Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Apr 1;267(1):141–147. doi: 10.1042/bj2670141

Characterization of peptide fluxes into human erythrocytes. A proton-n.m.r. study.

J E Odoom 1, I D Campbell 1, J C Ellory 1, G F King 1
PMCID: PMC1131256  PMID: 2327979

Abstract

A new protocol for measuring cellular uptake of dipeptides was developed in which the problem of peptide hydrolysis is obviated by introduction into the cell suspension of a membrane-permeant peptidase inhibitor. The uptake of unlabelled dipeptide is readily monitored so long as some analytical technique is available for measuring the intracellular peptide concentration; in this study we used n.m.r. spectroscopy. Using this protocol, we demonstrated that dipeptide uptake by human erythrocytes occurs by simple diffusion through the lipid bilayer and not via a high-capacity protein-mediated transport system. Substantiating evidence includes demonstration that: (a) the fluxes are slow compared with known protein-mediated transport processes in human erythrocytes; (b) the uptake is not stereospecific; (c) the uptake does not display saturation kinetics; (d) the fluxes are significantly enhanced by butanol; (e) a distinct correlation exists between the size-corrected permeability coefficients of the dipeptides and their calculated n-octanol/water partition coefficients. It is calculated that under normal physiological conditions the diffusive fluxes of circulating plasma peptides into human erythrocytes are too small for these cells to play a significant role in dipeptide catabolism.

Full text

PDF
142

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beilharz G. R., Middlehurst C. R., Kuchel P. W., Hunt G. E., Johnson G. F. Determination of choline in erythrocytes using high-resolution proton nuclear magnetic resonance spectroscopy: comparison with a choline oxidase method. Anal Biochem. 1984 Mar;137(2):324–329. doi: 10.1016/0003-2697(84)90093-9. [DOI] [PubMed] [Google Scholar]
  2. Beutler E., West C., Blume K. G. The removal of leukocytes and platelets from whole blood. J Lab Clin Med. 1976 Aug;88(2):328–333. [PubMed] [Google Scholar]
  3. Boyd C. A., Ward M. R. A micro-electrode study of oligopeptide absorption by the small intestinal epithelium of Necturus maculosus. J Physiol. 1982 Mar;324:411–428. doi: 10.1113/jphysiol.1982.sp014121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown F. F., Campbell I. D., Kuchel P. W., Rabenstein D. C. Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS Lett. 1977 Oct 1;82(1):12–16. doi: 10.1016/0014-5793(77)80875-2. [DOI] [PubMed] [Google Scholar]
  5. Endo F., Matsuda I., Ogata A., Tanaka S. Human erythrocyte prolidase and prolidase deficiency. Pediatr Res. 1982 Mar;16(3):227–231. doi: 10.1203/00006450-198203000-00013. [DOI] [PubMed] [Google Scholar]
  6. Ganapathy M. E., Mahesh V. B., Devoe L. D., Leibach F. H., Ganapathy V. Dipeptide transport in brush-border membrane vesicles isolated from normal term human placenta. Am J Obstet Gynecol. 1985 Sep 1;153(1):83–86. doi: 10.1016/0002-9378(85)90600-3. [DOI] [PubMed] [Google Scholar]
  7. Ganapathy V., Leibach F. H. Carrier-mediated reabsorption of small peptides in renal proximal tubule. Am J Physiol. 1986 Dec;251(6 Pt 2):F945–F953. doi: 10.1152/ajprenal.1986.251.6.F945. [DOI] [PubMed] [Google Scholar]
  8. Ganapathy V., Mendicino J., Leibach F. H. Evidence for a dipeptide transport system in renal brush border membranes from rabbit. Biochim Biophys Acta. 1981 Apr 6;642(2):381–391. doi: 10.1016/0005-2736(81)90454-5. [DOI] [PubMed] [Google Scholar]
  9. Halestrap A. P. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J. 1976 May 15;156(2):193–207. doi: 10.1042/bj1560193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Isab A. A., Rabenstein D. L. The incorporation of 2H-labelled glycine into the glutathione of intact human erythrocytes studied by 1H spin-echo Fourier transform NMR. FEBS Lett. 1979 Oct 15;106(2):325–329. doi: 10.1016/0014-5793(79)80525-6. [DOI] [PubMed] [Google Scholar]
  11. King G. F., Crossley M. J., Kuchel P. W. Inhibition and active-site modelling of prolidase. Eur J Biochem. 1989 Mar 15;180(2):377–384. doi: 10.1111/j.1432-1033.1989.tb14659.x. [DOI] [PubMed] [Google Scholar]
  12. King G. F., Kuchel P. W. A proton n.m.r. study of iminodipeptide transport and hydrolysis in the human erythrocyte. Possible physiological roles for the coupled system. Biochem J. 1984 Jun 1;220(2):553–560. doi: 10.1042/bj2200553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. King G. F., Kuchel P. W. Assimilation of alpha-glutamyl-peptides by human erythrocytes. A possible means of glutamate supply for glutathione synthesis. Biochem J. 1985 May 1;227(3):833–842. doi: 10.1042/bj2270833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. King G. F., Middlehurst C. R., Kuchel P. W. Direct NMR evidence that prolidase is specific for the trans isomer of imidodipeptide substrates. Biochemistry. 1986 Mar 11;25(5):1054–1062. doi: 10.1021/bi00353a016. [DOI] [PubMed] [Google Scholar]
  15. King G. F., York M. J., Chapman B. E., Kuchel P. W. Proton NMR spectroscopic studies of dipeptidase in human erythrocytes. Biochem Biophys Res Commun. 1983 Jan 14;110(1):305–312. doi: 10.1016/0006-291x(83)91296-2. [DOI] [PubMed] [Google Scholar]
  16. Kuchel P. W., King G. F., Chapman B. E. No evidence of high capacity alpha-glutamyl-dipeptide transport into human erythrocytes. Biochem J. 1987 Feb 15;242(1):311–312. doi: 10.1042/bj2420311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Myara I., Myara A., Mangeot M., Fabre M., Charpentier C., Lemonnier A. Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease. Clin Chem. 1984 Feb;30(2):211–215. [PubMed] [Google Scholar]
  18. Rich D. H., Moon B. J., Harbeson S. Inhibition of aminopeptidases by amastatin and bestatin derivatives. Effect of inhibitor structure on slow-binding processes. J Med Chem. 1984 Apr;27(4):417–422. doi: 10.1021/jm00370a001. [DOI] [PubMed] [Google Scholar]
  19. Young D. J., Wolowyk M. W., Fincham D. A., Cheeseman C. I., Rabenstein D. L., Ellory J. C. Conflicting evidence regarding the transport of alpha-glutamyl-dipeptides by human erythrocytes. Biochem J. 1987 Feb 15;242(1):309–311. doi: 10.1042/bj2420309. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES