
sister cell interactions at play, not to mention inter-
actions between specific cells representing cell-cell sig-
nalling. Consider a model which admits embryo-wide,
spatial neighbor, and sister cell interactions, together
with specific cell-cell interaction terms which respect the
left-right symmetry of the embryo for all spatial neigh-
bors. Such a model has too many parameters (1080 U
and S values for the 32-cell stage with 5 principal com-
ponents) and will overfit the data. Therefore, and moti-
vated by the biology of the system, we assume the nature
of interactions are sparse and use regularization [35, 36],
together with uncertainty estimates for the covariances,
to identify which of the many possible interactions are
important and can robustly explain the experimental
measurements. Specifically, we apply a L1 regularization
penalty for each interaction parameter (U and S terms)
with strength λ. We draw N = 100 empirical covariance
matrices from the posterior distribution, and fit a reg-
ularized model to each of them. We then assess which
parameters are a consistent and non-zero size across dif-
ferent fits, and use this to rank terms by importance. We
sample across a number of λ values, making a ranking for
each, and then aggregate the rankings with the Schulze
method [37], resulting in an overall ranking of terms by
importance. Full details in SM Sec. VI. Given this rank-
ing, starting from the most important terms, we include
sufficient terms in the model to reach η > 0.9, finding
a 17 term model at the 32-cell stage, Fig. 7B, and a 12
term model at the 64-cell stage (SM Fig. S19).

The interactions we identify must be cross-referenced
with what is known and suspected about the signaling
interactions at this stage of development. These interac-
tions have been studied through the tools of molecular
embryology, which are wholly distinct from the approach
we have pursued here. Neural induction, where FGF sig-
nalling causes a6.5 and b6.5 cells to adopt a neural fate,
occurs at the 32-cell stage and is the first known cell-
cell signalling that causes a change of state. However,
levels of the FGF-target gene Otx were not found to be
elevated in potential a6.5 or b6.5 cells in the sequencing
data, suggesting that the sequenced cells were dispersed
before the increase in Otx expression, and hence before
induction occurred. In general, cell-cell communication
induces correlations in time, with the transcriptomic ma-
chinery taking a finite time to respond to new infor-
mation. A static snapshot may capture some of those
temporal couplings, but only after the signal is received.
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FIG. 7. Statistical physics modeling identifies spatially ordered collective modes in expression data and reveals
underlying interactions. (A) Schematic of the 32-cell stage embryo colored by cell type. (B) Graph representation of the
32-cell stage embryo, colored by cell type with edges representing inferred direct interactions in regularized statistical model.
Embryo-wide (grey lines) and neighbor (green) cell-cell interactions are present in model, as well as specific cell-cell interactions
(black lines). A full ranking of terms is in Table S3. (C) Principal modes of variation from inferred regularized model. The
inferred model from (B) is a Gaussian and hence the distribution can be interpreted as a multidimensional ellipsoid defined by
the covariance matrix J−1. Here, the first three principal directions of that covariance matrix (called Mode 1-3) are shown,
which together capture over 80% of the variance of the model. Each such direction, or mode ϕcg, has both spatial and PC
components and is visually represented by five columns (PC’s = 1, . . . , 5) where column g shows an embryo (both animal and
vegetal view shown) with cell c colored by the value ϕcg. Black lines show direct interactions between specific cells. The first
mode represents a left-right mode of variation, whereas the second mode appears to somewhat correspond to an animal-vegetal
mode.

Neighbor, embryo-wide, and a handful of specific cell-
cell interactions, three of which are between sister cells
reflecting interaction through inheritance, appear in the
top inferred terms (Table. S3). All of the inferred specific
cell-cell interactions are between animal cells or between
vegetal cells with no animal-vegetal interactions which
indeed should not have occurred yet. For the remain-
der of non-sister inferred interactions, there is no known
molecular mechanism for them, say left and right B6.1
cells, to communicate at this stage in a way analogous
to FGF signaling. Instead, perhaps they could reflect
embryo-to-embryo genetic differences in levels of expres-
sion for expressed genes, such as nodal or snail in the case
of B6.1, which would correlate expression between these
cells across embryos. While cell-cell inductions have oc-
curred by the time of the 64-cell sequencing, the data
has fewer and less complete embryos, as well as noisier
sequencing which limits our ability to robustly infer in-
teractions. Seemingly, embryo-wide and neighbor inter-

actions, in addition to a coupling between the germ cells,
are sufficient to explain the measured collective varia-
tions at the 64-cell stage, the rich landscape of specific
cell-cell interactions made inaccessible by limitations in
the data. Altogether, at the 32-cell stage, as the data
is pre-Otx expression unsurprisingly we do not see inter-
actions corresponding to FGF signaling, but we do infer
some embryo-wide, neighbor and specific sister cell inter-
actions. At the 64-cell stage the lack of data prevents
robust inference of cell-cell interactions.

Whilst we do not know the ground truth of cell-cell
interactions, in addition to the results being biologically
plausible, we can check to see whether our inference pro-
cedure is self-consistent. Specifically, given a particular
sparse model, we can sample from it to create a data
set of the same size and quality as the experimental data
(SM Sec. VII). After putting this simulated data through
the inference procedure, we do not recover exactly the
same ranking, but true sparse interactions are identified
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as amongst the most important (SM Fig. S21), showing
that there is robustness to the inference pipeline despite
the limitations of the data.

Identifying the collective modes of gene expres-
sion: Having found a model with a sparse set of inter-
actions, which explains the observed covariances, we can
examine this model and ask what the spatially ordered
modes of collective variation look like in this system.
Given any Gaussian model, ρ(x) ∼ N (0,Σ), one can
picture the distribution as an ellipsoid defined by the
principal axes of the covariance matrix Σ = J−1. Specif-
ically, since Σ is symmetric, we have the standard mode
decomposition

Σ(ip)(jq) =
∑
β

λβϕβ
ipϕ

β
jq, (7)

where the ϕβ are eigenvectors of Σ with eigenvalues λβ .
The ϕβ corresponding to the largest eigenvalues give the
directions of the principal modes of variation. For our
sparse model at the 32-cell stage, over 80% of the varia-
tion is captured in the first three principal axis or modes
of variation, shown in Fig. 7C. These modes represent
coordinated embryo-wide variations in gene expression,
in stark contrast to the modes found for a model without
cell-cell interactions (SM Fig S20). We emphasize that
each mode (rows of Fig. 7C) corresponds to a set of zy-
gotic genes, which collectively express in particular spa-
tial patterns across the cells of an embryo. The pattern
of a specific gene is some linear combination of the PCs
(columns of Fig. 7C). Importantly, since we do not know
the exact identity of each cell, only which cell type it be-
longs to, these modes reflect an inference of the model.
Moreover, the modes appear somewhat robust to which
interaction terms appear in a model, for instance these
first three modes explain 20% of the variation for the
model inferred from synthetic data, which has a slightly
different set of interaction terms, SM Fig. S22. This is
notable as these modes exist in a high dimensional space
(ncells × nPC = 160 for the 32-cell stage), and hence two
random vectors are typically almost orthogonal. Simply
applying a random rotation to the original regularized
model results in the first three unrotated modes explain-
ing only 0.17% of the rotated model’s variance: if the
mode inference was sensitive to the model terms, this
would be the typical level of variance explained by the
first three modes. No collective modes, of the nature we
have identified through a careful statistical study, have
been inferred previously.

Intriguingly, the primary collective modes in Fig. 7C
approximately correspond to the major morphological
axes of the embryo, which are coming into being and
being maintained, at these stages of development. The
first mode represents a left-right mode of variation, which
agrees with biological intuition that left and right sides
are relatively uncoupled and hence can vary indepen-
dently. Further, the second mode appears somewhat
animal-vegetal like, which, again, would be expected as
FGF signaling between animal and vegetal poles has not

occured yet, leaving animal and vegetal cells largely cou-
pled at this stage. These modes represent a testable pre-
diction of the theory. Were expression levels measured
without losing cell identity, say with in situ hybridization
or scRNA-seq with careful dissection of embryos, then
one should observe the modes of variation, as identified
in Fig. 7C, as the primary source of variation around the
mean levels.

IV. DISCUSSION

Our goal was to study variation in ascidian develop-
ment at the level of the embryo, both to understand
what typical variation looks like as well as to construct
generative models of the variation. Starting from high
quality transcriptomic data [16], across multiple stages
and multiple embryos, we developed a new statistically-
robust approach to characterize the WT transcriptional
states at successive stages and to accurately classify ev-
ery cell into one of those states. For zygotic transcripts,
we found that embryo-to-embryo variation along the WT
time axis, as well as expression noise at the level of sin-
gle cells, was sufficient to explain variation at the 8- and
16-cell stages. At the 32- and 64-cell stages, we show
that there are additional collective degrees of freedom in
the data which vary from embryo-to-embryo. To under-
stand the source of the collective variation, we introduced
statistical physics models, allowing us to infer both inter-
actions as well as the collective modes of variation from
limited experimental observations. Our findings shows
the maternal to zygotic transition in action, which be-
gins at the 8-cell stage as zygotic transcription turns on
in the embryo, with a handful of genes transcribed at
the 16-cell stage. As increasing numbers of zygotic genes
are expressed at later stages, and different cells become
coupled through inheritance and cell-cell communication,
non-trival collective variation in the embryo appears.
A central goal of this work was to identify these spa-

tially organized collective modes of variation at the scale
of the whole embryo. By searching for such modes, we
reveal natural variation present in an otherwise tightly
controlled developmental program, in contrast to strong
perturbative approaches typically taken to study devel-
opment. As such, our work represents the desire to go be-
yond cell typing and leverage single-cell expression mea-
surements to address a broader scope of biological ques-
tions, including analyzing the collective behavior of mul-
tiple cells rather than one cell at a time. Further, we
propose that, since selection acts on the organism rather
than its individual cells, the collective modes we iden-
tify are also phenotypic traits that naturally vary and
are under selection. We hope that our work could open
new avenues to study the evolution of developmental pro-
grams.
To perform much of our quantitative analysis, we re-

quired a high quality identification of cell type from sin-
gle cell data, and as such we formulated a statistically
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robust approach to cell typing which can be leveraged by
the community broadly. Central to this was the emphasis
on utilizing a posterior distribution for gene expression
that permits resampling for downstream statistical tasks.
Gene expression data is widely recognized as noisy, yet
often the only statistical challenge is seen as estimat-
ing the most likely value of expression. Instead, by ac-
cepting that these measurements have potentially large
uncertainty and including this uncertainty in our anal-
ysis, we can strengthen our ability to perform not only
cell typing, but improve our estimation of covariances
and inference of interactions along with related statisti-
cal problems. The sequencing data used here was of high
depth, but we hope that future studies can investigate a
diverse array of developmental programs with shallower
sequencing, using some of the techniques developed here.

To build statistical models and remove noise from the
data, instead of using hundreds of zygotic genes, we work
with a handful of principal components. The principal
components span across many genes, with genes often
contributing to multiple components. While the build-
ing blocks of the developmental process are undoubt-
edly genes, by working with principal components we
are searching for a level of description beyond the sin-
gle gene and at the collective level of multiple genes,
much as in statistical physics we work with collective
variables like density rather than individual molecules.
Here the choice was data-driven principal components,
although one could coarse grain over biologically mo-
tivated collections of genes, say in different regulatory
pathways. Recent deep learning and large language
model approaches [38], trained on a vast corpus of sin-
gle cell sequencing amongst other biological data, find a
non-linear transcriptome latent space. It would be in-
triguing to take such a latent space as the input degrees
of freedom to then be modeled within a statistical physi-
cal approach, which could provide an interpretable model
for such data.

Statistical physics models have proved powerful at ex-
plaining related biological phenomena such as pattern
formation in cell layers [39], with maximum entropy
models in particular used to study gene regulatory net-
works [10], protein dynamics [40] and antibody diver-
sity [41]. However, to the best of our knowledge, sta-
tistical physical models and the principle of maximum
entropy, have not previously been applied directly to
scRNA-seq data in order to study the collective expres-
sion of multiple cells. Here, our knowledge of the stereo-
typed spatial connectivity and mean expression level of
cells within an embryo allows us to statistically model the
joint probability distribution of gene expression for all the
cells in an embryo at a given stage - an embryonic tran-
scriptome - with one sample from the generative model
representing one embryo. As statistical physics suggests,
interacting systems, which cells in an embryo are, have
rich collective behavior and should be modeled as such.

Finally, we remind the reader that our approach does
not model temporal dynamics. Each stage of the embryo

is treated separately despite the fact that they are con-
nected in time. This is a consequence of the destructive
nature of scRNA-seq together with the significant length
of time between measurements. Expression profiles be-
tween stages are seemingly time-discontinuous and so the
data is intrinsically non-dynamical. Including deeper lin-
eage statistics then just sister-cell interactions, or creat-
ing a joint distribution of all stages at once could begin
to incorporate more dynamical information into a model.
Perhaps more dynamical measurements are required to
fit a more dynamical model, but a dynamical perspec-
tive is worth considering as these collective modes are
ultimately a spatio-temporal feature of development.

METHODS

Raw scRNA data. All experimental data comes
from the single cell RNA sequencing experiments of
Ref. [16], available with accession numbers, ArrayEx-
press: E-MTAB-6506, E-MTAB-6508, E-MTAB-6528, E-
MTAB-6530. We only consider cell stages 8 to 64 as there
is no zygotic expression before stage 8 [16]. In total there
are 8 embryos at the 8-cell stage, 11 embryos at the 16-
cell stage, 14 embryos at the 32-cell stage, and 8 embryos
at the 64-cell stage. Not all embryos are complete.
Aligning transcripts. We use the reference tran-

scriptome of Ref. [16], ENA accession number PR-
JEB3758, which was assembled from scRNA transcripts
and validated against a Ciona robusta reference. We also
compared against the Aniseed genome [28] which has a
more complete set of genes but does not have untrans-
lated regions, limiting the reads and hence quality of ex-
pression estimate of important genes (SM Sec. II). Align-
ing was performed using the STAR method [42].
Differentially expressed genes. Given a particular

gene, we test whether it is differentially expressed in two
cell types, by collecting expression values for all cells in
belonging to the two cell types, and performing the stan-
dard Wilcoxon rank-sum test [43]. To find all genes that
are differentially expressed across any two cell types, we
perform the above test but adjust p-values to account for
testing across multiple genes and cell type pairs. We con-
sider genes at significance p < 0.01 for adjusted p-value
as differentially expressed. Fig. 1C shows the differen-
tially expressed genes at the 16-cell stage.
Zygotic genes. At the k-cell stage, we identify a set

of purely zygotic genes. First we take all genes which
have fewer than 10 reads in every cell at the 4-cell stage,
which identifies non-maternal genes which are not ex-
pressed at early stages. Of those genes, if any have more
than 100 reads in any cell at the k-cell stage, we include
them in our set of zygotic genes at that stage. This crite-
ria excludes genes that have maternal transcripts present
which are then additionally are transcribed zygotically,
as well as lowly expressed zygotic genes. It correctly iden-
tifies the major zygotic genes and excludes any maternal
factors. Next, we exclude any zygotic genes that are not
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differentially expressed across cell types. We do this as
certain genes are expressed in every cell in some embryos
and in no cells in others. While interesting, these genes
are not involved in the self-organizational program, and
so we exclude them from the analysis.

Maternal genes. To select a set of purely maternal
genes, we take all genes with more than 500 reads in
any cell at the 4-cell stage that are also not differentially
expressed in any subsequent stage. This gives us 2268
genes that are purely maternal factors and not zygotically
transcribed.

Determining cell-cell contact network. From
light-sheet microscopy images of embryos segmented with
the ASTEC framework [15], two cells were determined
to be in contact if, on average, the area of contact repre-
sented at least 5% of one of the cells surface area. This
average was taken over the left and right side of the em-
bryos, assuming a symmetric contact map, as well as
across two embryos.
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[32] S. Pressé, K. Ghosh, J. Lee, and K. A. Dill, Principles
of maximum entropy and maximum caliber in statistical
physics, Rev. Mod. Phys. 85, 1115 (2013).

[33] J. Shore and R. Johnson, Axiomatic derivation of the
principle of maximum entropy and the principle of mini-
mum cross-entropy, IEEE Trans. Inform. Theory 26, 26
(1980).

[34] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan,
and N. V. Fedoroff, Using the principle of entropy maxi-
mization to infer genetic interaction networks from gene
expression patterns, Proc. Natl Acad. Sci. U.S.A. 103,
19033 (2006).

[35] Y. Kleeorin, W. P. Russ, O. Rivoire, and R. Ran-
ganathan, Undersampling and the inference of coevolu-
tion in proteins, Cell Systems 14, 210 (2023).

[36] G. Stepaniants, A. D. Hastewell, D. J. Skinner, J. F.
Totz, and J. Dunkel, Discovering dynamics and param-
eters of nonlinear oscillatory and chaotic systems from
partial observations (2023), arXiv:2304.04818.

[37] M. Schulze, A new monotonic, clone-independent, re-
versal symmetric, and condorcet-consistent single-winner
election method, Social Choice and Welfare 36, 267303
(2011).

[38] Y. Rosen, Y. Roohani, A. Agarwal, L. Samotorčan, Tab-
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