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Abstract 46 

In natural circumstances, sensory systems operate in a closed loop with motor output, whereby 47 

actions shape subsequent sensory experiences. A prime example of this is the sensorimotor 48 

processing required to align one’s direction of travel, or heading, with one’s goal, a behavior we 49 

refer to as steering. In steering, motor outputs work to eliminate errors between the direction of 50 

heading and the goal, modifying subsequent errors in the process. The closed-loop nature of 51 

the behavior makes it challenging to determine how deterministic and nondeterministic 52 

processes contribute to behavior. We overcome this by applying a nonparametric, linear kernel-53 

based analysis to behavioral data of monkeys steering through a virtual environment in two 54 

experimental contexts. In a given context, the results were consistent with previous work that 55 

described the transformation as a second-order linear system. Classically, the parameters of 56 

such second-order models are associated with physical properties of the limb such as viscosity 57 

and stiffness that are commonly assumed to be approximately constant. By contrast, we found 58 

that the fit kernels differed strongly across tasks in these and other parameters, suggesting 59 

context-dependent changes in neural and biomechanical processes. We additionally fit 60 

residuals to a simple noise model and found that the form of the noise was highly conserved 61 

across both contexts and animals. Strikingly, the fitted noise also closely matched that found 62 

previously in a human steering task. Altogether, this work presents a kernel-based analysis that 63 

characterizes the context-dependence of deterministic and non-deterministic components of a 64 

closed-loop sensorimotor task. 65 

 66 

Key words Closed-loop, motor control, navigation, sensorimotor integration, systems 67 

identification 68 

 69 

New and noteworthy 70 

We use nonparametric systems identification techniques to assess the context-dependence of 71 

deterministic and nondeterministic contributions to a closed-loop behavior. Classical 72 

approaches assume a fixed transformation between sensory input and motor output. Here, we 73 

reveal strong changes to the measured sensorimotor transformations with behavioral context. In 74 

contrast, noise within the transformation exhibited a consistent form across contexts, subjects, 75 

and species. Together, this work demonstrates how context affects the systematic and 76 

stochastic components of a closed-loop behavior.  77 
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1. Introduction 78 

The neural machinery for sensation and motor control are often thought of as distinct, separable 79 

systems. This has led to experimental approaches that isolate each – experiments to study 80 

sensory systems typically utilize preparations that only require the animal to sit quietly as their 81 

sensory epithelia are stimulated (1–4) and those to study the motor system use reduced 82 

sensory inputs to focus on the control of the effector (5–7). While this approach has been 83 

extremely fruitful, neural systems evolved to operate in a regime in which sensory and motor 84 

systems drive each other in a closed-loop – sensory input drives motor output, which modifies 85 

sensory input and subsequent motor output. As a result, many of the conclusions reached about 86 

sensory processing or motor control may not hold during the natural operation of neural 87 

systems. Indeed, neurophysiological experiments combining sensory stimulation with active 88 

movements suggest that neural responses in areas typically associated with sensory processing 89 

are impacted by ongoing motor behavior (2, 8–16). 90 

 91 

While neural systems may be optimized to operate in a closed-loop regime, classic studies of 92 

sensorimotor responses have been done in the open-loop regime where the experimenter 93 

controls the stimulus, enabling tight regulation of behavior. By contrast, in closed-loop systems, 94 

motor errors drive responses. Such motor errors reflect both sensorimotor neural processing 95 

and also mechanical features of the musculoskeletal system, such as viscous drag and spring-96 

like forces, that shape the speed and amplitude of movements (17–19). For example, to steer 97 

toward a distant target, humans control their direction of travel in real time by comparing the 98 

direction of locomotion to the visual direction of the target (20). This provides an error signal that 99 

cues the direction and magnitude of the movements made to reach the target (21–23). 100 

Therefore, the components of the system driving a response are tightly correlated, making the 101 

open-loop sensorimotor transformations occurring within the nervous system and motor 102 

effectors difficult to discern from the observed closed-loop response. 103 

 104 

Classically, these challenges were addressed by modeling the closed-loop response with linear 105 

systems chosen from a family of functions with straightforward interpretations (24). In the 106 

context of steering control, this approach leads to models with a proportional response to the 107 

steering error, and potentially its derivative or integral, as well as terms that model the physical 108 

constraints on the appendages and actuators controlling steering output (25–29). Implicit in 109 

most models is the assumption that the system is linear and that temporal dynamics of the 110 

response arise heavily from the mechanical properties of the motor system. There are three 111 
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ways in which these assumptions might lead to erroneous identification of the properties of the 112 

underlying steering system. First, the components of the response that are assumed to be 113 

mechanical in origin can often be explained by the filtering performed by sensory or 114 

sensorimotor processing (24, 30). Second, because the motor effectors are often modeled as 115 

stationary over time and conditions, changes in steering behavior are assumed to stem from 116 

changes in sensorimotor processing (23, 26, 29). However, these mechanical properties flexibly 117 

adjust according to behavioral context (31) and therefore may also contribute to the observed 118 

changes. Finally, residual steering output not explained by the model is typically attributed to 119 

noise in the neural system, but substantial components of the residual behavior might simply be 120 

missed by the model. For example, while most models assume a linear system, sensorimotor 121 

systems have substantial nonlinear properties that might contribute to behavior in significant 122 

ways (32). We therefore set out to determine the degree to which nonlinearities, noise, and 123 

behavioral context contribute to steering behavior with a novel method with more limited 124 

assumptions. 125 

 126 

More recent approaches to systems identification instead have specified a broad space of 127 

potential transformation functions through a nonparametric basis and then used observed 128 

responses to select for the transformation that best predicts the data (33–37). We refer to these 129 

approaches as kernel-based methodologies. A strength of these approaches is that they afford 130 

the experimenter confidence about the inferences made from the model fit to the data. For 131 

example, it is possible to formulate the basis such that it spans the space of all possible linear 132 

models. In this case, the experimenter can be confident that the linear components of the 133 

transformation function are captured by the model and any behavior unaccounted for must 134 

come from either nonlinearities or noise in the transformation function. When combined with 135 

trial-averaging to remove noise, these approaches provide a powerful means to place limits on 136 

the degree to which the transformation can be considered nonlinear (38, 39). 137 

 138 

Recent work has extended kernel-based methods to closed-loop sensorimotor systems (40–42). 139 

We therefore set out to apply this approach to measure the contributions of linearities, 140 

nonlinearities, and noise to steering behavior. We adapted nonparametric kernel methods for 141 

systems identification to a steering task that required the monkey to manipulate a joystick to 142 

control its instantaneous angular velocity in a virtual environment to match its direction of travel 143 

with a distant target (22). Application of our kernel method found that a linear model describes a 144 

large fraction of the steering behavior of macaques. Further, the form of kernel identified with 145 
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our nonparametric approach was consistent with those proposed by previous parametric model-146 

based methods, validating this approach to identifying sensorimotor transformations (25–27, 147 

29).  148 

 149 

However, our method also revealed several new features of steering behavior. First, we found 150 

that, contrary to the assumptions of previous models, the components of the steering system 151 

commonly modeled as constant physical constraints associated with the motor system changed 152 

with experimental context. Second, much of the trial-by-trial variations in steering response 153 

remained unexplained after accounting for the linear portion of the transformation. The statistics 154 

of this residual behavior were strikingly similar across paradigms and monkeys. Application of a 155 

simple noise model captured the statistics of the residual behavior remarkably well, suggesting 156 

the interpretation that unexplained behavioral variance arises from noise in sensory processing 157 

in a manner analogous to other sensorimotor behaviors (43, 44). Overall, we demonstrate that 158 

our kernel-based approach allows us to tease apart the influence of linear versus nonlinear and 159 

noise contributions to steering behavior and provides a framework for modeling sensorimotor 160 

transformations in closed-loop designs. 161 

 162 

2. Methods 163 

2.1. Animals 164 

We trained two adult female rhesus macaques to manipulate a joystick to steer towards a target 165 

by operant conditioning techniques. For details on training, see (22). All experiments were 166 

conducted with the approval of the UC Davis Animal Care and Use Committee and adhered to 167 

ILAR and USDA guidelines for the treatment of experimental animals. 168 

 169 

2.2. Apparatus 170 

Stimuli were generated on a dedicated computer by custom software (written by A. L. Jones and 171 

D. J. Sperka) that used OpenGL libraries running under a real-time Linux kernel. The display 172 

computer ran at a resolution of 1024x768 pixels at 85 Hz. Both monkeys viewed the CRT 173 

monitor (Mitsubishi Diamond Pro 21) at a distance of 28 cm, so that the monitor subtended 60 174 

deg horizontally by 45 deg vertically. The maximum luminance of the monitor was set to 60 175 

cd/m2. The display computer received commands from an experimental computer running Rex, 176 

the NIH public domain package. An analog voltage signal from the joystick, sampled at 1 kHz 177 

with a 12-bit analog-to-digital converter by the experimental computer, controlled the angular 178 

velocity of the animal’s trajectory in the virtual world. This signal was sampled at 85 Hz for the 179 
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purpose of updating the next frame of the display computer. We set the gain of the joystick to 180 

255 deg/s and 85 deg/s at maximum stick deflection for monkeys F and J, respectively. We 181 

chose the gain based on behavioral performance early in training such that each animal’s 182 

joystick deflections were linear with respect to joystick output. For additional details on the 183 

hardware and software used, see (22). 184 

 185 

2.3. Behavioral task 186 

The monkeys sat in a darkened room with their views centered on the display monitor. We 187 

displayed a simulated environment that consisted of a distant red target and a dotted ground 188 

plane under a dark sky. Dots had a luminance of 60 cd/m2 and the ground plane was 7 cd/m2. 189 

We moved the dots on the ground plane so that the global pattern of motion simulated a 190 

translational movement aligned with the monkey’s field of view at a constant speed of 2.13 m/s 191 

at a height of 50 cm. See Figure 1a for an example of the scene displayed to the monkey. At the 192 

beginning of a trial, the target appeared a few degrees from the center of the screen and the 193 

ground plane began to move. Each monkey manipulated a single-axis joystick with its right 194 

hand, wrist and arm to control the direction of movement across the ground plane; movements 195 

of the joystick resulted in a turn with an angular velocity proportional to the stick displacement. 196 

Maximum deflections of the joystick were on the order of 5 cm. Figure 1b provides a schematic 197 

of a single frame of the experiment from an overhead view. In this example, the target (T) and 198 

the heading (H) directions do not agree. This results in the monkey observing a steering error 199 

(x) of (T − H) deg. In response to this error, the monkey makes an appropriate movement with 200 

the joystick (left in this example), changing the heading to better match the target direction and 201 

decrease the error. Figures 1c and 1d provide example traces of the target position (red), 202 

heading (blue), steering error (purple) and monkey responses (black) from two experimental 203 

contexts, referred to as the step and drift contexts, respectively. 204 

 205 

2.3.1. Step context 206 

In the step context (Figure 1c), the target remained stationary in world coordinates for periods of 207 

several seconds before randomly stepping to a new location. The time between steps was 208 

chosen from a truncated exponential distribution (1000 ms minimum, 2000 ms on average). The 209 

amplitude of each step was chosen so that the resulting steering error would be 5, 10, 15, 20, or 210 

25 deg in amplitude. The probability of the occurrence of a step decreased with amplitude, but 211 

the range of step sizes varied from day to day. The target was a solid red disc 0.25 deg in 212 

diameter. Each trial began with the target located centrally and the ground plane stationary for 213 
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500 ms before the target stepped between 5 and 25 deg to the left or right, the ground plane 214 

began to move, and steering could begin. An example trace from this paradigm shows that the 215 

target location in world coordinates exhibits large steps followed by stationary periods (Figure 216 

1c, red trace). Each trial lasted 15-30 s with a 2 s intertrial interval. For these experiments, the 217 

monkeys could move their eyes at will, and reliably tracked the steering target with their gaze. 218 

For a detailed analysis of the behavior in the step context, see (22). 219 

 220 

2.3.2. Drift context 221 

In the second class of experiments, the target slowly drifted in the world at random speeds 222 

(Figure 1d). In these experiments, the target was 20 red pixels selected at random from 223 

locations within 0.25 deg of the true target location. The location of the red pixels within the disc 224 

changed randomly at a mean rate of 1 per frame. Additionally, unlike the first class of 225 

experiments, the monkeys were required to maintain their gaze within 3 degrees of a green 226 

fixation point located 10 deg above the center of the screen. Each trial began by displaying the 227 

fixation point alone on the screen. After the monkey fixated for 150 ms, the target and ground 228 

plane appeared but remained stationary for an additional 500 ms. At this point the target moved 229 

to a new location 4 deg to the left or right, the ground plane started to move, and steering could 230 

begin. For the rest of a 15 s trial, the monkeys were required to continue to fixate while steering 231 

to the target. The target moved in the world at an angular velocity chosen from a zero mean 232 

Gaussian with 0.1 deg/s standard deviation. Every 259-494 ms a new velocity was chosen from 233 

the same distribution, resulting in a random drift through the simulated world. As a result, the 234 

monkeys needed to constantly steer to receive reward. Two additional manipulations also 235 

occurred. First, zero mean noise with 0.1 deg standard deviation was added to the displayed 236 

location of the target every 94 ms. Additionally, the displayed heading across the ground plane 237 

was also corrupted by zero mean noise with 2.5 deg standard deviation, updated every 94 ms. 238 

The monkeys were rewarded immediately upon achieving a heading direction within 3 deg of 239 

the target direction and at a rate that increased with the duration the target was maintained 240 

within 3 deg. The reward function was based on the location of the target without noise relative 241 

to the heading without noise. 242 

 243 

2.4. Steering model 244 

A primary goal of this work was to identify the model that best captures the linear portion of the 245 

response, 𝑟(𝑡), to the past series of observed steering errors. We modeled the monkey steering 246 
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system as a linear function of a noisy estimate of the steering error, 𝑥(𝑡) + 𝑛(𝑡),  247 

  248 

(1) 𝑟(𝑡) = ∫ 𝑘(𝜏)[𝑥(𝑡 − 𝜏) + 𝑛(𝑡 − 𝜏)]𝑑𝜏!
" . 249 

 250 

𝑘(𝜏) describes the pattern of weights given to past steering errors for the linear response. In this 251 

paper, we refer to 𝑘(𝜏) as the linear kernel of the steering system. The deterministic portion of 252 

the response, 𝑟̂(𝑡), is the weighted sum of the recent steering errors: 253 

 254 

 (2) 𝑟̂(𝑡) = ∫ 𝑘(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏!
" . 255 

 256 

 257 

The stochastic portion of the response, 𝑞(𝑡), is the weighted sum of the history of noise: 258 

 259 

 (3) 𝑞(𝑡) = ∫ 𝑘(𝜏)𝑛(𝑡 − 𝜏)𝑑𝜏!
" . 260 

 261 

Because steering in a closed-loop induces significant autocorrelation in the steering error, 262 

typical regression-based methods identify kernels with non-causal components. To avoid these 263 

artifacts, we used a set of basis functions that only span the causal time lags to describe the 264 

kernel. The kernel is modeled as the weighted sum of these basis functions: 265 

 266 

 (4) 𝑘(𝜏) = ∑ 𝑤#$
# 𝑏#(𝜏), 267 

 268 

where 𝑤# is the weight given to the corresponding basis function, 𝑏#(𝜏), and 𝑁 is the total 269 

number of basis functions. We chose our basis functions as a set of overlapping cosine bumps 270 

defined as: 271 

 272 

 (5) 𝑏#(𝜏) = 𝑐𝑜𝑠92𝜋𝑓(𝜏 − 𝜙#)> 273 

 274 

for −𝜋/2 < 2𝜋𝑓(𝜏 − 𝜙#) < 𝜋/2 and 0 otherwise. For subsequent analysis in the text, we chose 275 

𝑁 = 56 basis functions with the centers of each half cosine bump, 𝜙#, linearly sampling the 276 

possible lags between 0.125 and 4.708 s, and the frequency of each bump, f = 2 Hz. Our choice 277 

of basis functions constrains the possible kernels to a subspace of linear models that are 278 

relatively smooth, have a finite memory, and are forced to be zero at lags less than or equal to 279 
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zero. To arrive at this set of constraints, we tested several different forms of bases including 280 

triangular functions and half-cosine bumps that linearly tile compressed time (e.g. 𝑏#(𝜏) =281 

cos92𝜋(𝑔[𝜓𝜏] − 𝜙#)>, where 𝑔[𝑥] is a square-root or logarithmic function). We further tested 282 

bases of different widths and spacing. In general, the exact form of the basis function, width, 283 

and spacing did not qualitatively change any results and the differences in predictive 284 

performance were on the order of 1% variance explained. The only exception to this were basis 285 

functions that approached delta functions, which lead to kernel functions with the majority of 286 

weighting given to impossibly short time lags. This, combined with a comparison of the results to 287 

those using a standard parametric model (second-order linear model; see below), suggests our 288 

basis set covered the linear subspace containing the steering system, up to a constraint on the 289 

abruptness of the onset response, which is forced to be somewhat smooth. 290 

 291 

We fit the values of the basis function weights, 𝑤#, by minimizing the sum of the squared errors 292 

between the predicted responses, 𝑟̂, and the observed responses. To avoid overfitting, we split 293 

our data into training and validation sets. We uniformly sampled (without replacement) 100 trials 294 

for fitting and used the remaining trials for validation. In total, we had 728 and 446 total trials for 295 

monkeys F and J, respectively, from the drift context and 3908 and 2133 total trials for F and J, 296 

respectively, from the step context. The results did not depend substantially on the subset of 297 

trials used for training the model or the number of trials used for training. Finally, to remove 298 

artifacts due to the asymmetric overlap in the final 2 basis functions relative to the others, we set 299 

the amplitude of the kernel to zero for lags greater than 4.835 s. To test our model, we provided 300 

only the initial heading and the target position in world coordinates for the duration of the 301 

experiment. 302 

 303 

2.5. Residuals analysis 304 

The analysis of responses to single steps of the target reveal that the monkey steering system 305 

deviates significantly from the mean on a trial by trial basis (22). To assess the source of the 306 

residual behavior in monkey steering responses, we compared the residual spectrum observed 307 

from the data to the spectrum of residuals expected based on simulations of the kernel with 308 

noise. The residual steering behavior not explained by the linear model was calculated as 𝑟(𝑡) −309 

𝑟̂(𝑡). We calculated the power spectrum as the squared magnitudes of the Fourier coefficients 310 

calculated by a fast Fourier transform of the residuals for each trial and averaged across trials to 311 

find the average residual spectrum. We then normalized the resulting spectrum by the total 312 

power across frequencies.  313 
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 314 

Multiplicative noise model. Equation (1) describes a “multiplicative” noise model, where the 315 

noise term is multiplied by the sensorimotor kernel, 𝑘(𝜏). To assess the ability of the model to 316 

explain the average residual spectra, we ran simulations of the model and compared these 317 

simulations to the experimental data. We used the target position and initial heading in world 318 

coordinates from the actual experiments as the initial conditions for each simulated monkey and 319 

experiment. To simulate multiplicative noise, we added zero-mean, independent Gaussian noise 320 

to the error signal before passing it to the linear kernel. We then found the residual spectrum 321 

using the same procedure as for the actual steering responses. We chose the standard 322 

deviation of the simulated noise to be 1 deg/s, but the results after normalizing each spectrum 323 

by the total variance in steering error did not depend on the level of noise simulated. 324 

 325 

Estimation of the noise spectrum. To empirically estimate the spectrum of the noise input, Φ%%, 326 

added to the steering error by the monkey, we measured the power spectra of the target 327 

position, Φ&&, the systematic response from the linear kernel, Φ'̂'̂, and the residuals, Φ)), and 328 

used these quantities to estimate the spectrum of the noise as: 329 

 330 

 (6) Φ%% =
*!!

*"#"#
Φ&&. 331 

 332 

Assuming the noise is independent of the target position and the animal is accurately modeled 333 

by a linear system, this equation will find the spectrum of the noise added to the steering error 334 

during error estimation (45) (see Appendix for derivation). All power spectra were calculated in 335 

the same manner as described above for the residual spectra. 336 

 337 

2.6. Second-order linear model 338 

Previous models of steering in humans have typically used a second-order linear system (23, 339 

25, 26, 29). In such models, accelerations of the hand controlling the joystick are determined by 340 

the steering error in the recent past, minus terms for the velocity and position of the hand: 341 

 342 

 (7) 𝑟̈(𝑡) = 𝑔𝑥(𝑡 − 𝜏+) − 2ζω%𝑟̇(𝑡) − ω%,𝑟(𝑡), 343 

 344 

where 𝑔 is the weight given to the steering error 𝜏+ seconds in the past. The second term of 345 

equation (7) represents resistance to motion by viscous drag-like forces. The last term 346 
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represents resistance to nonzero position through a spring-like restoring force. The parameters 347 

ζ and ω% control the stiffness and viscosity of the system. The damping ratio, 𝜁, determines the 348 

level of damping in the system, while the undamped natural (angular) frequency 𝜔% controls the 349 

frequency of oscillation. Converting to the Laplace domain, we can write the above equation as: 350 

 351 

 (8) 𝑠,𝑟(𝑠) = 𝑔𝑥(𝑠)𝑒-.+/ − 2ζω%𝑠𝑟(𝑠) − ω%,𝑟(𝑠). 352 

 353 

Rearranging the terms gives the ratio of the response to the steering error: 354 

 355 

 (9) '(/)
2(/)

= 34$%&'

/(5,67)/57)(
	. 356 

 357 

Equation (9) can be interpreted as the transfer function of the system, i.e., the impulse response 358 

in the frequency domain. Transforming back into the time domain, the impulse response 359 

function is: 360 

 361 

 (10) 𝑘(𝜏) = R𝐺sin Vω%W1 − ζ
,(𝜏 − 𝜏+)Y 𝑒-67)8.-.&9,  𝜏  ≥  𝜏′
0,  𝜏  <  𝜏′

, 362 

 363 

and where 364 

 365 

 (11) G = 3
7):;-6(

. 366 

 367 

We fit equation (10) to the steering behavior using the MATLAB routine lsqcurvefit to find the set 368 

of parameters, ω%, ζ, 𝑔, and 𝜏+, that minimize the squared differences between the model and 369 

observed responses. To assess the significance of the changes in these parameters between 370 

experimental contexts, we trained the model on a subset of 200 trials selected uniformly, with 371 

replacement, from the data set. We repeated the process 100 times to determine a bootstrap 372 

distribution of each parameter value. Outlying fits with any parameter value greater than 2.5 373 

standard deviations from the mean were discarded; no more than 7% of fits were identified as 374 

outliers. We used the resulting distribution to calculate the 95% confidence intervals for each 375 

parameter as 1.96 times the distribution’s standard deviation. We assessed the significance of 376 

parameter changes with a t-test. 377 

 378 
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3. Results 379 

To quantify and model the system controlling steering behavior, we analyzed the motor output 380 

of monkeys trained to steer through a virtual environment using a joystick to control the angular 381 

velocity of locomotion (Figure 1a,b; see Methods). Monkeys learned to control their trajectory 382 

through the virtual world for bouts of steering lasting 15-30 s. We analyzed steering behavior in 383 

two different target motion contexts. In one context, the target remained at a fixed location in the 384 

virtual environment for several seconds before abruptly stepping to a new location to the right or 385 

left of the monkey’s heading at the time of the step (Figure 1c). In the second context, the target 386 

randomly drifted through the environment over time (Figure 1d). In both contexts, the monkeys 387 

learned to match their heading (blue traces) to the direction of the target (red traces). 388 

Differences between the heading and target result in steering errors (purple arrow and traces; 389 

Figures 1b-d). Non-zero error signals elicited steering responses (black traces) in the direction 390 

of the error. The result of these steering responses is most easily demonstrated by examining 391 

the response to the large, transient error to the right occurring just over 5 s from the beginning 392 

of the trial in Figure 1c (upward arrow). Following the error signal, the monkey initiated a right 393 

steering response indicated by the upward deflection of the black trace. The steering response 394 

controlled the rate of change of the monkey’s heading, resulting in a turn toward the target, and 395 

a reduction in the subsequent error amplitude. 396 

 397 

3.1. Steering response to a drifting target is proportional to steering error 398 

Inspection of the steering error and the responses in the example trials from Figure 1c and d 399 

suggested that steering responses were approximately proportional to the error and delayed in 400 

time, consistent with our previous analysis of steering responses in the step context (22). We 401 

sought to confirm this proportional relationship between steering error and response in the drift 402 

context. However, unlike the step context, in which step events allowed us to condition 403 

responses on an imposed error signal, in the drift context the steering error evolved 404 

continuously and randomly. To overcome this difficulty, we parceled steering errors into discrete 405 

bins and used this parcellation to condition analysis of subsequent steering responses. Each 406 

time that steering error within a given bin was displayed to the monkey, we found the response 407 

at 0, 0.21, 0.42, 0.85, 1.69, and 3.39 s after the error was displayed. Repeating this for each 408 

analysis bin, we determined the joint distribution of steering errors and responses lagged over 409 

time. The resulting joint distributions revealed steering responses that increased with the error 410 

with a peak lag of approximately 0.21 s (Figure 2, contours). 411 

 412 
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 413 

 414 
Figure 1. Design of the steering task. a) View from the cockpit. The target is represented by 415 

the red dots. The green spot represents the fixation point (drift context only). The joystick and 416 

arrow below the scene represent the correct steering behavior for this example. The white 417 

arrows illustrate the movement of dots on the ground plane and were not visible to the monkey. 418 

b) Overhead view of the experiments. The red dot represents the target and the blue arrow 419 

represents the current direction of travel of the monkey. The dotted line represents the arbitrary 420 

reference frame in which the target position (𝑇) and the heading (𝐻) were measured. 𝑥 421 

represents the steering error. c) An example of 15 s of steering in the step context. Top: target 422 

direction 𝑇(𝑡) (red trace) and heading 𝐻(𝑡) (blue trace), in world coordinates. Middle: steering 423 

error 𝑥(𝑡). Bottom: steering response, 𝑟(𝑡). d) An example of 15 s of steering in the drift context. 424 

Color conventions are the same as in panel c.425 

 426 
By conditioning the responses on a selection of steering errors, we could calculate the mean 427 

responses as a function of steering error (Figure 2, red traces). At short lags, the mean 428 

response was a nearly linear function of the steering error (red traces). As the lag increased, the 429 
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shape of the tuning function changed, reversing in sign by 0.85 s. At long lags, the past steering 430 

error no longer strongly predicted the response (1.69 s or later for this monkey).  431 

 432 

 433 
 434 

Figure 2. Steering error versus response at several different lags. The joint probability of a 435 

steering error and monkey J’s steering response at time lag Δ𝑡, 𝑝9𝑥(𝑡), 𝑟(𝑡 + Δ𝑡)>, marginalized 436 

across time and trials. The probability distribution is represented by a contour map, with light 437 

and dark contours corresponding to higher and lower probability, respectively. The red line plots 438 

the mean response, given the steering error was within +/-1 deg of the data point. The error 439 

bars represent the standard error of the mean. 440 

 441 
These results suggest that, similar to the step context, the steering response is approximately a 442 

linear function of the history of steering errors and evolves dynamically over time. However, the 443 

substantial autocorrelation of the steering error over time makes a direct quantification of the 444 

steering response function using this method impossible. For example, the distribution at zero 445 

time lag (i.e. 0 s) exhibited a weak, but positive correlation to the steering error (Figure 2, top 446 

left; monkey F: r = 0.334, p < 0.001; monkey J: r = 0.213, p < 0.001). This relationship arises 447 

because the steering error at time 0 is positively correlated with steering errors that occurred 448 
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just prior to this time point. Therefore, some portion of the observed steering response at this 449 

time lag reflects this correlation. To separate the elements of the responses due to the 450 

sensorimotor transformation from those that reflect autocorrelations in the stimulus and 451 

response, we adopted a nonparametric modeling approach. 452 

 453 

3.2. Linear model of steering behavior 454 

These observations, combined with previous evidence that steering behavior is feedback 455 

dependent (22, 46, 47), suggest an appropriate model of steering behavior is a closed-loop 456 

linear model. Several previous investigations of steering behavior have proposed linear 457 

feedback models of human steering behavior of the form shown in Figure 3a (23, 25–27). In this 458 

class of models, a difference in the target direction, 𝑇(𝑡), and heading, 𝐻(𝑡), leads to an error 459 

signal, 𝑥(𝑡). The observed error is sent through a linear response function, 𝑘(𝜏), which 460 

computes the steering response, 𝑟(𝑡), based on a linear combination of the recent history of 461 

steering errors. This results in the production of joystick movements that control the rate of 462 

change of the monkey’s heading, 𝐻̇(𝑡), proportional to the steering response. The experimental 463 

computer integrates these heading changes and the resulting heading signal is once again 464 

compared with the target direction, closing the feedback loop. 465 

 466 

Linear feedback models of this form have proven successful at capturing several aspects of 467 

human steering behavior. However, these models have undesirable features that prove to be 468 

problematic for investigating the neural basis of feedback control. First, the contribution of the 469 

history of errors to the linear transformation, 𝑘(𝜏), depends on both neural sensorimotor 470 

integration and biomechanical factors. For example, a key strategy to mitigate uncertainty due 471 

to sensory noise is to integrate sensory inputs over time (48). Indeed, results from experimental 472 

psychophysics support the conclusion that sensory estimates rely on integration over time (28, 473 

40, 41, 49–51), and one should expect a substantial contribution of sensory integration to the 474 

shape of 𝑘(𝜏). At the same time, the physical constraints of the motor system, such as stiffness 475 

and viscosity, result in past motor responses influencing the current response (17–19). 476 

Therefore, 𝑘(𝜏) can be expected to reflect both neural sensorimotor integration and the physical 477 

properties of the plant. However, the results from currently available steering experiments 478 

cannot be used to tease apart the relative contribution of sensorimotor integration and motor 479 

constraints to steering responses. It is therefore desirable to use nonparametric models to 480 

specify 𝑘(𝜏) such that the form of the weighting given to past errors does not require an exact 481 

formulation of the contribution of sensory or motor processing to the response. Second, the 482 
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assumption of linearity remains untested in most steering contexts, despite the fact that most 483 

models leave substantial variance unexplained. It is therefore desirable to derive nonparametric 484 

linear models that identify the linear portion of the response with a minimal number of 485 

assumptions, such that systematic responses in the residual behavior unexplained by the linear 486 

model can be confidently attributed to nonlinearities in the steering system.  487 

 488 

 489 
Figure 3. Linear model of steering behavior. a) The monkey observes the current steering 490 

error, 𝑥(𝑡), which is the current target position in world coordinates, 𝑇(𝑡), minus the current 491 

heading in world coordinates, 𝐻(𝑡). The monkey’s response, 𝑟(𝑡), is modeled as a linear 492 

function that sums the weighted past steering errors according to 𝑘(𝜏). τ specifies the temporal 493 

delay between the occurrence of a given steering error and the current time, 𝑡. The response 494 

generates a change in heading, 𝐻̇(𝑡), which is integrated over time to generate a new heading. 495 

This new heading is then compared with the target position to generate a new steering error, 496 

closing the system loop. In the multiplicative noise model we simulated behavior with Gaussian 497 

white noise injected at point a. b) The linear kernel, 𝑘(𝜏), was constructed from overlapping 498 

basis functions, 𝑏#(𝜏), with 𝑖 indexing functions with peaks at different delays (top; colors). Each 499 

basis function was assigned a weight, 𝑤# (middle; colors), and summed to specify a kernel, 𝑘(𝜏) 500 

(bottom). The shown example kernel was fit to data from monkey F in the step context. 501 

 502 
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We therefore applied a nonparametric method for identifying the weighted linear combination of 503 

the history of errors, or kernel, to the current steering response. The kernel (Figure 3b, bottom) 504 

was found using a linear combination of basis functions (Figure 3b, top) with weights (Figure 3b, 505 

middle) chosen to minimize the squared error between the model response and the actual 506 

steering response data (see the Steering model section in the Methods). Importantly, this 507 

approach makes no assumptions about the integration of error signals over time or the physical 508 

constraints of the motor effectors when identifying the kernel, instead it directly estimates the 509 

contributions of the linear, nonlinear, and noise-driven components of the overall sensorimotor 510 

transformation governing steering behavior. 511 

 512 

3.2.1. A linear model captures steering responses in the drift context 513 

We used this approach to fit steering response data in the context of a target that randomly 514 

drifts across the virtual world (see Methods, Figure 1d). The best fitting kernels to the steering 515 

responses of both monkeys F and J shared similar characteristics (Figure 4a). In response to a 516 

brief error pulse, the kernels predict a large response, starting after approximately 0.10 s, in the 517 

direction of error, followed by an oscillatory response that decays to zero by approximately 2 s. 518 

For a temporally extended, dynamic error input the steering response equals the sum of the 519 

kernel response to a continuous stream of impulses of varying amplitude, one for each moment 520 

in time. 521 

 522 

Figure 4b plots the actual response (solid lines) and predicted response based on the model 523 

(dashed lines) for example trials from monkeys F and J, respectively. In both cases, the model 524 

output provided an accurate prediction of the steering behavior. To compare the predictions of 525 

the linear model to the observed data across trials, we computed the joint probability of the 526 

predicted and actual responses, given the same initial conditions (Figure 4c). The distributions 527 

for both monkey F (top) and monkey J (bottom) were aligned along the unity slope line, 528 

indicating that the model captured animal behavior well. We quantified this by computing the 529 

correlation coefficient between predicted and observed responses and found that the model 530 

captured 57% and 56% of the variance in steering responses for monkey F and J, respectively. 531 

Interestingly, there were some behavioral responses that tended to be larger than predicted at 532 

the extreme response values. These systematic deviations indicate a modest nonlinearity that 533 

would be evident when the monkey observes large errors. At smaller response amplitudes, the 534 

linear model captured the behavior without systematic errors, but substantial variance remained 535 
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unexplained, suggesting noise or nonlinearities also contributed to the monkey steering 536 

behavior. 537 

 538 

 539 
Figure 4. Performance of the linear model on drift data. a) The best fitting linear kernel for 540 

monkey F (top) and monkey J (bottom). b) Comparison of the actual and predicted response for 541 

12 s from one trial from monkey F’s data (top) and one trial from monkey J’s data (bottom). 542 

Solid lines plot the data from a validation trial and the dotted lines plot the prediction based on 543 

the fit to the training data. c) The predicted response plotted against the actual response across 544 

time and trials for data from monkey F (top) or monkey J (bottom). Contours plot the joint 545 

distribution of predicted and actual responses, with darker lines corresponding to lower 546 

probability. Contours are linearly distributed. The dotted line represents unity slope. 547 

 548 
 549 

3.2.2. Nonlinearities within the step context are small 550 

Teasing apart the contributions of nonlinearities and noise to sensorimotor processing requires 551 

an approach that can isolate the systematic components of the steering response from the 552 

components of the response that are not systematically related to the steering error. A 553 
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straightforward method for removing the nonsystematic portions from the steering response is to 554 

average steering responses to identical error inputs. Because the steering system is inherently 555 

closed-loop, animal behavior contributed significantly to the steering errors and controlling the 556 

sequence of error inputs was not possible in the drift context. We therefore turned our analysis 557 

to behavior in the step context, which was explicitly designed to control the steering error 558 

delivered to the monkeys. In the step context, the target was moved in world coordinates 559 

discretely to generate a specific error (e.g. 25 deg) regardless of the steering behavior. This 560 

allowed us to determine the mean steering response to specific error input in a small temporal 561 

window around each target step (Figure 5) (22). 562 

 563 

We leveraged the mean steering responses to target steps to evaluate the capacity of the linear 564 

model to capture the systematic portions of steering behavior. Importantly, a linear system will 565 

respond to error inputs of different amplitudes with identical, scaled responses. Therefore, a 566 

perfectly linear system should capture the mean steering response across step sizes. The best-567 

fitting kernel for each monkey is shown in Figure 5a. Similar to the kernels identified in the drift 568 

context, the kernels fit to the mean step responses were characterized by a large onset 569 

response followed by a damped oscillation. 570 

 571 

Direct comparison of the responses of the linear model to the mean step responses revealed 572 

that, overall, a linear model fit the behavior quite well (Figure 5b). Across step sizes, the 573 

identified kernel captured 93% and 94% of the variance in the mean responses for monkeys F 574 

and J, respectively. Close examination of the linear model output (dashed lines) and actual 575 

responses (solid lines) revealed that the remaining unexplained variance results from small 576 

deviations between the linear prediction and behavior. Plotting the predicted response against 577 

the actual response revealed that the deviation from the linear prediction came in three forms 578 

(Figure 5c). First, there were systematic differences between the residuals to left (negative 579 

responses) and right (positive responses) steering errors, perhaps resulting from the 580 

asymmetries in the muscle groups of the wrist (52). This indicates a nonlinear interaction 581 

between steering error and response direction. Second, the linear model systematically 582 

underestimates the peak amplitude of responses to small target steps, indicating a modest 583 

nonlinearity in the amplitude of the response to a target step. Third, unlike the model, the timing 584 

of the peak responses in the data tended to be earlier for small steps and later for large steps. 585 

These two latter deviations may be a signature of un-modeled compensation for a component of 586 

noise that increases with signal size (53)(see Discussion). 587 
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 588 

 589 
Figure 5. Results of the linear model fit to trial-averaged data from the step context. a) 590 

The best fitting linear kernels for monkey F (top) and monkey J (bottom). b) Comparison of the 591 

mean response to steps of different amplitudes to the predicted response over time. The solid 592 

lines represent the actual data, the dotted lines plot the prediction. The color of each trace 593 

represents the amplitude of the target step from which the data were averaged. Results for 594 

monkeys F and J are presented in the top and bottom panels, respectively. c) The predicted 595 

response plotted against the actual response. Different colors refer to different amplitude target 596 

steps.597 

 598 
While the linear model successfully described behavior in both the step and drift context, we 599 

observed substantial differences between the kernels identified between the two contexts. For 600 

example, when one compares the kernel identified from monkey F in the drift context (Figure 4a, 601 

top) and the kernel identified from monkey F in the step context (Figure 5a, top), the oscillation 602 

observed in the kernel fit to monkey F’s behavior was slower in frequency and decreased in 603 

amplitude in the step context, with a similar time constant of decay of the envelope of the 604 
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oscillation. Monkey J also had slower frequency and decreased amplitude oscillations in the 605 

step context, but had a much slower time constant of decay of the envelope of the oscillations 606 

(compare Figure 5a, bottom and Figure 4a, bottom). These results suggest that the response 607 

function deployed by each monkey depended strongly on the experimental context (see below). 608 

 609 

 610 
Figure 6. Performance of the linear model on step data. a) The best fitting linear kernel fitted 611 

to trial-by-trial steering responses during the step context for monkey F (top) and monkey J 612 

(bottom). b) Comparison of the actual and predicted response for 12 s of one trial of monkey F’s 613 

data (top) and one trial of monkey J’s data (bottom). The solid lines represent the actual data; 614 

the dotted lines plot the prediction. c) The predicted response plotted against the actual 615 

response. Conventions as in Figure 4. Contours are logarithmically distributed.  616 

 617 
Because we applied our identification analysis to trial-by-trial data from the drift context but trial-618 

averaged data for the steps, the observation that the kernels changed between the two 619 

experimental conditions could be an artifact of the difference in analysis. Therefore, we verified 620 

that the kernels identified from the mean step response data were robust to our analysis 621 

method. To do so, we fit the kernels to the trial-by-trial responses in the step context, as in the 622 
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drift context. The resulting kernels matched the kernels found by fitting the mean step 623 

responses (Figure 6a), confirming that the kernel differences were not due to our analysis 624 

technique. However, examination of the trial-by-trial predictions revealed that the ability of the 625 

linear model to capture the corresponding behavioral data differed between monkeys. The linear 626 

model performed well for monkey F on individual trials (c.f. Figure 6b, top), capturing 70% of the 627 

variance in the monkeys responses (Figure 6c, top: r2 = 0.70). In contrast, inspection of 628 

individual trials from monkey J revealed that the actual response deviated significantly from the 629 

response predicted by the linear model (Figure 6b, bottom). In particular, large oscillations often 630 

occurred in the behavior when the linear model predicted little or no response. Plotting the 631 

response prediction versus the actual response reveals that the largest responses often occur 632 

when the linear model predicts little or no response (Figure 6c, bottom). Across trials and time 633 

points, the linear model captured only 18% of the variance in this monkey’s steering responses. 634 

Because the model captures the mean response to steps of the target as well as for the other 635 

monkey, our inability to predict trial-by-trial behavior suggests a substantial contribution from 636 

noise (or possibly a complex nonlinearity) that reverberates through the steering system on a 637 

trial-by-trial basis. 638 

 639 

Taken together, the above analyses confirmed previous results suggesting that a linear model 640 

can capture the step-averaged portion of the steering response (25–27, 29). However, the 641 

identified kernels differed substantially from those found for the drift context, indicating that 642 

experimental context strongly impacts the shape of the response function. At the trial-averaged 643 

level, the linear models capture well over 90% of the variance of the step behavior, with the 644 

remaining unexplained variance largely associated with modest nonlinearities in the response 645 

kinematics to left and right steering responses and steps of different amplitudes. At the single-646 

trial level, substantial variability was observed (30-82% unexplained variance) that broadly 647 

resembled the level of unexplained variance observed in the drift context (43-44% unexplained).  648 

 649 

3.3. Residuals analysis 650 

We next sought to determine the sources of variation left unexplained by the modest 651 

nonlinearities observed within a behavioral context. Because our analysis relies only on the 652 

initial condition of the steering response to predict all subsequent behavior, a substantial 653 

proportion of the unexplained variance likely reflects the accumulation of errors in prediction due 654 

to factors that are not systematically related to the steering error. Therefore, we analyzed the 655 
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residual steering behavior not explained by the linear model for each monkey and task 656 

condition. 657 

 658 

Comparison of the actual steering responses and those predicted by the linear model on 659 

individual trials indicates that residual responses have temporal correlations that extend over 660 

several hundred milliseconds (e.g. Figure 6b, bottom), suggesting the presence of a noise 661 

process that, after reverberating through the steering system, gives rise to substantial low 662 

frequency residuals. To quantify this, we computed the frequency content of the residual 663 

steering responses for each monkey in each behavioral context. Despite the large differences in 664 

the total unexplained variance, normalizing the residual spectra by their total power revealed 665 

shared characteristics across monkeys and contexts (Figure 7a, black lines). Residuals in all 666 

cases had substantial power at low frequencies, gradually increasing up to a peak at 667 

approximately 1 Hz. Power in frequencies higher than 1 Hz quickly decreased, becoming small 668 

at frequencies larger than 3 Hz. These results suggest that the unexplained variance in 669 

responses arises from a source of stochasticity that is similar across monkeys. 670 

 671 

Given that the systematic portion of the monkeys’ steering behavior was well explained by a 672 

linear model, we hypothesized that the form of the spectra of the residuals could be explained 673 

by considering the effect of the kernel operating in a closed loop on sensorimotor noise. In a 674 

linear feedback system, the response of the system to noise reflects not only the feedforward 675 

kernel, 𝑘(τ), but also computations in the feedback loop. In the case of steering, the feedback 676 

loop performs integration of the motor output (Figure 3a). Thus, we expect the spectra of the 677 

residuals to be shaped by the closed-loop transfer function, even for broad spectrum noise. 678 

Consideration of the effect of the closed-loop transfer system on noise analytically confirms this 679 

intuition (see Appendix), but to illustrate the effect, we used our nonparametric kernel fits to 680 

computationally generate the expected response of the system to a drifting target (Figure 7b, 681 

top, solid line) as well as an identical drifting target plus a brief pulse (introduced at the time of 682 

the upward arrow in Figure 7b) to simulate the effect of a noise perturbation on behavior (Figure 683 

7b, top, dashed line). The difference in the response with and without the pulse reflects the 684 

closed-loop impulse response to a noise perturbation (Figure 7b, bottom; alternatively, the 685 

impulse response could be derived analytically from 𝑘(𝜏), Appendix, eq. 16). The resulting 686 

impulse response exhibits an oscillation with a dominant frequency close to 1 Hz, much like the 687 

empirical residual spectra. This simulation illustrates how the peak in the spectra of the 688 

residuals in Figure 7a could arise even for flat or broadband spectral noise. 689 
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 690 

We formalized this analysis by considering a model in which the error observed by the monkey 691 

is subject to noise before convolution (multiplication in the frequency domain) by the steering 692 

kernel (Methods, Eq. 1; Figure 3a, location a). We tested how this ‘multiplicative’ noise model 693 

impacts the spectrum of residuals by simulating steering behavior using kernels fit to the 694 

behavior, with Gaussian white noise added to the steering error. Following the model 695 

simulations, we determined the spectrum of residuals by subtracting the simulated responses 696 

with noise from the response predicted by the kernel alone.  697 

 698 

 699 
Figure 7. Residual spectra for each monkey and context. a) Spectra of the residual behavior 700 

not explained by the best-fitting linear model (black), spectra of the residuals of the multiplicative 701 

noise model (gray). Each spectrum is normalized by its total power. b) Top: Simulated response 702 

using the kernel found for monkey F in the drift context (solid trace) and the response to an 703 

identical trial, except for a 20 deg perturbation of the steering error applied at the time of the 704 

arrow (dashed line). Bottom: the isolated response to the perturbation, obtained by subtracting 705 

the simulated response without the perturbation from the simulated response with the 706 

perturbation. 707 

 708 
Comparison of the spectra of the residuals from the multiplicative noise model and the observed 709 

residual power revealed a striking similarity across monkeys and experiments (Figure 7a, gray 710 

lines). The multiplicative noise model correctly predicted the residual power to increase with 711 
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frequency up to a peak at about 1 Hz, with residual power falling off dramatically after this peak. 712 

This result was confirmed by an analytic treatment of the closed-loop steering system, which 713 

demonstrates how the spectrum of the noise is shaped by the power spectrum of the kernel 714 

(Appendix, Eq. 19). This analysis demonstrates that a multiplicative noise model accounted for 715 

most of the response variance left unexplained by the linear model. 716 

 717 

Although the multiplicative noise model captured the general shape of the residual spectra, it 718 

mildly underestimated the power of the residuals at low frequencies and overestimated the 719 

power at high frequencies. We therefore sought to more directly test the multiplicative noise 720 

model, by inferring the spectrum of noise directly from the data. Assuming a linear model with 721 

multiplicative noise that is uncorrelated with the location of the target in world coordinates, the 722 

spectrum of the noise can be estimated from the residuals, linear response, and input spectra 723 

(45) (see Appendix). The inferred noise spectra across monkeys and contexts were highly 724 

similar after normalizing each by the total variance of the steering error (Figure 8, small closed 725 

and open circles). In all cases, the estimated noise spectra were approximately white in the 726 

middle range of frequencies (~0.3-2 Hz), consistent with our simple multiplicative noise model. 727 

However, the estimated noise spectra in lower or higher frequency bands decreased with 728 

frequency, suggesting that a model that assumes white noise added to the steering error before 729 

filtering by the steering system misses some characteristics of the noise process within the 730 

sensorimotor systems responsible for steering. 731 

 732 

While the total power of the noise differed across monkeys and contexts, the noise spectra were 733 

nearly identical for monkeys F and J when normalized by the variance in the error signal 734 

observed by the monkey. This similarity suggests that the nondeterministic steering responses 735 

observed across monkeys and experiments results primarily from a source of noise that scales 736 

with the error variance. Only the noise spectra estimated from monkey J in the step context 737 

differed from the other normalized spectra. The increase in the noise fraction for monkey J in 738 

the step context suggests that another source of stochasticity that is independent of error 739 

variance contributed to the steering responses for this monkey and context. 740 

 741 

Interestingly, the normalized multiplicative noise spectrum was extremely similar to that 742 

estimated for humans performing manual tracking tasks. The large black dots in Figure 8 re-plot 743 

the normalized noise spectrum for data taken from human subjects performing a manual control 744 
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task (54). The obvious similarity between the human manual control and monkey steering data 745 

suggests that variance in steering behavior stems from similar sources of noise across animals. 746 

 747 

Taken together, our analysis of the residuals has strong implications for the origins of noise 748 

during sensorimotor function. Our multiplicative noise model is consistent with noise occurring in 749 

the early processing stages of the steering system, consistent with previous conclusions that 750 

variance in sensorimotor behavior originates mainly during sensory processing (43, 44).  751 

 752 

 753 
Figure 8. Estimated spectra of multiplicative noise. The small open circles and small closed 754 

circles plot the multiplicative noise spectra estimated for monkeys F (open circles) and J (closed 755 

circles), respectively. The red points plot the estimate from the step context and the gray points 756 

plot the estimate from the drift context. The large black circles re-plot the data from Jex and 757 

Magdaleno (54) for a human manual control task with input taken from a continuous spectrum, 758 

much like the input for our experiments. Each spectrum is normalized by the error variance in 759 

the corresponding task. 760 

 761 
3.4. Experimental context induced nonlinear transitions in control policy 762 

Across experiments and monkeys, the identified kernel took the form of a damped oscillation. 763 

However, comparison of the kernels fit to each monkey revealed changes in the features that 764 

characterize this damped oscillation between contexts (compare Figures 4 and 6). These 765 

changes appear to affect more than the gain alone, indicating nonlinearities in the sensorimotor 766 

transformation with respect to context. To evaluate this further, we leveraged the fact that a 767 

kernel in the form of a damped oscillation matches models of manual control in which the 768 

acceleration of the hand that controls the steering response is proportional to a linear 769 

combination of the steering error, a spring-like restoring force parameterized by the spring’s 770 

stiffness, and a viscous damping term (23, 29, 55–57). Therefore, the parameters of a fit of the 771 
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steering responses in each experimental context to such a second-order linear model allow for a 772 

straightforward interpretation of how the kernel changes between contexts.  773 

 774 

 775 
Figure 9. A second-order steering model is consistent with identified kernels. a) 776 

Comparison of the kernel, 𝑘(𝜏), found by the nonparametric linear basis and the kernel 777 

corresponding to the best-fit second-order linear model. Left and right panels indicate the fits to 778 

the step and drift contexts, respectively. b) Comparison of the fraction of behavioral variance 779 

explained by the nonparametric linear basis model and the best-fitting second-order linear 780 

model for each monkey and experiment. 781 

 782 
We validated the second-order linear model using two analyses. First, we fit the model to the 783 

raw data. Then we transformed the fit second-order model into a kernel response function (see 784 

Second-order linear model in Methods) to directly compare the associated kernel with those 785 

identified using our nonparametric model (Figure 9a). Across both monkeys and contexts, the 786 

second-order linear model and kernel fit to the behavior exhibited very similar dynamics – the 787 

impulse response of the second-order linear model captured 90-99% of the variance in the 788 

regression kernel impulse responses. Modest differences in the delay and onset kinetics 789 

account for the majority of this difference. Next, we evaluated the overall performance of the 790 

second-order and nonparametric kernels in predicting monkey behavior. The second-order 791 

model explained nearly exactly the same fraction of variance in steering responses as the 792 

kernels identified by the nonparametric approach (Figure 9b). This strong agreement between 793 

the kernels identified using our nonparametric methods and the second-order models that have 794 
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previously been used to explain steering behaviors provides compelling evidence that the 795 

second-order model accurately describes monkey steering behaviors. 796 

 797 

 798 
Table 1. Changes in the steering system of the monkeys quantified by the fits to a 799 

second-order linear model. Values of the damping ratio (ζ), undamped natural frequency (ω%), 800 

gain (𝐺), and time delay (𝜏+) indicate the mean +/- 95% confidence intervals, which were 801 

calculated from the standard deviation of the bootstrap distribution. The percent change is 802 

calculated relative to the drift context. Significance was assessed by a two-tailed t-test based on 803 

the ratio of the change in mean parameter values to the square root of the summed variances of 804 

the bootstrap distributions of each parameter value (see Methods). 805 

 806 
Having validated the second-order model as a parametric description of the steering response, 807 

we next compared the values of the parameters fit to each experimental context for each 808 

monkey. As expected, based on visual inspection of the kernels, the parameters of the linear 809 

system of each monkey changed with experimental context (Table 1). To assess the 810 

significance of these changes, we performed a bootstrap analysis of fits to the data. For almost 811 

all parameters in both monkeys, the differences were highly significant (Table 1), demonstrating 812 

the changes observed in our kernels between contexts were not due to chance. Notably, we did 813 

not only observe changes in the gain and time delay, but we also observed significant changes 814 

in the damping ratio and natural frequency parameters ζ and ω%, parameters typically 815 

considered to be static properties of the motor effectors. For monkey J, the damping ratio 816 

differed most between contexts, decreasing by ~69% from the drift to step context. In contrast, 817 

the damping ratio for monkey F did not change significantly in the step context relative to the 818 

drift context. For both monkeys the undamped natural frequency significantly differed between 819 

contexts, decreasing 14 and 20% from drifts to steps for monkeys J and F, respectively.  820 

 821 
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 822 

4. Discussion 823 

Because system output influences subsequent input, identification of sensorimotor 824 

transformations in a closed-loop context has proven a difficult challenge in neuroscience (42, 825 

58). This challenge has significantly limited progress in investigating the neural mechanisms 826 

implementing control policies in the natural context of closed-loop control. Here, we overcame 827 

this challenge by adapting nonparametric, kernel-based approaches to model the sensorimotor 828 

transformations in a closed-loop behavior directly. Using this approach, we were able to 829 

accurately identify the linear transformation of sensory input into a motor output, without being 830 

limited by a chosen model of sensory integration or motor constraints. 831 

 832 

We focused our analysis on steering responses exhibited by monkeys trained to track targets, a 833 

sensorimotor system which relies heavily on sensory feedback to guide behavior in a closed-834 

loop (22, 46). Using our nonparametric approach, we found that a systematic linear 835 

transformation could explain between 18 and 70% of the variance in the observed steering 836 

responses. The form of this linear transformation was consistent with previous modeling efforts 837 

that assume steering behavior can be approximated as an instantaneous gain on the time-838 

delayed steering error constrained by viscous and spring-like forces (23, 25, 26, 29). However, 839 

our analysis revealed two features of the transformation of steering error by the nervous system 840 

that suggest a more complex interpretation. First, there was surprisingly large trial-by-trial 841 

variability that, despite its large amplitude, could be accounted for by a simple model of noise in 842 

the neural representation of steering errors. Second, we observed significant changes in the 843 

parameters associated with viscosity and stiffness with experimental context, two features that 844 

are normally ascribed to the physical properties of the shoulder, arm, and wrist. These results 845 

suggest a more general interpretation of viscosity as a resistance to changes in the steering 846 

response and stiffness as a resistance to non-zero steering output. Notably, instead of reflecting 847 

properties of the motor effectors, these features may reflect flexible processing by the neural 848 

systems underlying the integration of sensory information and its transformation into a set of 849 

motor commands. 850 

 851 

4.1. A linear feedback system supports steering responses 852 

Several different models have been proposed to describe steering behavior in humans and 853 

other animals. Our model assumes a dynamic, linear feedback system similar to other studies 854 

that have successfully modeled steering and other navigation behaviors (23, 25–27). However, 855 
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it should be noted that other models have proposed simple heuristics that are used to guide 856 

navigation. For example, navigation to a goal can be achieved by setting a curved path to the 857 

goal and maintaining that path by keeping the retinal velocity of the target constant (59). Other 858 

approaches include controlling the time to zero steering error such that it equals the time of 859 

collision with an object (60, 61) or integrating flow information over time to measure one’s path 860 

(59, 62). However, each model makes distinct predictions and, when compared directly to actual 861 

steering behavior, a linear feedback system was previously found to best describe steering 862 

behavior (23).  863 

 864 

The exact form of the dynamic linear system used to model the steering system often differs 865 

from experiment to experiment. These differences can be quite subtle and the differences 866 

between their predictions can be difficult to quantify. Our kernel-based method largely supported 867 

a relatively simple model with steering responses driven by a time-delayed steering error, a 868 

viscous-drag like resistance to the hand motion driving steering responses, and a spring-like 869 

restoring force acting on hand position. However, there are at least two ways that central neural 870 

processing likely contributes to the shape of the kernel that cannot be captured by such a 871 

simple model. First, related steering tasks have found a strong dependence of steering on the 872 

reliability of sensory information (21, 26, 51). Similar effects have been documented in other 873 

manual control tasks (40, 41) and smooth pursuit behavior (63, 64) and are generally consistent 874 

with the principle of Bayesian integration in sensorimotor behavior (65, 66). Therefore, the 875 

simple second-order model likely requires augmentation to account for the effects of stimulus 876 

reliability on the sensorimotor system governing steering. Second, the physical properties of the 877 

motor system are adjusted according to the context under which a behavior is being executed 878 

(31), suggesting flexible changes in motor policies must also be incorporated into models of 879 

steering behavior. Our approach provides a simple method for quantifying changes in 880 

sensorimotor transformations due to the effects of stimulus reliability or context and can form a 881 

basis for comparison of the predicted transformation functions of models proposed to capture 882 

these effects (67).  883 

 884 

4.2. Residual steering responses suggest a sensory source of noise 885 

We used a nonparametric approach to identify the linear portion of the steering system. For a 886 

given context, this linear description fit the systematic steering responses very well. This 887 

enabled us to use a simple linear model to estimate the temporal statistics of the residual 888 

responses. The resulting residual behavior was found to be well fit by multiplicative noise that is 889 
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shaped by the closed-loop response, resulting in a peak in residual power near 1 Hz. This was 890 

largely consistent with previous models of manual control (45), and matched human variability 891 

at a striking level (54).  892 

 893 

The most straightforward interpretation of multiplicative noise in our model is variability arising in 894 

the measurement of the steering error by the visual system. Our results therefore suggest that 895 

the majority of noise in the steering system can be attributed to sensory noise, consistent with 896 

the conclusions from the analysis of smooth pursuit eye movements, where much of movement 897 

variability can be attributed to variability in the encoding of speed, direction, and timing of visual 898 

input (43). In smooth pursuit, this variability is tightly linked to noise in the encoding of motion in 899 

the middle temporal cortex (68) that is transmitted to downstream neural populations (69). Given 900 

our results linking the sensitivity of individual sensory neurons in the medial superior temporal 901 

(MST) area of the cortex to that of steering behavior (70), this interpretation predicts that the 902 

residual activity of individual neurons in MST should (1) correlate with steering responses and 903 

(2) have noise statistics that are approximately white and uncorrelated over time, up to a high 904 

frequency cutoff. 905 

 906 

However, the conclusion that steering variance arises from noise in sensory encoding should be 907 

tempered against two other general interpretations that we cannot rule out with our current data. 908 

First, previous work has suggested sources for variability in sensorimotor systems that are not 909 

sensory in origin. Analysis of neural activity in the interval between sensory input and motor 910 

execution has revealed substantial response variability (14, 71). Indeed, higher order systems 911 

such as those responsible for planning a motor response (72) or setting the strength of 912 

sensorimotor transformations (73–75) have recently been related to behavioral variation. 913 

Further, it is important not to discount the possibility of noise in motor execution as a substantial 914 

source of variability in other sensorimotor behaviors (53, 76–81). Second, complex 915 

nonlinearities not modeled by a linear system might contribute significantly to variance 916 

unexplained by the linear model. For example, a nonlinear interaction between limb state and 917 

steering error would amplify variance that originates as sensory noise and might explain poor 918 

model fits for monkey J in the step context. 919 

 920 

4.3. Nonlinear contributions to steering behavior 921 

Our ability to accurately determine the linear contribution to the steering response also allowed 922 

us, for trial-averaged data, to quantify nonlinear contributions to steering. This analysis revealed 923 
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that, within a given steering context, the contribution of such systematic nonlinearities made up 924 

no more than 10% of the total response variance. While trial-averaging was only possible in the 925 

step context, we expect similar contributions of nonlinearity within the context of the drift context 926 

based on the results of our residuals analysis in those experiments. Some of this nonlinear 927 

response could be attributed to the systematic asymmetries in the leftward and rightward 928 

steering responses of the monkeys, which likely result from biophysical constraints such as 929 

asymmetries in the pulling directions of different muscle groups in the wrist (52). However, there 930 

were also small deviations in the exact response kinematics from the linear system, even when 931 

considering only one steering direction. Close examination of the residual behavior revealed 932 

that the linear model tended to underestimate the peak amplitude of responses to small targets 933 

and missed the systematic trend for larger steps to have delayed peaks. These differences 934 

could either reflect the impact of nonlinearities on the initiation of steering responses or could 935 

reflect a dynamic change in motor policy reflecting optimization over time (82, 83), similar to that 936 

observed in the saccadic eye movement system and attributed to the mitigation of signal-937 

dependent motor noise (53). Future modeling and experimental efforts directed at 938 

understanding the interaction of biomechanical constraints and motor optimization are required 939 

to tease apart the contribution of each to the steering response. 940 

 941 

While the contribution of nonlinearities to steering responses within an experimental context was 942 

small, our nonparametric method revealed more dramatic nonlinearities across experimental 943 

contexts. Quantifying these differences by fitting a second-order linear system to the data, we 944 

found that context impacted the gain and time delay of steering errors, consistent with results 945 

from previous steering (21, 26, 29) and manual control (55, 84, 85) experiments. However, we 946 

also observed significant changes to terms associated with the parameters representing viscous 947 

drag and spring-like forces of the motor system. These parameters are typically assumed to 948 

reflect biomechanical properties of the arm, leading previous work to assume these parameters 949 

remain static across experimental contexts (23, 26, 29, 57, 86, 87). One possible interpretation 950 

of our results is that the resonant frequency and level of damping of the arm change given task 951 

instructions, as has been observed in previous experiments directed at determining the 952 

biomechanical properties of the wrist (31). However, given that even reflexive behaviors are 953 

flexibly adapted to the current context by central mechanisms (88), it is also possible that these 954 

classically biomechanically interpreted parameters additionally reflect central neural processing 955 

that may change as an animal adapts its sensorimotor transformations to the current behavioral 956 
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context (89). Future experiments that record EMG signals during steering behavior will be 957 

helpful in teasing apart these hypotheses. 958 

 959 

While our approach allows us to determine how closely a linear model can explain the steering 960 

responses, as formulated it cannot help to identify the nonlinear components of the system 961 

without making further assumptions. Formally, one can use a Volterra series expansion to 962 

determine second-, third-, and higher-order contributions to the behavior, but such expansions 963 

require amounts of data that increase rapidly with the degree of the higher order terms (90). 964 

Alternatively, one can make simplifying assumptions about the nature of the nonlinearity, such 965 

as a static nonlinear transformation following the linear transformation (35). Indeed, static 966 

nonlinearities have been leveraged to improve model fits in similar sensorimotor behaviors (28, 967 

30, 32, 91).  968 

 969 

4.4. General applications to sensorimotor neuroscience 970 

We expect that the nonparametric approach presented here and in other recent work (40–42) 971 

will be useful to other applications where sensorimotor behavior must be studied within a closed 972 

loop. A key challenge in the study of closed-loop behaviors is that experimenters often must 973 

make assumptions as to the form of the model that will explain the systematic and 974 

nonsystematic components of that behavior. Such assumptions include the use of Bayesian 975 

integration (51), Kalman filters (28, 40, 49, 92), and optimal feedback control laws (82, 93, 94). 976 

These can be highly powerful in providing normative explanations for a wide range of behaviors, 977 

but caution must be exhibited as their assumptions can be difficult to validate (95). Adopting a 978 

nonparametric approach can act as a complement to model-based analysis by helping to guide 979 

the selection of possible models for comparison and the experiments that will best differentiate 980 

between them. 981 

 982 

Finally, we anticipate that our nonparametric method will prove to be valuable to the study of the 983 

neural mechanisms underlying closed-loop sensorimotor control. Models built at the level of 984 

behavior have proven extremely useful for understanding the computations and algorithms used 985 

by the brain to implement sensorimotor control. However, because neural systems rely on 986 

several, nonlinear processing stages (96–98) and represent important behavioral variables in 987 

mixed and dynamic populations (7, 99, 100), it is often difficult to translate the activity of 988 

neurons and networks to concepts developed at the level of behavior (101). We propose that 989 

developing kernel functions of sensorimotor behavior will help bridge that gap by providing a 990 
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common language to the study of behavior and the study of neural responses (70). 991 

 992 

Appendix 993 

Approximation of the spectrum of multiplicative noise. Under a linear model with multiplicative 994 

noise, the steering response can be specified in the Laplace domain as: 995 

 996 

(12) 𝑟(𝑠) = 𝑘(𝑠)9𝑥(𝑠) + 𝑛(𝑠)>, 997 

 998 

where s is a complex number and corresponds to the frequency parameter. 𝑥(𝑠) is the steering 999 

error, defined as 𝑇(𝑠) − 𝐻(𝑠) (i.e., the target direction minus the heading), 𝑛(𝑠) is the noise 1000 

input, and 𝑘(𝑠) is the linear gain as a function of frequency. The heading is defined as the 1001 

integral of the response, which in the Laplace domain can be written as 1002 

 1003 

(13) 𝐻(𝑠) = '(/)
/

. 1004 

 1005 

Inserting equation (12) into equation (13) and rearranging, we can parcel the response into the 1006 

closed-loop response to the target and the noise 1007 

 1008 

(14) 𝑟(𝑠) = <(/)
;5<(/)//

𝑇(𝑠) + <(/)
;5<(/)//

𝑛(𝑠). 1009 

 1010 

Therefore, the deterministic portion of the response, 𝑟̂(𝑠), is defined as 1011 

 1012 

(15) 𝑟̂(𝑠) = <(/)
;5<(/)//

𝑇(𝑠) 1013 

 1014 

and  1015 

 1016 

(16) '̂(/)
&(/)

= <(/)
;5<(/)//

 1017 

 1018 

is the closed-loop kernel of the system. In this case, the power spectrum of the deterministic 1019 

response can be defined as 1020 

 1021 

(17) Φ'̂'̂ = | <(/)
;5<(/)//

|,Φ&&, 1022 
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 1023 

where Φ&& is the power spectrum of the target.  1024 

 1025 

The residual behavior due to noise will be  1026 

 1027 

(18) 𝑞(𝑠) = <(/)
;5<(/)//

𝑛(𝑠) 1028 

 1029 

and the power spectrum of the residuals, Φ)), is defined as 1030 

 1031 

(19) Φ)) = | <(/)
;5<(/)//

|,Φ%%, 1032 

 1033 

where Φ%% is the power spectrum of the noise input. Combining equations (17) and (19), we can 1034 

define the power spectrum of the noise input as 1035 

 1036 

(20) Φ%% =
*!!

*"#"#
Φ&&. 1037 

 1038 

Therefore, to estimate the noise spectrum under the multiplicative model, one can combine the 1039 

measured power spectra of the input, Φ&&, the estimated power spectrum of the deterministic 1040 

response from the response expected based on the kernel, Φ'̂'̂, and the measured power 1041 

spectrum of the measured residuals, Φ)). 1042 

 1043 

Data availability 1044 

Data and accompanying data analysis routines are available from the corresponding author 1045 

upon reasonable request. 1046 

 1047 
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