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Abstract 9 

 10 

The remarkable ability of a single genome sequence to encode a diverse collection of distinct 11 

cell types, including the thousands of cell types found in the mammalian brain, is a key 12 

characteristic of multicellular life. While it has been observed that some cell types are far more 13 

evolutionarily conserved than others, the factors driving these differences in evolutionary rate 14 

remain unknown. Here, we hypothesized that highly abundant neuronal cell types may be under 15 

greater selective constraint than rarer neuronal types, leading to variation in their rates of 16 

evolution. To test this, we leveraged recently published cross-species single-nucleus RNA-17 

sequencing datasets from three distinct regions of the mammalian neocortex. We found a 18 

strikingly consistent relationship where more abundant neuronal subtypes show greater gene 19 

expression conservation between species, which replicated across three independent datasets 20 

covering >106 neurons from six species. Based on this principle, we discovered that the most 21 

abundant type of neocortical neurons—layer 2/3 intratelencephalic excitatory neurons—has 22 

evolved exceptionally quickly in the human lineage compared to other apes. Surprisingly, this 23 

accelerated evolution was accompanied by the dramatic down-regulation of autism-associated 24 

genes, which was likely driven by polygenic positive selection specific to the human lineage. In 25 

sum, we introduce a general principle governing neuronal evolution and suggest that the 26 
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exceptionally high prevalence of autism in humans may be a direct result of natural selection for 27 

lower expression of a suite of genes that conferred a fitness benefit to our ancestors while also 28 

rendering an abundant class of neurons more sensitive to perturbation.  29 

 30 

Introduction 31 

With the advent of single cell RNA-sequencing (scRNA-seq), it became possible to 32 

systematically delineate molecularly defined cell types across the brain1,2. As more large-scale 33 

datasets were published, it quickly became clear that the mammalian brain contains a 34 

staggering array of neuronal cell types, with recent whole-brain studies identifying nearly as 35 

many neuronal types as there are protein-coding genes in the genome1–3. In addition, cross-36 

species atlases in the neocortex revealed that most cortical neuronal types are highly conserved 37 

in primates and rodents, with very few neocortical neuronal types being specific to primates and 38 

none being entirely specific to humans4–8. This suggests that divergence involving homologous 39 

cell types—such as their patterns of gene expression, relative proportions, and connectivity—40 

may play a central role in establishing uniquely human cognition.  41 

Two decades before the generation of these cross-species cell type atlases, the first whole-42 

genome sequences of eukaryotes were published, enabling genome-wide studies of evolution 43 

for the first time9. One of the first questions to be addressed in the nascent field of evolutionary 44 

genomics was why some proteins are highly conserved throughout the tree of life, whereas 45 

others evolve so quickly as to be almost unrecognizable as orthologs even over relatively short 46 

divergence times10–13. A protein’s expression level emerged as the strongest and most universal 47 

predictor of its evolutionary rate, with highly expressed proteins accumulating fewer protein-48 

coding changes due to greater constraint10,14–16.  49 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2025. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


In contrast to tens of thousands of publications about the evolutionary rates of proteins17, the 50 

evolutionary rates of cell types, another key building block of multicellular life, have received 51 

relatively little attention18. Just as different proteins make up every cell, different cell types make 52 

up every multicellular organism. Furthermore, just as protein evolutionary rates are measured 53 

by the total rate of change of their amino acids, the evolutionary rates of cell types—which are 54 

typically defined by their patterns of gene expression—can be measured by divergence in 55 

genome-wide gene expression4–8. For example, it is well-established that gene expression in 56 

neurons is more conserved between humans and mice than gene expression in glial cell types 57 

such as astrocytes, oligodendrocytes, and microglia19. Previous analogies between genes and 58 

neural cell types have been fruitful for understanding the evolution of novel cell types6,20–23, 59 

providing an encouraging precedent for our analogy. 60 

One area that has been explored more thoroughly is the association of specific cell types with 61 

human diseases and disorders24. For example, integration of gene-trait associations with cell 62 

type-specific expression profiles has revealed that microglia likely play a central role in 63 

Alzheimer’s disease25,26. Similar analyses have also revealed that layer 2/3 intratelencephalic 64 

excitatory (L2/3 IT neurons)—which enable communication between neocortical areas27 and are 65 

thought to be important for uniquely human cognitive abilities27,28—likely play a particularly 66 

important role in autism spectrum disorder (ASD) and schizophrenia (SCZ)29–36, together with 67 

deep layer IT neurons36–38. ASD and SCZ are neurodevelopmental disorders with different but 68 

overlapping characteristics, including major effects on social behavior39–41. Interestingly, 69 

individuals with ASD are more likely to be diagnosed with SCZ than individuals without an ASD 70 

diagnosis39,42–44. Furthermore, there is a strong overlap in the genes that have been implicated 71 

in both disorders36,39. 72 

From an evolutionary perspective, it has been proposed that ASD and SCZ may be unique to 73 

humans45–47. This is primarily based on two main lines of reasoning. First, ASD- and SCZ-74 
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associated behaviors that could reasonably be observed in non-human primates (e.g. SCZ-75 

associated psychosis) have been observed either infrequently or not at all in non-human 76 

primates46. However, ASD-like behavior has been observed in non-human primates48 and the 77 

difficulties inherent to cross-species behavioral comparisons combined with relatively low 78 

sample sizes make it difficult to compare the prevalence of these behaviors in human and non-79 

human primate populations. Second, core ASD- and SCZ-associated behavioral differences 80 

involve cognitive traits that are either unique to or greatly expanded in humans (e.g. speech 81 

production and comprehension or theory of mind)49–53. As a result, certain aspects of ASD and 82 

SCZ are inherently unique to humans. 83 

While comparing interindividual behavioral differences across species remains challenging, 84 

recent molecular and connectomic evidence lend credence to the idea that the incidence of 85 

ASD and SCZ increased during human evolution. For example, large-scale sequencing studies 86 

in both ASD and SCZ cohorts have identified an excess of genetic variants in human 87 

accelerated regions (HARs)—genomic elements that were largely conserved throughout 88 

mammalian evolution but evolved rapidly in the human lineage54–56. Furthermore, transcriptomic 89 

studies have identified a human-specific shift in the expression of some synaptic genes during 90 

development that is disrupted in ASD57. In addition, connectomic studies have shown that 91 

human-chimpanzee divergence in brain connectivity overlaps strongly with differences between 92 

humans with and without SCZ58. Overall, evidence suggests that ASD and SCZ may be 93 

particularly prevalent in humans, but the factors underlying this increased prevalence remain 94 

unknown. Positive selection—also known as adaptive evolution—of brain-related traits in the 95 

human lineage has been proposed to underlie this increase45–47,59,60. Although this idea is 96 

supported by the links between HARs (many of which are thought to have been positively 97 

selected56) and ASD and SCZ, there is no direct evidence for positive selection on the 98 

expression of genes linked to ASD and SCZ.  99 
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Here, we set out to test whether the inverse relationship between abundance and evolutionary 100 

rates—which has been well-established for proteins10,14–16—might also hold for cell types. We 101 

found a robust negative correlation between cell type proportion and evolutionary divergence in 102 

the neocortex, suggesting that this relationship holds at multiple levels of biological organization. 103 

Based on this, we identify unexpectedly rapid evolution of L2/3 IT neurons and strong evidence 104 

for polygenic positive selection for reduced expression of ASD-linked genes in the human 105 

lineage, suggesting that positive selection may have increased the prevalence of ASD in 106 

modern humans. 107 

 108 

Results 109 

 110 

Cell type proportion as a general factor governing the rate of neuronal evolution  111 

 112 

Based on the gene-cell type analogy outlined above, we hypothesized that a change in gene 113 

expression in a more abundant cell type may tend to have more negative fitness effects than the 114 

same change in a less abundant cell type (Figure 1A). If this were the case, this would lead to 115 

greater selective constraint, and thus slower divergence, of global gene expression in more 116 

abundant cell types.  117 

 118 

Testing this hypothesis requires comparing two quantities: cell type proportions and the 119 

evolutionary divergence in genome-wide gene expression levels between orthologous cell types 120 

across species. Importantly, both quantities can be estimated from the same single-nucleus 121 

RNA-seq (snRNA-seq) data, facilitating comparison between them. To ensure sufficient 122 

statistical power, we searched the literature for published snRNA-seq data sets that fulfilled a 123 

stringent pair of criteria. First, they must have multiple species profiled in the same study using 124 
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the same snRNA-seq protocols for each species within a study. Second, they must contain at 125 

least 10 orthologous cell types having 250 or more cells per species (not including immune 126 

cells, as these do not have stable cell type proportions). We identified three studies fulfilling 127 

these criteria, focused on three distinct regions of the mammalian neocortex: medial temporal 128 

gyrus (MTG), dorsolateral prefrontal cortex (DLPFC), and primary motor cortex (M1)5,7,8. All 129 

three studies included samples from 3-5 species, including human and marmoset, with 300,000 130 

– 500,000 neuronal nuclei profiled per study5,7,8. These nuclei were clustered into between 12 – 131 

17 neuronal subclasses (with at least 250 cells per species) in each study, which we then used 132 

for our analyses5,7,8. Throughout, we use the term cell type for the general concept of different 133 

types of cells and as an umbrella term for both subclasses and subtypes, use the term subclass 134 

for the traditional classification of neuronal types found in the neocortex, and reserve the term 135 

subtype for more fine-grained clustering of cells. 136 

 137 

To test our hypothesis, we began by comparing human and marmoset (the only pair of species 138 

present in all three datasets) in the MTG, which had the greatest sequencing depth. We first 139 

estimated gene expression divergence for each of 14 subclasses using the Spearman 140 

correlation distance (1 – Spearman’s rho) between the pseudobulked expression of each 141 

species for each neuron subclass, restricting to one-to-one orthologous genes (see Methods). 142 

We observed a surprisingly strong negative correlation between subclass proportion and gene 143 

expression divergence (Spearman’s rho = -0.84, p = 8.0x10-5, Figure 1B), indicating that more 144 

abundant neuronal subclasses showed greater conservation of genome-wide gene expression. 145 

To ensure that estimates of cell type-specific expression divergence were not biased by cell 146 

type proportion itself, we analyzed the same number of cells and total reads for each cell type in 147 

each species. Specifically, for all analyses we report the median rho and p-values from 100 148 

independent down-samplings of cells and pseudobulked counts without replacement (see 149 

Methods). 150 
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 151 

We next asked whether the same pattern was present in the other cortical regions. We 152 

observed a similar strong negative correlation in the two other independently generated 153 

datasets (Spearman’s rho = -0.76, p = 0.00041 in the DLPFC, Figure 1C; Spearman’s rho = -154 

0.73, p = 0.0065 in the M1, Figure 1D). This replication suggests that the relationship we 155 

observed holds true across the primate neocortex. In addition, the fact that methodological 156 

details and biological samples differ across these studies lends additional robustness to any 157 

patterns shared by all three. 158 

 159 

To explore the generality of this result in additional species, we repeated this analysis between 160 

every pair of species in each dataset. We observed similarly strong negative correlations across 161 

all pairwise comparisons (Supplemental Figures 1-3), with the interesting exception of 162 

comparisons between humans and non-human great apes, where a weaker negative correlation 163 

was observed (discussed below). Furthermore, we observed strong negative correlations within 164 

excitatory or inhibitory subclasses in all three brain regions (Figure 2 and Supplemental Figures 165 

4-9, although this correlation does not reach statistical significance for inhibitory neurons in M1, 166 

potentially due to having only five subclasses in that dataset). In addition, we tested all possible 167 

combinations of a wide variety of filtering parameters, analysis decisions, and distance metrics, 168 

finding that this negative correlation was generally robust to any reasonable choice of 169 

parameters we made (Supplemental Table 1). 170 

 171 

Next, we investigated this relationship at the level of neuronal subtypes, a finer-grained 172 

clustering with ~4-fold more cell subtypes than subclasses. We found strong negative 173 

correlations between subtype proportion and expression divergence when using all neurons 174 

(Figure 3A-C, Supplemental Figures 10-12) or only excitatory neurons (Figure 3D-F, 175 

Supplemental Figures 13-15). When restricting our analysis to inhibitory neurons, this 176 
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correlation was statistically significant in the MTG and in two of three comparisons (mouse-177 

marmoset and human-mouse) in the M1, but not in DLPFC (Figure 3G-I, Supplemental Figures 178 

16-18). This may reflect the lower read depth (average of 180,054 counts used for DLPFC, 179 

compared to 254,703 for M1 and 325,422 for MTG) or lower numbers of cells per subtype in the 180 

DLPFC data compared to the other datasets, as we observed a much stronger negative 181 

correlation (Spearman’s rho = -0.50, p = 0.057) when restricting to subtypes with at least 500 182 

cells in the DLPFC data (Supplemental Figure 19). Overall, our results suggest that there is a 183 

strong, robust negative correlation between expression divergence and cell type proportion for 184 

neocortical neurons. 185 

 186 

Finally, we investigated the properties of the genes driving the negative correlation we 187 

observed. First, we stratified genes into three equally sized bins by their expression level and 188 

recomputed correlations in each bin. Interestingly, while we observed strong correlations for 189 

highly and moderately expressed genes, there was no significant correlation when restricting to 190 

lowly expressed genes (Figure 4A, Supplemental Figures 20-22, Supplemental Table 2). Next, 191 

we stratified genes based on evolutionary constraint on expression level or cell type-specificity 192 

of expression (using shet
61 and the Tau metric62 respectively, Supplemental Tables 3 and 4). 193 

While there was no difference in correlation when stratifying by constraint on expression 194 

(Supplemental Figures 23-25, Supplemental Table 3), we observed a much stronger negative 195 

correlation between cell type proportion and expression divergence for more cell type-196 

specifically expressed genes (Figure 4B, Supplemental Figures 26-28, Supplemental Table 4). 197 

Since expression level is also associated with cell-type specificity, we tested whether these two 198 

properties were contributing independently to the negative correlations by stratifying genes by 199 

one of them while simultaneously controlling for the other. We found that both properties 200 

retained their predictive power even when controlling for the other (Figure 4C-D, Supplemental 201 

Figures 29-34, Supplemental Tables 2 and 4), suggesting independent contributions. We note 202 
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that whether the weaker correlations we observed for lowly expressed genes were due to a true 203 

lack of association or simply less accurate expression level measurements remains an open 204 

question that will require larger datasets to explore. Overall, our results suggest that more highly 205 

expressed, cell type-specific genes are primarily driving the negative correlation between cell 206 

type proportion and gene expression divergence. 207 

 208 

Rapid evolution of layer 2/3 intratelencephalic neurons in the human lineage 209 

Having identified this strong relationship between cell type proportion and evolutionary 210 

divergence, we reasoned that cell types with much faster divergence in the human lineage than 211 

expected based on their abundance may have been subject to atypical selective forces.  212 

To identify subclasses showing the most dramatic lineage-specific shifts in selection, we 213 

decomposed human-chimpanzee MTG expression divergence into its two components, 214 

divergence on the human branch and divergence on the chimpanzee branch. Applying the 215 

concept of parsimony—explaining the data with as few evolutionary transitions as possible—216 

allows an outgroup species such as gorilla to polarize changes and assign them to either the 217 

human or chimpanzee branch (see Methods). In the chimpanzee lineage, there was a strong 218 

negative correlation between divergence and subclass proportion (Figure 5A, Spearman’s rho = 219 

-0.77, p = 0.00076), similar to the correlations between other primate species (Figure 1A, 220 

Supplemental Figure 1). However, we observed a much weaker negative correlation in the 221 

human lineage (Figure 5B, Spearman’s rho = -0.19, p = 0.49). The clearest outlier weakening 222 

the correlation was L2/3 IT neurons, the most abundant neuronal subclass, which diverged 223 

much faster than expected based on its proportion. This was also true to a lesser extent for the 224 

next two most abundant subclasses, L4 IT and L5 IT neurons. Indeed, removing these three 225 

subclasses substantially strengthened the negative correlation between subclass proportion and 226 

human-specific divergence (Figure 5B; Spearman’s rho = -0.59, p = 0.041), making it 227 
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indistinguishable from the corresponding chimpanzee-specific correlation (Figure 5A, blue 228 

points; Spearman’s rho = -0.58, p = 0.048). Quantifying the magnitude of human acceleration 229 

for every subclass confirmed that L2/3 IT neurons underwent the greatest acceleration, followed 230 

by L4 and L5 IT neurons (Figure 5C).  231 

Accelerated evolution can involve either positive selection favoring gene expression changes 232 

that increased fitness, or relaxed selective constraint in which random mutations are allowed to 233 

accumulate over time because they have little or no effect on fitness56. Although both positive 234 

selection and relaxed constraint can lead to similar patterns of lineage-specific acceleration, 235 

they imply very different underlying factors: positive selection is the force underlying nearly all 236 

evolutionary adaptation, while relaxed constraint is simply the weakening or absence of natural 237 

selection which can lead to the passive deterioration of genes and their regulatory elements via 238 

mutation accumulation.  239 

To distinguish whether positive selection or relaxed constraint was more likely to underlie the 240 

human-specific acceleration of IT neurons, we investigated the interindividual variability in 241 

expression of each neuronal subclass in the human population63. If IT neurons evolved under 242 

reduced constraint in the human lineage then we would expect them to have more variable 243 

expression among humans, leading to a weaker negative correlation between subclass 244 

proportion and interindividual variability. Instead, we observed a strong negative correlation 245 

between subclass proportion and interindividual variability in gene expression, with L2/3 IT 246 

neurons having the lowest variability of any subclass among humans (Figure 5D, Spearman’s 247 

rho = -0.55, p = 0.049). Consistent with this, L2/3 IT neurons had the largest human branch 248 

divergence relative to their expression variability in modern humans (Figure 5E). Overall, these 249 

results suggest that the rapid gene expression evolution of L2/3 IT neurons in the human 250 

lineage was unlikely to be due to relaxed constraint, and instead more likely the result of 251 

positive selection (Figure 5F), though we cannot formally rule out other possible scenarios (see 252 
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Discussion). In addition, it suggests that the relationship between cell type proportion and 253 

expression divergence holds within species as well as between species. 254 

 255 

Lower expression of ASD-linked genes in humans compared to chimpanzees 256 

Our finding of human-specific accelerated evolution of L2/3 IT neurons raised the question of 257 

what phenotypes may be most affected by this. To explore this, we tested gene sets with strong 258 

evidence of linkage to specific human traits for bias toward higher or lower expression in 259 

humans relative to chimpanzees in L2/3 IT neurons. These gene sets were derived from two 260 

sources: the Human Phenotype Ontology (HPO)64, a broad database covering hundreds of 261 

human traits, and SFARI, an ASD-specific database. Although ASD is often influenced by 262 

common genetic variants of small effect, which can be identified by GWAS, it can also be 263 

caused by single large effect variants typically causing loss-of-function of a core65 ASD gene. 264 

The SFARI database is the most comprehensive collection of these core genes66; we refer to 265 

SFARI genes with a score of 1 as “high-confidence ASD-linked” and all SFARI genes, 266 

regardless of score, as “ASD-linked”.  267 

Strikingly, we found that high-confidence ASD-linked genes showed a stronger directionality 268 

bias in L2/3 IT neurons than any of the 359 HPO gene sets tested (4.0-fold enrichment for lower 269 

expression in human MTG and 4.3-fold enrichment in DLPFC; p < 10-7 for each; Figure 6A, 270 

Supplemental Figure 35A). Although some HPO gene sets were also enriched, this was mostly 271 

a result of pleiotropic ASD-linked genes being present in multiple gene sets (Supplemental 272 

Figure 35B-C). This strong and specific enrichment for lower expression of high-confidence 273 

ASD-linked genes in human L2/3 IT neurons was intriguing, considering the known role of these 274 

neurons in ASD30–34. 275 
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We then asked whether this lower expression of high-confidence ASD-linked genes was shared 276 

in other neuronal types beyond L2/3 IT. We found that some types of neurons had no significant 277 

directionality bias (Figure 6A), while many subclasses shared a bias towards lower expression 278 

of high-confidence ASD-linked genes in humans compared to chimpanzees (Fig 6B). In both the 279 

DLPFC and the MTG datasets we observed the most significant trend towards lower human 280 

expression of these genes in L2/3 IT neurons (Figure 6B-C, Supplemental Figure 36A-C).  281 

This excess of high-confidence ASD-linked genes with lower expression in humans is consistent 282 

with either down-regulation in the human lineage, up-regulation in the chimpanzee lineage, or a 283 

combination of both. To distinguish between these possibilities, we used gorilla as an outgroup 284 

to assign each gene’s expression divergence in the MTG to either the human or chimpanzee 285 

lineage.  286 

Comparing the expression of high-confidence ASD-linked genes in all three species revealed 287 

that gorilla gene expression is significantly closer to chimpanzee, suggesting that there has 288 

been greater divergence in the human lineage (Supplemental Figure 37A). Consistent with this, 289 

a significantly larger number of high-confidence ASD-linked genes’ expression diverged on the 290 

human branch than expected by chance in L2/3 IT neurons (Supplemental Figure 37B). In 291 

addition, human L2/3 IT neurons have overall lower expression of these genes as compared to 292 

all four NHPs in the dataset (Supplemental Figure 37C, Supplemental Table 5). Overall, these 293 

results suggest a consistent pattern of human-specific down-regulation of ASD-associated 294 

genes in a neuronal cell type with a key role in ASD.  295 

 296 

Polygenic positive selection for down-regulation of ASD-linked genes in the human 297 

lineage 298 

This human-specific down-regulation of high-confidence ASD-linked genes is striking and, 299 

based on the highly constrained expression of these genes, likely functionally significant. 300 
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However, as with the accelerated evolution of L2/3 IT neurons discussed above (Figure 5), the 301 

question of whether lineage-specific selection was responsible is key to understanding the 302 

factors that drove this divergence in the human lineage. Other potential explanations fall into 303 

two main categories. One is genetic changes that were not driven by selection, such as 304 

mutations that had little effect on fitness but became established in the human lineage through 305 

genetic drift. The other is non-genetic differences in the individuals sampled for these data sets; 306 

factors such as diet, environmental exposures, and age can impact gene expression but cannot 307 

be controlled in any comparison of tissue samples between humans and other species. 308 

In order to definitively implicate lineage-specific selection, two steps are necessary. First, all 309 

non-genetic causes must be ruled out. Although this is not possible with tissue samples, it can 310 

be achieved in vitro. Human and chimpanzee induced pluripotent stem cells (iPSCs) can be 311 

fused to generate hybrid tetraploid iPSCs, which can then be differentiated into relevant cell 312 

types or organoids67,68. In each hybrid cell, the human and chimpanzee genomes share 313 

precisely the same intracellular and extracellular environment. As a result, any difference in the 314 

relative expression levels of the human and chimpanzee alleles for the same gene—known as 315 

allele-specific expression (ASE)—reflects cis-regulatory changes between the two alleles. Both 316 

environmental and experimental sources of variability (including batch effects) are perfectly 317 

controlled in the hybrid system, since all comparisons are between alleles that share an 318 

identical environment and are present in the same experimental samples67,68. 319 

The second step necessary to infer lineage-specific selection is to test, and reject, a statistical 320 

“null model” of neutral evolution for the genetic component of divergence69. The simplest and 321 

most robust pattern predicted under neutral evolution of gene expression is the expectation that 322 

in a comparison between two species, genetic variants causing expression divergence will be 323 

just as likely to lead to higher expression in one species as in the other70. For example, in a set 324 

of 20 functionally related genes, neutral evolution leads to a similar pattern as a series of 20 325 
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coin flips—an expectation of ~10 genes more highly expressed in one species and ~10 in the 326 

other, with deviation from this average following the binomial distribution70. In contrast, natural 327 

selection that favors lower expression of these genes in one lineage will lead to a pattern of 328 

biased expression, with most of the 20 genes expressed lower in that lineage70. This framework, 329 

which has been applied extensively to gene expression and other quantitative traits67–69,71,72, is 330 

known as the sign test. Because the ASE of each gene in hybrid cells is generally independent 331 

of that of other genes, facilitating statistical analysis, hybrid ASE is ideally suited for detecting 332 

selection with the sign test whereas data from non-hybrids cannot be used in this manner. 333 

To apply this test for lineage-specific selection, we focused on a previously published RNA-seq 334 

dataset from human-chimpanzee hybrid cortical organoids67. These organoids—which include 335 

glutamatergic and GABAergic neurons, astrocytes, and neural precursor cells—were sampled in 336 

a bulk RNA-seq time series of development in vitro67; we focus on the two timepoints, day 100 337 

and day 150, with the highest proportion of neurons. As described above, a significant bias in 338 

the directionality of ASE for any predefined set of genes can reject the null hypothesis of neutral 339 

evolution, and instead suggests lineage-specific selection. Applying this test to ASD-linked 340 

genes, we found a strong bias toward lower expression from the human allele in cortical 341 

organoids at two different stages of development (2.0-fold enrichment at day 100 of organoid 342 

development; binomial p = 0.003; Figure 6E). The bias toward lower expression from human 343 

alleles was even stronger when using only high-confidence ASD-linked genes (2.5 fold-344 

enrichment; binomial p = 0.01 at day 100; Supplemental Figure 38). This ASE bias is 345 

inconsistent with neutral evolution, and strongly implies the action of lineage-specific selection 346 

on the expression of ASD-linked genes. 347 

To determine the lineage (human or chimpanzee) on which the ASD-linked gene expression 348 

changes occurred, for genes with matching directionality in the L2/3 IT and organoid data we 349 

once again polarized gene expression divergence in the MTG into human-derived and 350 
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chimpanzee-derived categories using gorilla as an outgroup. Out of 17 chimpanzee-derived 351 

genes, there was no directionality bias in the organoid ASE data at either day 100 or day 150 (9 352 

out of 19 with lower expression from the human allele at day 100, Figure 6F-G, Supplemental 353 

Figure 39), consistent with neutral evolution. However, out of 32 human-derived genes, 27 had 354 

lower expression from the human allele (Fisher’s exact test p = 0.010 at day 100, odds ratio = 355 

6.0; p = 0.010, odds ratio = 8.9 at day 150; Figure 6F-G, Supplemental Figure 39;). This trend is 356 

even stronger when using a more relaxed false discovery rate (FDR) cutoff of 0.1 (34 down-357 

regulated in human vs 5 up-regulated; Fisher’s exact test p = 0.0043, odds ratio = 5.9; p = 358 

0.0017, odds ratio = 12.5 at day 150). Overall, this strongly suggests that many ASD-linked 359 

genes were down-regulated specifically in the human lineage. 360 

This coordinated down-regulation of 34 ASD-linked genes could conceivably be due to either 361 

positive selection or loss of constraint, as both of these types of lineage-specific selection could 362 

lead to down-regulation70,72. To determine if ASD-linked genes might be evolving under relaxed 363 

constraint in humans, we tested several predictions of the relaxed constraint model. First, genes 364 

evolving under relaxed constraint might be expected to have accumulated more substitutions 365 

affecting protein sequence and/or gene expression in the human lineage. However, we found no 366 

difference in protein sequence constraint (measured by dN/dS73) or the number of mutations 367 

near the transcription start site (TSS) between humans and chimpanzees (after correcting for 368 

genome-wide differences between the two lineages, p = 0.42 for dN/dS, p = 0.24 for mutations 369 

near TSS, paired t-test, Supplemental Figure 40A-B). In addition, the expression of genes 370 

evolving under relaxed constraint in humans would likely be more variable across human 371 

individuals compared to chimpanzee individuals. However, we found the opposite for ASD-372 

linked genes—slightly less variability in expression in humans (p = 0.08 for DLPFC, p = 2.5x10-5 373 

for MTG, paired t-test, Supplemental Figure 40C-D), suggesting that the expression of ASD-374 

linked genes may actually be under stronger constraint in humans compared to chimpanzees. 375 
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Consistent with this, the vast majority of ASD-linked genes have strongly constrained 376 

expression in humans as measured by loss-of-function intolerance (82% of ASD-linked genes 377 

have probability of loss of function intolerance74 > 0.9 compared to 17% genome-wide; similarly, 378 

82% of ASD-linked genes have a fitness effect of heterozygous loss of function61 [shet] > 0.1, 379 

compared to 18% genome-wide). 380 

Next, we explored whether particular subsets of ASD-linked genes had a stronger bias toward 381 

down-regulation than other ASD-linked genes. ASD-linked genes tend to encode proteins that 382 

localize to the synapse, encode transcription factors (TFs) or chromatin remodelers (CRs), 383 

and/or be haploinsufficient75. When splitting ASD-linked genes into these three partially 384 

overlapping categories, we found comparable human down-regulation in all groups 385 

(Supplemental Figure 41). For example, 83% of ASD-linked haploinsufficient genes were down-386 

regulated, which is similar to the 75% of ASD-linked non-haploinsufficient genes that were 387 

down-regulated (Supplemental Figure 41A). This suggests that ASD-linked genes in general, 388 

rather than one of these specific subcategories, are biased toward down-regulation. Finally, we 389 

tested whether synaptic genes, TFs/CRs, or haploinsufficient genes in general tend to be down-390 

regulated in the human lineage. We found that all three categories tend to have lower 391 

expression in humans compared to chimpanzee L2/3 IT neurons (Supplemental Figure 42). 392 

Overall, this suggests that the down-regulation of ASD-linked genes we observed may be part 393 

of a larger trend extending to other genes with similar properties as ASD-linked genes, 394 

consistent with previous work on human-specific synaptic gene expression5. 395 

Although we cannot rule out any possibility of relaxed constraint at some point in the past, these 396 

results favor a model in which polygenic positive selection acted to decrease expression of 397 

ASD-linked genes in some types of human neocortical neurons, including L2/3 IT neurons 398 

(Figure 6B). As loss of function underlies increased probability of ASD diagnosis for the vast 399 

majority of these genes75, this suggests that down-regulation of ASD-linked genes may have 400 
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increased ASD prevalence by bringing humans closer to a hypothetical “ASD expression 401 

threshold” below which ASD characteristics manifest. As an example, DLG4, which encodes the 402 

key synaptic protein PSD-95 and for which loss of one copy causes ASD76, has 2.5-fold lower 403 

expression in humans compared to chimpanzees (Figure 6H). Consistent with this, it also has 404 

2.5-fold lower protein abundance in the postsynaptic density in humans compared to rhesus 405 

macaques, and 3.4-fold lower protein abundance in humans compared to mice77 (human vs. 406 

rhesus t-test p = 0.0028, human vs. mouse t-test p = 0.00014, Supplemental Figure 43). While 407 

this human-specific down-regulation (Supplemental Table 5) that led to the current human 408 

baseline expression level of DLG4 is not sufficient to cause ASD, further down-regulation via 409 

loss of a single copy may push humans below the ASD expression threshold whereas loss of a 410 

single copy in chimpanzees would maintain expression above this threshold (Figure 6H). 411 

Although these genes are linked to ASD primarily due to their monogenic effects, the majority of 412 

ASD cases are thought to be caused by many small genetic and environmental perturbations 413 

collectively pushing individuals past some threshold78. We propose that the down-regulation of 414 

ASD-linked genes in humans increased the likelihood of ASD in the human lineage such that 415 

small perturbations on a developmental timescale are sufficient to cause ASD characteristics in 416 

humans but not chimpanzees (Figure 6I).  417 

 418 

Down-regulation of schizophrenia-linked genes in humans 419 

Having observed a consistent pattern of human-specific down-regulation for ASD-linked genes, 420 

we then tested whether genes linked to schizophrenia (SCZ)79, another human-specific 421 

neuropsychiatric disorder, show a similar bias. We found an 8-fold enrichment for human down-422 

regulation of SCZ-linked genes in DLPFC L2/3 IT neurons (Supplemental Figure 44A-B). 423 

Although this is even stronger than the ASD bias, it only reaches an FDR < 0.05 in three MTG 424 

subclasses, such as Lamp5 and Pax6 inhibitory neurons, due to much lower statistical power 425 

(31 SCZ-linked genes vs. 233 high-confidence ASD-linked). Consistent with the known genetic 426 
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overlap between ASD and SCZ, six of the SCZ-linked genes are also implicated in ASD, making 427 

it difficult to disentangle the signal from ASD and SCZ. Furthermore, although there are very few 428 

SCZ-linked genes with significant ASE in the hybrid cortical organoid data, among all SCZ-429 

linked genes regardless of significance there is some bias toward human down-regulation, only 430 

reaching significance at day 150 (1.5 fold-enrichment, binomial test p = 0.28 at day 100; 2.6 431 

fold-enrichment, binomial test p = 0.025 at day 150, Supplemental Figure 44C). We interpret 432 

these results as preliminary evidence that SCZ-linked genes may have also been subject to 433 

selection for down-regulation in the human lineage, though further work will be required to 434 

confirm this. 435 

 436 

Discussion 437 

 438 

Building on an analogy between genes and cell types, we have identified a general principle 439 

underlying the rate of evolution of different neuronal types in the mammalian neocortex. We 440 

found a strong negative correlation between the abundance of each neuronal cell type and the 441 

rate at which its gene expression levels diverge across six mammalian species and three 442 

independent datasets5,7,8. Interestingly, this correlation remained very strong when collectively 443 

analyzing inhibitory and excitatory neurons, despite their very different developmental origins 444 

and functions80,81. 445 

 446 

Based on this initial discovery, we found that L2/3 IT neurons evolved unexpectedly quickly in 447 

the human lineage compared to other apes. This accelerated evolution included the 448 

disproportionate down-regulation of genes associated with autism spectrum disorder and 449 

schizophrenia, two neurological disorders closely linked to L2/3 IT neurons that are common in 450 

humans but rare in other apes. Finally, we found that this down-regulation, present both in adult 451 

neurons and in organoid models of the developing brain, was likely due to polygenic positive 452 
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selection on cis-regulation. These results differ from, but do not contradict, previous findings that 453 

a group of synapse genes show human-specific up-regulation during early development that is 454 

disrupted in people with ASD57. Overall, our analysis suggests that natural selection on gene 455 

expression may have increased the prevalence of ASD, and perhaps also SCZ, in humans (Fig 456 

6H).  457 

 458 

Although it has been widely hypothesized that natural selection for human-specific traits has 459 

increased human disease risk46,47,82–84, unambiguous evidence for this has been lacking. While 460 

there is strong evidence linking natural selection on within-human genetic variation to disease 461 

risk (e.g. sickle cell disease85), it has proven far more challenging to find similar examples 462 

involving genetic variants shared by all humans. There are human-chimpanzee differences that 463 

have been linked to interspecies differences in disease risk (e.g. human-specific 464 

pseudogenization of the CMAH gene, which is thought to have shaped human susceptibility to 465 

infectious diseases84,86,87), but there is no evidence for positive selection on these interspecies 466 

genetic differences. In addition, while there are many examples of positive selection on human-467 

chimpanzee differences67,68,73,88–90, these changes have no clear link to the likelihood of 468 

diseases or disorders in humans. Finally, although the enrichment for ASD-linked variants within 469 

HARs54,55 is suggestive of a role for human-chimpanzee differences in HARs (many of which are 470 

thought to be positively selected56) in increasing the likelihood of ASD in humans, a connection 471 

between those human-chimpanzee differences and ASD has not been established. Overall, our 472 

findings provide the strongest evidence to date supporting the long-standing hypothesis that 473 

natural selection for human-specific traits has increased the likelihood of certain disorders. 474 

 475 

Although our results strongly suggest natural selection for down-regulation of ASD-linked genes, 476 

the reason why this conferred fitness benefits to our ancestors remains an open question. 477 

Answering this question is difficult in part because we do not know what human-specific 478 
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features of cognition, brain anatomy, and neuronal wiring gave our ancestors a fitness 479 

advantage, but we can speculate about two general classes of evolutionary scenarios. First, 480 

down-regulation of ASD-linked genes may have led to uniquely human phenotypes. For 481 

example, haploinsufficiency of many ASD-linked genes is associated with developmental 482 

delay47, so their down-regulation could have contributed to the slower postnatal brain 483 

development in humans compared to chimpanzees. Alternatively, capacity for speech 484 

production and comprehension are unique to or greatly expanded in humans and often 485 

impacted in ASD and SCZ53,91. If down-regulation of ASD-linked genes conferred a fitness 486 

advantage by slowing postnatal brain development or increasing the capacity for language, that 487 

could result in the signal of positive selection we observed. 488 

 489 

On the other hand, the down-regulation we observed may have been compensatory and 490 

reduced the negative effects of some other human-specific trait or traits. For example, the ratio 491 

of excitatory and inhibitory synapses on pyramidal neurons is fairly constant between humans 492 

and rodents despite massive differences in brain and neuron size92. In addition, excitatory-493 

inhibitory imbalance is a leading hypothesis for the circuit basis of ASD93. If human brain 494 

expansion, changes in metabolism, or any other factor shifted this balance away from the 495 

fitness optimum, down-regulation of ASD-linked genes could potentially compensate. Overall, 496 

more work is needed to understand how natural selection acting on the expression of ASD-497 

linked genes in the human lineage may have shaped human phenotypes. 498 

 499 

Our results come with important caveats. As with most correlations, causality is not implied. Our 500 

initial hypothesis was that cell type proportions may affect evolutionary rates via more severe 501 

fitness effects of expression changes in more abundant cell types, leading to greater 502 

evolutionary constraint than in rare cell types (Fig 1A). While this is a plausible explanation for 503 
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our results, there also may be unknown correlates of cell type proportion that are causal. We 504 

leave explicit testing of this model to future work.  505 

 506 

Along with establishing a mechanism underlying these correlations, another exciting future 507 

direction will be to explore this phenomenon in other tissues and brain regions. While cross-508 

species atlases from other brain regions exist, they generally lack a sufficient number of cells 509 

profiled94,95 or fail to meet our inclusion criteria in other ways (see Methods). However, this will 510 

become increasingly feasible as additional large cross-species snRNA-seq studies are 511 

published. An especially interesting question will be whether rare but vital neuron cell types (e.g. 512 

serotonergic or dopaminergic neurons96,97) follow the same pattern we have observed for 513 

neocortical neurons; this will help distinguish between cell type abundance vs. importance as 514 

the driving factor underlying the relationship we have observed. It will also be interesting to 515 

explore what factors are associated with the rate of cell type-specific gene expression 516 

divergence in contexts that lack stable cell type proportions (e.g. during development or in the 517 

immune system).  518 

 519 

Considering that many ASD-linked genes are extremely sensitive to perturbations in their 520 

expression, our findings raise the important question of how significant reductions in the 521 

expression of so many dosage-sensitive genes were tolerated in the human lineage. As 522 

haploinsufficiency of many of these genes has severe fitness consequences in both humans 523 

and mice47, it is unlikely that these changes occurred through single mutations of large effect. In 524 

addition, our analysis of allele-specific expression suggests that cis-regulatory changes underlie 525 

many of the gene expression changes we observe. Therefore, we favor a model in which many 526 

cis-acting mutations of small effect fixed over time, eventually leading to the large-scale down-527 

regulation of ASD-linked genes in the human lineage. It will be interesting to use deep learning 528 
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predictions of variant effects combined with experimental validation to identify the genetic 529 

differences underlying changes in the expression of ASD-linked genes in the human lineage.  530 

 531 

It is also possible that the down-regulation of many ASD-linked genes is less deleterious than 532 

the down-regulation of a single gene. As an analogy, whole-genome duplications can be well-533 

tolerated in vertebrates, even though duplication of some individual genes—including many of 534 

those linked to ASD—can be far more deleterious. An intuitive explanation for this counter-535 

intuitive observation is that relative expression levels, or stoichiometry, could impact fitness 536 

even more than absolute expression levels98. Under this model, the key idea is that the down-537 

regulation of many ASD-linked genes would have less impact on their relative levels than a 538 

change in the expression of a single gene. Excitingly, CRISPR-based methods to precisely 539 

manipulate the expression levels of many genes at once may soon allow us to more directly test 540 

this hypothesis. Overall, it will be important to develop a deeper understanding of how cell types 541 

and genes implicated in ASD and SCZ have evolved in the human lineage as this will improve 542 

our understanding of uniquely human traits and neuropsychiatric disorders.  543 
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Figure 1: More common neuronal cell types evolve more slowly than rare types. A) 545 

Rationale for hypothesis that more common neuronal types might evolve more slowly than rarer 546 

types. A gene expression change in a common cell type has a large negative effect on fitness 547 

whereas the same change in a rarer cell type has a smaller effect. B) Left: outline of our data 548 

analysis strategy. SnRNA-seq from the MTG of five species (14 subclasses of neuron) was 549 

used to estimate each cell type’s proportion and pairwise divergence between species. Right: 550 

plot showing the correlation between neuronal subclass proportion (log10 scale on the x-axis) 551 

and subclass-specific divergence between human and marmoset in the MTG. A representative 552 

iteration from 100 independent down-samplings is shown. The Spearman’s rho and p-value 553 

shown are the median across 100 independent down-samplings (see Methods for details). The 554 

line and shaded region are the line of best fit from a linear regression and 95% confidence 555 

interval respectively. C) Same as (B) but snRNA-seq from the DLPFC (17 subclasses of 556 

neuron) of four species was analyzed. D) Same as (B) but snRNA-seq from M1 (12 subclasses 557 

of neuron) of three species was analyzed. 558 

  559 
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 560 

Figure 2: More common neuronal cell types evolve more slowly than rare types within 561 

excitatory and inhibitory classes. A) Plot showing the correlation between neuronal subclass 562 

proportion (log10 scale on the x-axis) and subclass-specific divergence between human and 563 

marmoset for excitatory neurons in the MTG. A representative iteration from 100 independent 564 

down-samplings is shown. The Spearman’s rho and p-value shown are the median across 100 565 

independent down-samplings (see Methods for details). The line and shaded region are the line 566 

of best fit from a linear regression and 95% confidence interval respectively. B) Same as in (A) 567 

but for the DLPFC data. C) Same as in (A) but for the M1 data. D) Same as in (A) but for 568 

inhibitory neurons. E) Same as in (B) but for inhibitory neurons. F) Same as in (C) but for 569 

inhibitory neurons. 570 

  571 
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 572 

Figure 3: More common neuronal cell types evolve more slowly than rarer types at the 573 

subtype level. A) Plot showing the correlation between neuronal subtype proportion (log10 574 

scale on the x-axis) and subtype-specific divergence between human and marmoset in the 575 

MTG. A representative iteration from 100 independent down-samplings is shown. The 576 

Spearman’s rho and p-value shown are the median across 100 independent down-samplings 577 

(see Methods for details). The line and shaded region are the line of best fit from a linear 578 

regression and 95% confidence interval respectively. B) Same as in (A) but for the DLPFC data. 579 

C) Same as in (A) but for the M1 data. D) Same as in (A) but for excitatory neurons. E) Same as 580 

in (B) but for excitatory neurons. F) Same as in (C) but for excitatory neurons. G) Same as in (A) 581 

but for inhibitory neurons. H) Same as in (B) but for inhibitory neurons. I) Same as in (C) but for 582 

inhibitory neurons. 583 
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Figure 4: More highly expressed, cell type-specific genes drive the negative correlation 585 

between cell type proportion and evolutionary divergence. A) Left: Plot showing the 586 

correlation between neuronal subtype proportion (log10 scale on the x-axis) and subtype-specific 587 

divergence for highly expressed genes between human and marmoset in the MTG. A 588 

representative iteration from 100 independent down-samplings is shown. The Spearman’s rho 589 

and p-value shown are the median across 100 independent down-samplings (see methods for 590 

details). The line and shaded region are the line of best fit from a linear regression and 95% 591 

confidence interval respectively. Right: Same as the left but for lowly expressed genes. B) Left: 592 

Same as in (A) but for genes with more cell type-specific expression. Right: Same as left but for 593 

genes with less cell type-specific expression. C) Same as in (B) but controlling for expression 594 

level (see Methods). D) Same as in (A) but controlling for cell type-specificity of expression (see 595 

Methods).  596 

  597 
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 598 

Figure 5: Accelerated evolution of L2/3 IT neurons in the human lineage. A) Plot showing 599 

the correlation between neuronal subclass proportion (log10 scale on the x-axis) and subclass-600 

specific divergence on the chimpanzee branch in the MTG. Chimpanzee branch divergence was 601 

computed for each of 100 down-samplings and the mean across those down-samplings is 602 

shown. The line and shaded region are the line of best fit from a linear regression and 95% 603 

confidence interval respectively. Teal points indicate L2-5 IT neurons. B) Same as in (A) but for 604 
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human branch divergence. Yellow points indicate L2-5 IT neurons. C) Barplot showing the 605 

human branch divergence divided by the chimpanzee branch divergence for each subclass. D) 606 

Plot showing the correlation between neuronal subclass proportion (log10 scale on the x-axis) 607 

and subclass-specific interindividual variation across DLPFC samples from 25 human 608 

individuals. A representative iteration from 100 independent down-samplings is shown. The 609 

Spearman’s rho and p-value shown are the median across 100 independent down-samplings 610 

(see Methods for details). The line and shaded region are the line of best fit from a linear 611 

regression and 95% confidence interval respectively. E) Barplot showing the human branch 612 

divergence divided by the within-human variability for each subclass. F) Conceptual model for 613 

accelerated evolution of L2/3 IT neurons in the human lineage. 614 

  615 
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 616 

Figure 6: Positive selection for down-regulation of ASD-linked genes in the human 617 

lineage. A) Volcano plot showing the log2 fold-enrichment for down-regulation in humans (x-618 

axis) and the -log10 binomial p-value (y-axis). SFARI high-confidence ASD-linked genes are 619 

shown in blue, all other categories of genes (taken from the Human Phenotype Onotology) are 620 

shown in grey. Data is from MTG L2/3 IT neurons. B) Barplot showing the number of high-621 

confidence ASD-linked genes that are up-regulated vs. down-regulated in human relative to 622 

chimpanzee in MTG L6 IT Car3+ neurons. C) Plot showing the fold-enrichment for down-623 

regulation in human MTG (x-axis) and the -log10 binomial FDR (y-axis). Subclasses with FDR < 624 
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0.05 are shown in magenta; only subclasses with at least 500 human vs. chimpanzee 625 

differentially expressed genes in each direction are shown. D) Barplot showing the number of 626 

high-confidence ASD-linked genes that are up-regulated vs. down-regulated in human relative 627 

to chimp in MTG L2/3 IT neurons. E) Barplot showing the number of differentially expressed 628 

ASD-linked genes with higher allele-specific expression from the human allele (red) and higher 629 

expression from the chimpanzee allele (blue) in cortical organoids. ** indicates binomial p < 630 

0.01. F) Barplot showing the number of differentially expressed ASD-linked genes with higher 631 

allele-specific expression from the human allele (red) and higher expression from the 632 

chimpanzee allele (blue) in day 100 cortical organoids for human-derived and chimpanzee-633 

derived genes separately. ** indicates binomial p < 0.01. G) Plot showing the log2 allele-specific 634 

expression ratios of differentially expressed, human-derived, ASD-linked genes in day 100 635 

cortical organoids. H) Left: Expression of DLG4 in MTG L2/3 IT neurons. Right: Predicted 636 

expression of DLG4 if one copy of the gene were non-functional. I) Conceptual model for how 637 

positive selection for down-regulation of ASD-linked genes led to higher likelihood of ASD in 638 

humans compared to chimpanzees.  639 

  640 
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Methods 641 

 642 

Quantifying cell type-specific gene expression divergence between species 643 

 644 

We analyzed three main datasets in this study, which we refer to by the cortical area sampled 645 

(MTG, DLPFC, M1). These were the only studies meeting both of our inclusion criteria: multiple 646 

species profiled in the same study using the same snRNA-seq protocols for each species within 647 

a study, and at least 10 orthologous cell types having 250 or more cells per species. The 648 

following are examples of studies that did not meet these inclusion criteria:  649 

• A multi-species study of the retina used different protocols for different species and not all 650 

species were sampled as part of the same original study. For example, different antibodies 651 

were used to enrich for subpopulations of cells in different species and some species did not 652 

have a sufficient number of cells profiled without enrichment to accurately estimate cell type 653 

proportions99.  654 

• A multi-species study of substantia nigra dopaminergic neurons did not have a sufficient 655 

number of cells profiled per species94.  656 

• A multi-species study of the lateral geniculate nucleus did not profile enough cells per 657 

species and their dissection scheme was incompatible with estimating neuronal cell type 658 

proportions95.  659 

 660 

All statistical tests and analyses were performed in python using scipy v1.10.1100 except for the 661 

DESeq2 analysis. For the M1 and MTG data, we converted from RDS files to h5 files using 662 

Seurat and Seurat Disk101. We conducted all analyses within each dataset to avoid batch effects 663 

from comparing across datasets. We used the cell type annotations and counts matrices directly 664 

from the study that first reported the dataset in conjunction with scanpy v1.7.2102. The procedure 665 
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outlined below was performed 100 times independently on each dataset unless otherwise 666 

noted. To quantify cell type-specific expression divergence without confounding with cell type 667 

proportion, we first down-sampled the number of cells in each cell type so that it was equal 668 

across all cell types and species. We down-sampled without replacement to 250 cells at the 669 

subclass level and 50 cells at the subtype level for the main analysis presented in the text. Only 670 

subclasses and subtypes with at least this many cells were included in downstream analysis. 671 

We then restricted to 5-way one-to-one protein-coding non-mitochondrial orthologs (downloaded 672 

from ensembl biomart for hg38)103 between human, chimpanzee, gorilla, rhesus macaque, and 673 

marmoset for the MTG and DLPFC data and 3-way one-to-one orthologs for human, marmoset, 674 

and mouse for the M1 dataset. We then summed expression across all cells within a cell type to 675 

create a pseudobulked expression profile for that cell type. 676 

 677 

For each possible pairwise comparison between species, we down-sampled the total counts in 678 

each cell type so that it was equal across all cell types for both species in the comparison. We 679 

then computed counts per million (CPM) in each cell type. After computing CPM, we filtered out 680 

genes with (1) fewer than 25 counts in both species or (2) fewer than 1 CPM in both species per 681 

cell type. As a result, if a gene passed the filtering criteria in one cell type but not another it 682 

would be included only for the cell type in which it passed the filtering criteria. We then 683 

computed the log2(CPM) and used the Spearman correlation distance to measure the gene 684 

expression divergence between species in each cell type.  685 

 686 

Notably, this process involved several analysis decisions that could affect our results. To test 687 

how robust our results were to these choices, we tested all combinations of the following: 688 

 689 

1. Down-sampling to 50, 100, 250, or 500 cells. 690 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2025. ; https://doi.org/10.1101/2024.08.02.606407doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606407
http://creativecommons.org/licenses/by-nc/4.0/


2. Filtering genes with fewer than 5, 10, 25, or 50 counts. 691 

3. Filtering genes with fewer than 1 or 5 CPM. 692 

4. Using log2(CPM) or not log transforming. 693 

5. Using the Spearman correlation distance, Pearson correlation distance, Euclidean 694 

distance, or L1 distance metrics.  695 

 696 

In general, our results were robust to any combination of these parameters (Supplemental 697 

Tables). When stratifying, we only used a subset of these combinations due to the greater 698 

number of computations required.  699 

 700 

Computing cell type proportions and correlation with gene expression divergence 701 

 702 

All three datasets were generated with single-nucleus RNA-sequencing (snRNA-seq) and so 703 

likely accurately represent the true proportion of neuronal cell types in the neocortex104. To 704 

compute cell type proportions, we restricted to neuronal cells with greater than or equal to the 705 

number of cells we down-sampled to. We then computed cell type proportion separately for 706 

each species by dividing the number of cells of each type by the total number of cells profiled. 707 

For each interspecies comparison, we averaged the cell type proportion across both species. 708 

We then computed the Spearman correlation between the averaged cell type proportions and 709 

cell type-specific gene expression divergence computed as described above. As we did this 710 

across 100 independent down-samplings (numbered 1 to 100), we reported the median 711 

Spearman’s rho and p-value throughout the text and figures. If there was an individual down-712 

sampling iteration that had the median Spearman’s rho and p-value, we made the scatterplots 713 

shown in Figures 1-4 using the first such iteration. If no iteration had the median rho and p-714 

value, we showed the iteration closest to the median with the greatest number of iterations that 715 
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had that rho and p-value. For example, if 22 iterations resulted in rho = -0.5 and 19 iterations 716 

resulted in rho = -0.6, both of which were closest to the median of -0.55, then an iteration with -717 

0.5 would be shown. If there was still a tie after this process, we showed the iteration with the 718 

lowest number. Because the Spearman correlation is a nonparametric rank-based test, it is 719 

unaffected by any rank-preserving transformation of the data; therefore our choice to show 720 

scatter plots with log-transformed cell type proportions was for visualization only and had no 721 

effect on the results. 722 

 723 

To estimate divergence along the human branch, we used the formula: 724 

𝐻𝐶 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 + 𝐻𝐺 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 − 𝐶𝐺 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

2
 725 

Here, HC stands for human-chimp, HG stands for human-gorilla, and CG stands for chimp-726 

gorilla. 727 

 728 

Similarly, to estimate divergence along the chimp branch, we used the formula: 729 

𝐻𝐶 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 + 𝐶𝐺 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 − 𝐻𝐺 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

2
 730 

 731 

Stratifying by expression level, cell type-specificity of expression, and constraint on 732 

expression 733 

 734 

To stratify by expression level, we ranked genes by the average CPM between the two species 735 

being compared for each cell type separately. We then assigned the top third of genes with the 736 

highest expression to the highly expressed bin, the next third to the moderately expressed bin, 737 

and the remaining third to the lowly expressed bin. Whenever we stratified by expression level 738 

or another metric, we used the Euclidean distance to measure gene expression divergence 739 
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because the limited dynamic range of expression for the moderately and lowly expressed bins 740 

led to unrealistically high correlation distances. Similarly, we ranked genes by Tau62, a measure 741 

of how cell type-specifically a gene is expressed, and split those genes into three bins. We 742 

computed Tau separately for both species across all subclasses or subtypes with a sufficient 743 

number of cells and then computed the average value for each gene. For constraint on 744 

expression, we considered all genes with heterozygous fitness effect61 shet > 0.1 to be highly 745 

constrained, genes with shet between 0.1 and 0.01 as moderately constrained, and the 746 

remaining genes with shet < 0.01 to be lowly constrained. Because there was a different number 747 

of genes in each bin in this case, we down-sampled genes to reach an equal number in each 748 

bin. 749 

 750 

When controlling for expression level and stratifying by Tau, we compared the high bin with the 751 

moderate and low bins separately. To control for expression, we first computed the log2 fold-752 

change between all genes in the high bin and all genes in the moderate or low bin and restricted 753 

to pairs of genes with absolute log2 fold-change less than 0.05. We then split this list of gene 754 

pairs into those with a negative log2 fold-change, positive log2 fold-change, and zero log2 fold-755 

change, shuffled the list, and removed duplicate genes. We kept all gene pairs with a log2 fold-756 

change of zero and down-sampled the list of gene pairs with positive or negative log2 fold-757 

change so that there were an equal number in each category. This resulted in a final set of 758 

genes in the high bin with matched expression to genes in the moderate or low bin which we 759 

used to compute cell type-specific gene expression divergence. When controlling for Tau, we 760 

applied the same strategy but required an absolute log2 fold-change less than 0.01. 761 

 762 

Comparing interindividual variability in gene expression and cell type proportion 763 

 764 
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To measure the within-human interindividual variation in cell type-specific gene expression, we 765 

used a uniformly processed dataset from the DLPFC63. We restricted to control samples from 766 

individuals of European ancestry with an age of death greater than or equal to 25. We selected 767 

thirteen neuronal subclasses for which the majority of individuals had greater than 50 nuclei 768 

profiled for further analysis and restricted to samples with greater than or equal to 50 nuclei for 769 

all thirteen subclasses. After this filtering process, 25 samples remained. Next, we down-770 

sampled to 50 nuclei from each subclass in each dataset and computed pseudobulked counts. 771 

We then down-sampled counts so that there was an equal number of total counts across all 772 

subclasses for each individual. For each subclass, we removed genes with average counts 773 

across all individuals less than 25 and computed CPM. We then computed the Spearman 774 

correlation distance between each sample and the mean expression profile across all samples 775 

and took the mean of those 25 correlation distances as our measure of cell type-specific gene 776 

expression variation within humans. We performed this procedure across 100 independent 777 

down-samplings. To estimate cell type proportions, we computed the cell type proportions for 778 

the thirteen subclasses and averaged them together. We then computed the Spearman 779 

correlation between the subclass-specific interindividual variation and the cell type proportions 780 

across the 100 down-samplings. We report the median Spearman’s rho and p-value across the 781 

100 down-samplings and show the first down-sampling with the median Spearman’s rho and p-782 

value in Figure 5D. 783 

 784 

Analysis of ASD- and SCZ-linked genes in snRNA-seq data  785 

 786 

We used the SFARI gene database of ASD-linked genes and considered any genes with a 787 

score of 1 to be “high-confidence” (233 total) and all genes regardless of score to be all ASD-788 

linked genes (1176 genes)66. As we are not aware of a similar resource for SCZ, we used the 31 789 
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genes with FDR < 0.1 in a recent rare variant association study for SCZ79. Throughout, FDRs 790 

were corrected for multiple tests with the Benajmini-Hochberg method. To identify differentially 791 

expressed (DE) genes and compute log2 fold-changes between species, we ran DESeq2105 on 792 

the subclass-level pseudobulked counts and used apeglm106 to shrink the log2 fold-changes. To 793 

test for a bias toward lower expression of ASD- and SCZ-linked genes in each cell type, we 794 

restricted to genes with FDR < 0.05 in the human-chimpanzee comparison and use the binomial 795 

test comparing the number of genes with negative log2 fold-change (i.e. higher expression in 796 

chimpanzee) to the number of genes with positive log2 fold-change. We used the frequency of 797 

negative log2 fold-changes among all genes with FDR < 0.05 as the background probability in 798 

the binomial test. We repeated this for both high-confidence and all ASD-linked genes.  799 

 800 

To determine whether the higher expression in chimpanzees relative to human was more likely 801 

due to changes on the chimpanzee branch or the human branch, we first filtered to only high-802 

confidence ASD-linked genes that were differentially expressed between chimpanzees and 803 

gorillas in L2/3 IT neurons. Genes were assigned as having a significant human-derived or 804 

chimpanzee-derived expression change in the MTG dataset by comparison with the human-805 

gorilla and chimpanzee-gorilla log2 fold-changes. First, if the absolute human-gorilla and 806 

chimpanzee-gorilla log2 fold-change were both greater than the absolute human-chimpanzee 807 

log2 fold-change, that gene was considered ambiguous. After removing ambiguous genes, a 808 

gene was considered as having a human-derived expression change if the absolute human-809 

gorilla log2 fold-change was greater than the absolute human-chimpanzee log2 fold-change and 810 

vice versa for chimpanzee-derived. To generate Supplemental table 5, we used strict criteria to 811 

call genes as having a human-specific gene expression change in the MTG data, requiring that 812 

a gene be differentially expressed (i.e. FDR < 0.05) for each human-NHP comparison with the 813 

same direction of differential expression. We then added the SFARI score and whether a gene 814 
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is considered syndromic and only include genes that are differentially expressed (FDR < 0.05) 815 

between human and chimpanzee. 816 

 817 

Analysis of ASD-linked genes in human-chimpanzee hybrid cortical organoid data 818 

 819 

We used the previously described dataset from human-chimpanzee cortical organoids, 820 

reprocessed as previously described89. Briefly, reads were aligned to the human (hg38) and 821 

chimpanzee (PanTro6) genomes with STAR and corrected for mapping bias using Hornet107. 822 

Reads were assigned to the human or chimpanzee allele using a set of high-confidence human-823 

chimp single nucleotide differences and collapsed to counts per gene with ASEr. DESeq2105 824 

was used to identify genes with significant ASE with the hybrid line that each sample was from 825 

used as a covariate. DESeq2105 and apeglm106 were used to compute log2 fold-changes. For the 826 

below analyses, we used the chimpanzee-aligned data, which has a very slight bias toward 827 

higher expression from the human allele, to ensure that our analyses were conservative. 828 

 829 

To test for a significant bias toward down or up-regulation from the human allele for ASD- or 830 

SCZ-linked genes, we restricted to genes with FDR < 0.05 in the cortical organoid data and 831 

intersected those genes with the list of ASD- or SCZ-linked genes. We then used the binomial 832 

test comparing the number of genes with negative log2 fold-change (i.e. higher expression in 833 

chimpanzee) to the number of genes with positive log2 fold-change. We used the frequency of 834 

negative log2 fold-changes among all genes with FDR < 0.05 as the background probability in 835 

the binomial test. We repeated this for both high-confidence and all ASD-linked genes. To 836 

investigate whether these cis-regulatory changes likely occurred in the human or chimpanzee 837 

lineage, we used the assignments as human- or chimpanzee-derived from L2/3 IT neurons in 838 

the MTG dataset described above. For genes that had matching human-chimpanzee log2 fold-839 
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change sign in both the MTG and cortical organoid datasets, we created a 2x2 table of 840 

human/chimp-derived and down/up-regulated from the human allele and applied Fisher’s exact 841 

test.  842 

 843 

Analysis of constraint on ASD-linked genes in humans and chimpanzees 844 

 845 

We used previously published dN/dS estimates73 and restricted only to genes with at least one 846 

synonymous and nonsynonymous difference on both the human and chimpanzee branches. We 847 

compared dN/dS values for ASD-linked genes with a paired t-test. To compute the number of 848 

genetic differences within 5 kilobases of the transcription start site (TSS) for each lineage, we 849 

used our previously described set of high-confidence human-chimpanzee single nucleotide 850 

genetic differences89. Briefly, this was created by identifying all single nucleotide differences 851 

between PanTro6 and hg38 and the filtering out sites that were not homozygous for the 852 

reference allele in 3 humans and 3 chimpanzees. We then intersected this with a previously 853 

described list of human-chimpanzee orthologous TSS expanded by 2.5 kilobases on either side 854 

and restricted to only TSS for ASD-linked genes90. To correct for the slightly larger number of 855 

human-derived sites across all genes, we down-sampled the human-derived variants near the 856 

TSS of ASD-linked genes, keeping a fraction of sites equal to the total number of chimp-derived 857 

genetic differences divided by the total number of human-derived genetic differences. We then 858 

used a paired t-test to compare the two distributions. 859 

 860 

To compare the within-species variance for humans and chimpanzees in expression of ASD-861 

linked genes, we computed the variance in pseudobulked CPM from L2/3 IT neurons across 862 

individuals in the DLPFC and MTG separately. As the mean expression level and batch effects 863 

can have a major impact on expression variance, we normalized the variance to the variance of 864 
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the 100 genes with closest mean expression to each ASD-linked gene. To do this, we computed 865 

the fraction of those 100 genes with smaller variance than the focal ASD-linked gene in each 866 

species and dataset separately. We then compared the values in human and chimpanzee with a 867 

paired t-test.  868 

 869 

Comparing different phenotypes and gene categories to ASD-linked genes 870 

 871 

To compare down-regulation of high-confidence ASD-linked genes to genes associated with 872 

other phenotypes, we used the human phenotype ontology (HPO) restricting to phenotypes with 873 

at least 100 genes. We tested all these gene sets in addition to the high-confidence ASD-linked 874 

genes and computed fold-enrichment as described above for ASD-linked genes. We controlled 875 

for gene expression as described in the “Stratifying by expression level, cell type-specificity of 876 

expression, and constraint on expression” section, filtering out all gene pairs with an absolute 877 

log fold-change greater than 0.1.  878 

 879 

To subset ASD-linked genes, we used all genes present in the SynGo database108 as our list of 880 

synaptic genes, all genes classified as "1 Monomer or homomultimer", "2 Obligate heteromer", 881 

"3 Low specificity DNA-binding protein" from Lambert et al.109 as our list of transcription factors 882 

and chromatin remodelers, and all genes with pLI > 0.9 from gnomad version 4.174 as our list of 883 

haploinsufficient genes. We intersected these with the set of ASD-linked genes with these lists 884 

and removed all ASD-linked genes from those lists to define genes as “ASD-linked and in a 885 

category” or “ASD-linked and not in a category” respectively. We also removed genes in a 886 

category from the list of ASD-linked genes to define the list of genes that are ASD-linked and, 887 

for example, not synaptic. When working with the MTG data, we always subsequently restricted 888 

to high-confidence ASD-linked genes. With these categories in hand, we then computed the 889 

proportion of genes in each category that are down-regulated. We used the binomtest function 890 
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from scipy with p set to the proportion of genes in a category not linked to ASD that are down-891 

regulated to test whether ASD-linked genes within a particular category were more down-892 

regulated than genes in the category that are not linked to ASD.  893 

 894 

Analysis of postsynaptic proteomics data 895 

 896 

We plotted PSD-95 protein abundances from the supplemental materials of Wang et al77. We 897 

used the t-test to compare levels between species. 898 

  899 
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