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Highlights 26 
• Previous studies primarily investigated age-specific networks in infants, with 27 

limited focus on how well adult networks describe infant functional connectivity 28 
(FC). 29 

• Our analysis identified a subset of areas in infants showing adult-like network 30 
organization, where within-network FC shows less age-related variation and 31 
higher scan-to-scan reliability. 32 

• These areas are positioned near locations with low variability in functional 33 
network identity in adults, indicating a potential link between developmental 34 
sequence and interindividual variability in functional network organization. 35 

 36 
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Abstract  40 

The human cerebral cortex contains groups of areas that support sensory, motor, 41 
cognitive, and affective functions, often categorized into functional networks. These 42 
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networks show stronger internal and weaker external functional connectivity (FC), with 43 
FC profiles more similar within the same network. Previous studies have shown these 44 
networks develop from nascent forms before birth to their mature, adult-like structures in 45 
childhood. However, these analyses often rely on adult functional network definitions. 46 
This study assesses the potential misidentification of infant functional networks when 47 
using adult models and explores the consequences and possible solutions to this 48 
problem. 49 

Our findings suggest that although adult networks only marginally describe infant 50 
FC organization better than chance, misidentification is primarily driven by specific 51 
areas. Restricting functional networks to areas with adult-like network clustering 52 
revealed consistent within-network FC across scans and throughout development. 53 
These areas are also near locations with low network identity variability. Our results 54 
highlight the implications of using adult networks for infants and offer guidance for 55 
selecting and utilizing functional network models based on research questions and 56 
scenarios. 57 

 58 
1. Introduction  59 

The human cerebral cortex comprises specialized, large-scale, functional 60 
networks (Power et al., 2011; Yeo et al., 2011), supporting sensory, motor, higher-61 
cognitive, and affective functions (Petersen & Sporns, 2015; Wig, 2017). These 62 
networks help segregate information processing across different sensory modalities and 63 
cognitive domains (Grayson & Fair, 2017; Petersen & Sporns, 2015). In adults, these 64 
networks consistently exhibit similar spatial topographies across various acquisition 65 
paradigms (task and resting states), and individuals (Gratton et al., 2018). They can 66 
also be disrupted by disease (Fornito et al., 2015; Fox & Greicius, 2010). Research 67 
indicates that functional networks develop from infancy through old age (Grayson & 68 
Fair, 2017; Sun et al., 2023; Wig, 2017), mirroring the progression of complex behavior 69 
functions (Grayson & Fair, 2017; Petersen & Sporns, 2015). Preliminary forms of adult 70 
functional networks are detectable in utero (Thomason et al., 2013; Turk et al., 2019). 71 
Robust, sometimes bilateral, segregated networks for somatomotor, primary auditory, 72 
primary visual, and extrastriate visual cortex are present in infants, whereas higher-73 
order networks appear less mature in early infancy (Eyre et al., 2021; Fransson et al., 74 
2007; Gao, Alcauter, Elton, et al., 2015, 2015; Moore et al., 2024; Myers et al., 2024; 75 
Smyser et al., 2010; Sylvester et al., 2022). By 1-2 years, the default mode network 76 
becomes more adult-like in some studies (Gao, Alcauter, Elton, et al., 2015; Gao, 77 
Alcauter, Smith, et al., 2015; Gao et al., 2009) but remains localized in others 78 
(Eggebrecht et al., 2017; Kardan et al., 2022; Marrus et al., 2018; F. Wang et al., 2023).  79 

Researchers analyzing infant neuroimaging data often face a dilemma in 80 
choosing an appropriate representation model. Some use the adult network models to 81 
describe the relationships between functional connectivity (FC) and behavioral 82 
phenotypes in infants (Nielsen et al., 2022; Rudolph et al., 2018; Tooley et al., 2024) or 83 
to compare infants and adults (Yates et al., 2023). This choice is sometimes justified by 84 
the need to enhance biological interpretability and facilitate communication using 85 
consistent terminology across different research groups. However, applying exact adult 86 
topography to define functional networks in infants is prone to inaccuracies and may 87 
cause the mixing of fMRI BOLD signals (Smith et al., 2011) across different functional 88 
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networks, reducing statistical power. Additionally, differences in FC may stem from 89 
variations in network topography or identity (Bijsterbosch et al., 2018, 2019). Prior-90 
based precision functional mapping using an adult network atlas is also commonly 91 
employed in pediatric cohorts (Hermosillo et al., 2024; Moore et al., 2024; Sun et al., 92 
2023). However, these methods assume that infant network organization closely 93 
resembles that of adults, which may not be valid. 94 

An alternative approach involves deriving data-driven putative functional 95 
networks specific to each developmental stage (Eggebrecht et al., 2017; Kardan et al., 96 
2022; Marrus et al., 2018; Tu et al., 2024; Wheelock et al., 2019). This method could 97 
potentially address the issue of poor FC representation within functional networks and 98 
improve reproducibility. However, the utility and interpretability of these putative 99 
functional networks are less clear, as these putative functional networks have not been 100 
validated through task activation studies. Ultimately, the choice of network model should 101 
depend on the research goal. It is also crucial to understand the extent to which adult 102 
network topography fits infant data. If the adult functional network topography differs 103 
significantly from that of infants, using adult functional networks in infant studies could 104 
lead to low reliability (Marek et al., 2022). Here, we aim to investigate this issue further 105 
and examine the similarities and differences between adult and infant networks in 106 
describing the modular structure of FC. 107 

Converging evidence from various modalities indicates that the human cortex 108 
develops non-uniformly across different areas. Primary sensory and motor cortex areas 109 
mature earlier than higher-order association cortex areas (Ahmad et al., 2023; Flechsig, 110 
1901; Garcia et al., 2018; Grayson & Fair, 2017; Hill et al., 2010; Sydnor et al., 2021; 111 
Truzzi & Cusack, 2023). Early maturation in some areas results in limited future 112 
plasticity (Hill et al., 2010), which may lead to lower interindividual variability and 113 
reduced susceptibility to environmental influences (Gao et al., 2017) and 114 
psychopathological factors (Sydnor et al., 2021). We hypothesize that some areas 115 
would exhibit early signs of adult-like organization, especially in sensorimotor areas 116 
(Gao, Alcauter, Elton, et al., 2015; Sydnor et al., 2021). Additionally, we hypothesize 117 
that areas with adult-like organization would overlap with regions showing low 118 
interindividual variability in functional network assignments (Dworetsky et al., 2021; 119 
Gordon, Laumann, Adeyemo, et al., 2017; Gratton et al., 2018; Hermosillo et al., 2024; 120 
Kong et al., 2019; Langs et al., 2016; Seitzman et al., 2019). 121 

In the present work, we used fMRI datasets from two groups: 120 adults (aged 122 
19-32 years) and 181 typically developing infants (aged 8-60 months). We aimed to 123 
quantify how well the adult and infant networks describe the modular structure in both 124 
adult and infant FC. We also examined if adult networks fit some areas better than 125 
others by mapping the spatial distribution of this fit. We identified a subset of areas 126 
where infant FC was more similar within their assigned adult networks than within 127 
alternative adult networks. We demonstrate the consequences of network model choice 128 
by comparing the relationship between chronological age and within-network FC in our 129 
area subset to that of all areas. Lastly, we compared the spatial distribution of our area 130 
subset to locations with low variance in functional network identity across individuals 131 
and demonstrate their proximity to each other. Our findings will help researchers 132 
working with infant neuroimaging data understand the pros and cons of using adult and 133 
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infant functional network models, interpret current results in the literature, and select 134 
appropriate models for future research.  135 

 136 
2. Materials and Methods  137 
 138 
2.1. Data Collection  139 
 140 
2.1.1. Washington University 120 (WU 120) 141 

This dataset has been previously described in detail (Power et al., 2017). Briefly, 142 
data were collected from 120 healthy young adult subjects during relaxed eyes–open 143 
fixation (60 females, mean age = 25 years, age range = 19–32 years). All subjects were 144 
native speakers of English and right-handed. Subjects were recruited from the 145 
Washington University community and were screened with a self-report questionnaire to 146 
ensure that they had no current or previous history of neurological or psychiatric 147 
diagnosis, as well as no head injuries resulting in a loss of consciousness for more than 148 
5 minutes. Informed consent was obtained from all subjects. The study was approved 149 
by the Washington University School of Medicine Human Studies Committee and 150 
Institutional Review Board. 151 

Structural and functional MRI data were obtained with a Siemens MAGNETOM 152 
Trio Tim 3.0-T Scanner (Erlangen, Germany) and a Siemens 12-channel Head Matrix 153 
Coil. A T1-weighted sagittal magnetization-prepared rapid acquisition gradient-echo 154 
(MP-RAGE) structural image was obtained [time echo (TE) = 3.08 ms, time repetition, 155 
TR (partition) = 2.4 s, time to inversion (TI) = 1000 ms, flip angle = 8°, 176 slices with 1 156 
× 1 × 1 mm voxels]. An auto-align pulse sequence protocol provided in the Siemens 157 
software was used to align the acquisition slices of the functional scans parallel to the 158 
anterior commissure–posterior commissure plane of the MP-RAGE and centered on the 159 
brain. This plane is parallel to the slices in the Talairach atlas (Talairach & Tournoux, 160 
1988). 161 

During functional MRI data acquisition, subjects were instructed to relax while 162 
fixating on a black crosshair that was presented against a white background. Functional 163 
imaging was performed using a BOLD contrast-sensitive gradient-echo echo-planar 164 
imaging (EPI) sequence (TE = 27 ms, flip angle = 90°, in-plane resolution = 4 × 4 mm). 165 
Whole-brain EPI volumes (MR frames) of 32 contiguous, 4-mm-thick axial slices were 166 
obtained every 2.5 s. A T2-weighted turbo spin-echo structural image (TE = 84 ms, TR 167 
= 6.8 s, 32 slices with 1 × 1 × 4 mm voxels) in the same anatomical planes as the BOLD 168 
images was also obtained to improve alignment to an atlas. Anterior→Posterior (AP) 169 
phase encoding was used for fMRI acquisition. The number of volumes collected from 170 
subjects ranged from 184 to 724 (mean = 336 frames, 14.0 min). 171 

 172 
2.1.2. Baby Connectome Project (BCP) 173 

 Full-term (gestational age of 37-42 weeks) infants free of any major pregnancy 174 
and delivery complications were recruited as part of the Baby Connectome Project 175 
(Howell et al., 2019). All procedures were approved by the University of North Carolina 176 
at Chapel Hill and the University of Minnesota Institutional Review Boards. Informed 177 
consent was obtained from the parents of all participants. In the final cohort used 178 
following fMRI data quality control (described below), we retained 313 fMRI sessions 179 
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from 181 individuals (95 females, 8-60 months, mean 19.1 months, and standard 180 
deviation 8.3 months) during natural sleep (Supplementary Figure 1A). The number of 181 
longitudinal points range from 1 to 6: 90 individuals with 1 time point, 60 individuals with 182 
2 time points, 24 individuals with 3 time points, 5 individuals with 4 time points, 1 183 
individual with 5 time points and 1 individual with 6 time points (Supplementary Figure 184 
1B). In a supplementary analysis, we used an additional 15 fMRI sessions collected 185 
while participants were watching a movie clip.  186 

All MRI images were acquired on a Siemens 3T Prisma scanner with a 32-187 
channel head coil at the University of Minnesota and the University of North Carolina at 188 
Chapel Hill during natural sleep without the use of sedating medications. T1-weighted 189 
(TR=2400 ms, TE=2.24 ms, 0.8 mm isotropic; flip angle = 8°), T2-weighted images 190 
(TR=3200 ms, TE=564 ms, 0.8 mm isotropic), spin echo field maps (SEFM) (TR=8000 191 
ms, TE=66 ms, 2 mm isotropic, MB=1), and fMRI data (TR=800 ms, TE=37 ms, 2 mm 192 
isotropic, MB=8) were collected. A mixture of Anterior→Posterior (AP) and 193 
Posterior→Anterior (PA) phase encoding directions was used for fMRI acquisition in 194 
each session, but they were concatenated into one time series. A subset of data had a 195 
720-ms TR (N = 95 out of 313 sessions). The number of low-motion volumes collected 196 
from subjects ranged from 840 to 2100 (mean = 1306 frames, 16.9 min).  197 
 198 
2.2. fMRI analysis 199 
 200 
2.2.1. MRI data preprocessing 201 

While both datasets were acquired on Siemens 3T scanners, acquisition 202 
parameters and preprocessing of the structural and functional MRI data were optimized 203 
for each specific cohort. For a detailed comparison of the acquisition, processing, and 204 
quality control procedures, please refer to Supplementary Table 1. 205 
 206 
2.2.1.1. MRI data preprocessing – WU120 207 

Functional images were first processed to reduce artifacts including (1) 208 
Correction of odd versus even slice intensity differences attributable to interleaved 209 
acquisition without gaps, (2) correction for head movement within and across runs, and 210 
(3) across-run intensity normalization to a whole-brain mode value of 1000. Atlas 211 
transformation of the functional data was computed for each individual using the MP-212 
RAGE scan. Each run was then resampled to an isotropic 3-mm atlas space (Talairach 213 
& Tournoux, 1988), combining movement correction and atlas transformation in a single 214 
cubic spline interpolation (Lancaster et al., 1995).  215 

Additional preprocessing steps were applied to the functional data to reduce the 216 
effect of high-motion frames. This was performed in two iterations. In the first iteration, 217 
the processing steps were (1) demeaning and detrending, (2), multiple regression 218 
including whole-brain, ventricular cerebrospinal fluid (CSF), and white matter signals, 219 
and motion regressors derived by Volterra expansion and (3) a band-pass filter (0.009 220 
Hz < f < 0.08 Hz). Following the initial FC preprocessing iteration, temporal masks were 221 
created to flag motion-contaminated frames. Motion-contaminated volumes were 222 
identified by framewise displacement (FD), defined as the squared sum of the motion 223 
vectors (Power et al., 2012). Volumes with FD > 0.2 mm and data segments lasting 224 
fewer than 5 contiguous volumes were censored. 225 
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The data were then reprocessed in a second iteration, incorporating the temporal 226 
masks described above. This reprocessing was identical to the initial processing stream 227 
but ignored censored data. Data were interpolated across censored frames using least 228 
squares spectral estimation (Power et al., 2014) of the values at censored frames, so 229 
that continuous data could be passed through the band-pass filter (0.009 Hz < f < 0.08 230 
Hz) without contaminating frames near high motion frames. Censored frames were 231 
ultimately ignored during functional connectivity matrix generation. 232 

Individual surfaces were generated from the structural images and the functional 233 
data was sampled to surface space (Glasser et al., 2013). First, following volumetric 234 
registration, anatomical surfaces for the left and right hemispheres were generated from 235 
each subject's MP-RAGE image using FreeSurfer's default recon-all processing pipeline 236 
(v5.0)(Fischl, 2012). This pipeline included brain extraction, segmentation, generation of 237 
white matter and pial surfaces, inflation of the surfaces to a sphere, and surface shape-238 
based spherical registration of the subject's “native” surface to the fsaverage surface. 239 
The fsaverage-registered left and right hemisphere surfaces were then brought into 240 
register with each other (Van Essen et al., 2012), resampled to a resolution of 164000 241 
vertices using Caret tools (Van Essen et al., 2001) and subsequently down-sampled to 242 
a 32492 vertex surface (32k fs_LR ). The BOLD volumes were sampled to each 243 
subject's individual “native” midthickness surface (generated as the average of the white 244 
and pial surfaces) using the ribbon-constrained sampling procedure available in 245 
Connectome Workbench (v0.84) and then deformed and resampled from the 246 
individual's “native” surface to the 32k fs_LR surface. Finally, the time courses were 247 
smoothed along the 32k fs_LR surface using a Gaussian smoothing kernel (σ = 2.55 248 
mm). 249 
 250 
2.2.1.2. MRI data preprocessing – BCP 251 

MRI data were processed using the DCAN-Labs infant-abcd-bids-pipeline 252 
(v0.0.22) largely following steps described previously (Feczko et al., 2021). Structural 253 
MRI data underwent HCP-style processing (Feczko et al., 2021; Glasser et al., 2013), 254 
including ANTS N4 bias correction, ANTS denoising, T1/T2 distortion 255 
correction/registration, and finally ANTS SyN algorithm deformation alignment to an 256 
infant MNI template. In addition, a refined brain mask was generated from data that was 257 
segmented using in-house age-specific templates via Joint Label Fusion (JLF). The 258 
toddler-specific mask and segmentation were substituted into the FreeSurfer (Fischl, 259 
2012) pipeline and used to refine the white matter segmentation and guide the 260 
FreeSurfer surface delineation. The native surface data were then deformed to the 32k 261 
fs_LR template via a spherical registration.  262 

A scout image (frame 16 in each run) was selected from the fMRI time series for 263 
functional MRI preprocessing. The scout was distortion-corrected via spin-echo field 264 
maps, served as the reference for motion correction via rigid-body realignment (Feczko 265 
et al., 2021), and was registered to the native T1. Across-run intensity normalization to a 266 
whole-brain mode value of 10,000 was then performed. These steps were combined in 267 
a single resampling with the MNI template transformation from the previous step, such 268 
that all fMRI frames were registered to the infant MNI template. Manual inspection of 269 
image quality of structural and functional data was conducted to exclude sessions with 270 
bad data quality.  271 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2024. ; https://doi.org/10.1101/2024.07.31.606025doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606025
http://creativecommons.org/licenses/by-nc-nd/4.0/


To prepare the functional data for FC analysis, further processing steps were 272 
applied after sampling the BOLD data to the 32k fs_LR surface space using steps 273 
described in 2.2.1.1. First, functional data were demeaned and detrended in time. 274 
Denoising was then performed using a general linear model with regressors including 275 
signal and motion variables. Signal regressors included mean CIFTI gray-ordinate time 276 
series, Joint Label Fusion (JLF)-defined white matter, and JLF-defined CSF. Motion 277 
regressors included volume-based translational and rotational components and their 24-278 
parameter Volterra expansion. The movement of the head was measured by FD and an 279 
age-specific respiratory notch filter (0.28-0.48 Hz) was applied to the FD traces and 280 
motion parameter estimates to mitigate the effects of factitious head motion due to 281 
infant respiration (Fair, 2020; Kaplan et al., 2022). Frames were censored during 282 
demeaning/detrending if their post-respiratory filtering FD value exceeded 0.3 mm to 283 
generate the denoised beta values in the general linear model. Bandpass filtering was 284 
applied using a second-order Butterworth filter (0.008–0.09 Hz). To preserve the 285 
temporal sequence and avoid aliasing caused by missing time points during bandpass 286 
filtering, interpolation was used to replace missing frames, and residuals were acquired 287 
from the denoising general linear model. In addition, zero-padding was applied to both 288 
ends of the BOLD data before filtering to minimize the distortions in the edges of the 289 
time series. The data were originally minimally spatially smoothed with a geodesic 2D 290 
Gaussian kernel (σ = 0.85 mm). A further smoothing with a geodesic 2D Gaussian 291 
kernel (σ = 2.40 mm) was applied to give a final effective smoothing of σ = 2.55 mm to 292 
match the smoothing used in the adult dataset (WU 120). Finally, the time series were 293 
concatenated across all complete and partially completed scan runs with good data 294 
quality. The first 7 frames from each run, frames with > 0.2 mm FD post-respiratory 295 
filtering (Kaplan et al., 2022), and outlier frames whose across-vertex standard deviation 296 
was more than 3 median absolute deviations from the median of the low FD frames 297 
were censored and ignored for functional connectivity matrix construction. 298 
 299 
2.2.2. Functional Connectivity Matrix Construction 300 

The preprocessed BOLD time series data of each session were parcellated into 301 
333 non-overlapping areas using the Gordon parcellation (Gordon et al., 2016). This 302 
choice of parcellation was justified by recent work by our group that demonstrated that 303 
the Gordon parcellation had the best fit among a set of adult parcellations and 304 
performed comparably to most available infant parcellations in data from infants aged 305 
around 8-30 months (Tu et al., 2024). After that, a total number of frames equivalent to 306 
7.2 minutes of data (560 frames for TR = 0.72 and 600 frames for TR = 0.8) were 307 
randomly sampled from the full censored time series in each fMRI session. Pearson’s 308 
correlation between the parcellated time series was computed to create a 333 x 333 309 
functional connectivity (FC) matrix. This matrix was then Fisher-Z-transformed. The 310 
group-average FC matrix was calculated as the mean FC across fMRI sessions.  311 
 312 
2.3. Infant and Adult Functional Network Schemes 313 
 We used the Gordon network assignments (Gordon et al., 2016) for “Adult 314 
Networks” (Figure 1A) and Kardan network assignments (Kardan et al., 2022) for “Infant 315 
Networks” (Figure 1B). These network assignments were derived from group-average 316 
adult and infant FC on the 333 areas using an Infomap community detection algorithm 317 
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(Rosvall & Bergstrom, 2010) optimized for identifying networks in FC data (Power et al., 318 
2011). Among the 333 areas, some were originally assigned in communities with fewer 319 
than 5 areas and considered unassigned (named “None” and “Unspecified”). These 320 
areas commonly fall under locations subjected to the biggest susceptibility artifact 321 
(Ojemann et al., 1997). We removed them from all analyses and had 286 areas left for 322 
the adult networks (“Gordon”) and 328 areas left for the infant networks (“Kardan”). 323 

The 12 Gordon networks include the auditory (Aud), cingulo-opercular (CON), 324 
parietal memory (PMN), default mode (DMN), dorsal attention (DAN), fronto-parietal 325 
(FPN), retrosplenial temporal (RTN), somatomotor hand (SMN hand), somatomotor 326 
mouth (SMN mouth), salience (Sal), ventral attention (VAN), and visual (Vis) networks. 327 
The 10 Kardan networks include somatomotor (SMN), temporal (Tem), posterior 328 
frontoparietal (pFPN), posterior default mode (pDMN), lateral visual (lVis), medial visual 329 
(mVis), dorsal attention (DAN), anterior fronto-parietal (aFPN), anterior default mode 330 
(aDMN).  331 
 332 
2.4. Functional Network Overlap  333 
 The overlap between a network in the Gordon networks and a network in the 334 
Kardan networks can be measured with the Dice coefficient, with 0 indicating no overlap 335 
and 1 indicating complete overlap. For this analysis, each network is represented with a 336 
333 x 1 vector with 1 for the areas in the network and 0 for the areas outside the 337 
network. 338 
 339 
2.5. Silhouette Index Calculation 340 
 Following prior procedures in the literature (Rousseeuw, 1987; Yeo et al., 2011), 341 
we calculated the silhouette index (SI) for each area with the correlation distance (i.e. 1-342 
Pearson’s correlation) in the FC profiles:  343 
 344 

𝑆𝐼 =
𝑏 − 𝑎

max	(𝑎, 𝑏)	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1) 345 

 346 
where b is the mean between-network correlation distance of the FC profiles, and a is 347 
the mean within-network correlation distance of the FC profiles. FC profiles here refer to 348 
the FC from each area to all other areas (i.e., one row in the FC matrix). 349 

Intuitively, the SI ranges from +1 to -1 with the sign indicating whether the area 350 
has a more similar FC profile to areas in its own network (+) or to areas in an alternative 351 
network (-). The magnitude indicates the confidence of this assignment, with a higher 352 
magnitude suggestive of strong confidence. The average SI for the FC in a network 353 
scheme was defined as the average SI across all areas. 354 

We also calculated the silhouette index with the average of all networks rather 355 
than just the alternative network in the Supplementary Materials. 356 

To obtain a confidence interval for the average SI across individual sessions, we 357 
used a bootstrap 95% confidence interval estimate in 1000 random draws of individual 358 
sessions from the full sample (N = 120 for WU120 and N = 313 for BCP) with 359 
replacement. The p-value for the average SI different from zero was calculated using 360 
the bootstrap distribution of the average SI. The p-value for the difference in the 361 
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average SI across two samples was calculated using the bootstrapped distribution of 362 
the difference in the average SI. Both assumed a two-tailed test. 363 
 364 
2.6. Identify the Subset of Areas with Similar Network Organization to the Gordon 365 
Networks in Infants 366 
 A positive SI indicates that the area has a more similar FC profile to areas in its 367 
own network. We obtained the subset of areas that had a similar network organization 368 
to other areas defined in the Gordon network scheme in infants by only retaining the 369 
areas with a positive SI in the group-average infant FC. We refer to this set of positive 370 
SI areas as our “area subset”.  371 
 372 
2.7. Distance Between High Consensus Regions of Interests (ROIs) and the 373 
“Gordon Subset” Areas 374 

To quantify the spatial distribution similarity between the locations of low 375 
interindividual variability and our area subset, we calculated the Euclidean distance 376 
between the high consensus cortical ROIs and the centers of those areas. We used 377 
published coordinates of 153 high consensus ROIs calculated previously by identifying 378 
locations that demonstrated consistent network assignment across a large majority (i.e. 379 
≥ 75%) of subjects in the Dartmouth dataset (N = 69 subjects, 56 female, average age 380 
20.2 years)(Gordon et al., 2016) when a template-matching procedure (Gordon, 381 
Laumann, Adeyemo, et al., 2017) was applied to identify individual network 382 
assignments (Dworetsky et al., 2021). The distances in mm were obtained from the ROI 383 
locations on a standard adult brain template (a.k.a. MNI coordinates). 384 
 For each of the “high consensus” ROIs, we found its distances to the nearest 385 
area within and outside our area subset. An average of this difference was recorded 386 
and named “distance difference”. A negative distance difference indicates that on 387 
average, the high consensus regions were closer to the areas within compared to 388 
outside our area subset. To account for the potential effect of differences in the number 389 
of areas within (N = 166) and outside (N = 120) our area subset, we repeated the 390 
analysis but with the labels of within and outside area subset randomly assigned 1000 391 
times to obtain a null distribution.   392 
 393 
2.8. Moving Average Analysis Across Age 394 
 To examine the FC fit to different network schemes across infancy, we used a 395 
moving average analysis across age. For this analysis, we limited our data to the 281 396 
sessions collected at the age of 8-27 months because the data became very sparse and 397 
less evenly distributed after 27 months (Supplementary Figure 1A). We first sorted the 398 
fMRI sessions by age at scan. Sessions were arranged chronologically by age, and FC 399 
averages were computed for consecutive windows of 20 sessions, with each window 400 
representing the mean age within it. This window was then shifted by one session at a 401 
time until all 281 sessions were accounted for. Subsequently, we calculated the average 402 
similarity index (SI) using the same method. 403 

 404 
2.9. Intraclass Correlation Coefficient 405 

To assess the differences in the reliability of within-network edges for using the 406 
Gordon networks with our area subset versus all areas. We quantified the test-retest 407 
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reliability of FC with the intraclass correlation coefficient (ICC). We assessed the 408 
consistency among measurements under the fixed levels of the session factor (Tozzi et 409 
al., 2020), referred to as ICC ‘C-1’ (McGraw & Wong, 1996) or ICC (3,1) (Shrout & 410 
Fleiss, 1979). 411 

For this analysis, we re-calculated the FC matrices for each individual with two 412 
non-overlapping time windows of data from each session. “Test” and “re-test” were 413 
defined as the first 6 min and last 6 min of low-motion data, separated by at least 1.2 414 
min low motion data in between to reduce the impact of temporal autocorrelation (i.e. 415 
total > 13.2 min low-motion data). Only 167 sessions had enough low-motion data for 416 
this analysis. First, the FC values in the upper triangle of each subject’s connectivity 417 
matrix were entered as rows in two large matrices (one matrix for “test” and another for 418 
“re-test”, one row per subject in each matrix). Then, the corresponding columns of these 419 
matrices were compared to obtain an ICC value for each edge. The mean and standard 420 
error of the mean of the ICCs within each of the Gordon networks were calculated for 421 
our area subset and all areas. 422 
 423 
3. Results 424 
 425 
3.1. Adult and Infant functional connectivity clustering was best described by the 426 
adult and infant network assignments respectively 427 

Adult networks (”Gordon”) (Figure 1A) and Infant networks (“Kardan”) (Figure 1B) 428 
assignments derived using data-driven methods demonstrate a moderate degree of 429 
agreement: Normalized Mutual Information (NMI) = 0.5 for the overlapping 281 areas 430 
after excluding the “None”/ “Unspecified” network in both adult and infant network 431 
assignments. The CON, pDMN, aDMN, SMN, mVis and lVis networks in the Kardan 432 
networks tend to have a large dice overlap with a single Gordon network, but Tem, 433 
DAN, pFPN, aFPN have a match to multiple Gordon networks (Supplementary Figure 2, 434 
network full names defined in section 2.3).   435 

Next, we asked how closely the network assignments matched the similarity of 436 
FC profiles within and between different networks and quantified it with the silhouette 437 
index (SI; Rousseeuw, 1987; Yeo et al., 2011). We used the average FC across 120 438 
adult sessions and the average FC across 313 infant sessions. We found that adult FC 439 
had a more modular organization (Figure 1C) when grouping into adult networks (Figure 440 
1A) than infant networks (Figure 1E). The average SI for areas assigned to adult 441 
networks in adult FC (0.333, 95% bootstrap CI = [0.3088, 0.3417], pbootsrap < 0.001) was 442 
much higher (pbootsrap < 0.001) than the average SI for areas assigned to infant networks 443 
in adult FC (0.009, 95% bootstrap CI = [-0.0015, 0.0168], pbootsrap = 0.042). In contrast, 444 
the opposite was observed for infant FC, with a higher average SI (pbootsrap < 0.001) for 445 
areas assigned to infant networks in infant FC (0.336, 95% bootstrap CI = [0.3280, 446 
0.3397], pbootsrap < 0.001; Figure 1F) than the average SI for areas assigned to adult 447 
networks in infant FC (0.049, 95% bootstrap CI = [0.0406,0.0560], pbootsrap < 0.001; 448 
Figure 1D). Furthermore, the results were also qualitatively validated across individual 449 
sessions (details in Supplementary Materials), with a much higher SI of adult networks 450 
than infant networks on adult FC (Cohen’s d = 1.215, p < 0.001) (Supplementary Figure 451 
3C), and a much higher SI of infant networks than adult networks on infant FC (Cohen’s 452 
d = 2.744, p < 0.001) (Supplementary Figure 4C). Taken together, the adult networks 453 
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better describe the modular organization in adult FC than infant FC, and the infant 454 
networks better describe the modular organization in infant FC than adult FC. However, 455 
the SI is comparable for adult FC and infant FC using the best network model, 456 
suggesting the presence of modular organization in both cohorts. We also repeated the 457 
same analysis for 15 infant sessions scanned while the participants were awake and 458 
watching movies and 14 infant sessions scanned during natural sleep with similar age 459 
range (Supplementary Figure 5). The difference in average SI between the adult 460 
(“Gordon”) networks and infant (“Kardan”) networks on the awake sessions was not 461 
significant (pbootsrap = 0.258, paired t-test on individual sessions = 0.71), unlike the 462 
difference in asleep sessions with matching age range (pbootsrap <0.001, paired t-test on 463 
individual sessions < 0.001). The average SI for areas assigned to adult networks in 464 
awake infant FC (0.174, 95% bootstrap CI = [0.1048, 0.1895], pbootsrap <0.001) was 465 
much higher (pbootsrap = 0.002) than that in sleeping infant FC (0.084, 95% bootstrap CI 466 
= [0.0355, 0.0962], pbootsrap = 0.001), but still lower (pbootsrap < 0.001) than that in adult 467 
FC. 468 

Notably, some areas tend to have a positive SI for areas assigned to adult 469 
networks regardless of the FC age group (Figure 1G & I). Since the spatial distribution 470 
of SI across sessions (Supplementary 3A-B & 4A-B) was relatively consistent, it is 471 
unlikely that the low SI magnitude in infants was purely driven by high interindividual 472 
variability.  473 

Because the Kardan networks were derived from a subset of BCP sessions used 474 
in the present analysis and this might inflate the SI in the infant FC data, we also 475 
replicated our analysis with networks derived from an independent 2-year-old dataset 476 
with similar acquisition and preprocessing protocols (Tu et al., 2024) (Supplementary 477 
Figure 6). The SI of the independently derived infant 2-yearl-old networks was lower 478 
than the Kardan networks. This may be partially attributed to the wider age range of the 479 
BCP data relative to the toddler data used to derive the 2-year networks. However, it 480 
may also suggest that the high average SI with Kardan networks is partially attributable 481 
to data leakage. However, importantly, the independently derived infant networks 482 
demonstrate significantly higher SI compared to Gordon adult networks when applied to 483 
infant FC (pbootsrap < 0.001 for the Tu-12networks and Tu-19networks). 484 
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 485 

 
Figure 1. Adult and Infant FC ordered by the adult and infant networks. A) 12 adult 
networks, B) 10 infant networks, C) average adult FC sorted by adult networks, D) average 
infant FC sorted by adult networks, E) average adult FC sorted by infant networks, F) 
average infant FC sorted by infant networks, G) SI of parcels with adult network assignments 
in adults, H) SI of parcels with adult network assignments in infants, I) SI of parcels with 
infant network assignments in adults, J) SI of parcels with infant network assignments in 
infants. Network abbreviations: auditory (Aud), cingulo-opercular (CON), parietal memory 
(PMN), default mode (DMN), dorsal attention (DAN), fronto-parietal (FPN), retrosplenial 
temporal (RTN), somatomotor hand (SMN hand), somatomotor mouth (SMN mouth), 
salience (Sal), and ventral attention (VAN), visual (Vis), somatomotor (SMN), temporal 
(Tem), posterior frontoparietal (pFPN), posterior default mode (pDMN), lateral visual (lVis), 
medial visual (mVis), anterior fronto-parietal (aFPN), anterior default mode (aDMN).  
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3.2. A subset of areas demonstrates adult-like network organization throughout 486 
development 487 
 An SI above zero for an area indicates that its FC profile is more similar to the FC 488 
profiles in areas from the same network than areas from any alternative network within 489 
a given network scheme (e.g., adult Gordon networks). Therefore, we selected the 490 
subset of areas with an SI above zero when the adult networks were applied to the 491 
infant FC (166 in total, Figure 2A, Supplementary Table 2). These areas fell into all 11 492 
out of the 12 Gordon networks (i.e., all except for PMN), with the whole RTN, SMN 493 
mouth, and Sal networks retained, and the remaining eight networks partially retained 494 
(Figure 2B). We validated that the areas with SI above zero are highly consistent across 495 
bootstrap samples, with 156 out of the 166 areas having SI above zero in at least 950 496 
out of 1000 bootstraps (Supplementary Figure 7). 497 
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 498 

 
Figure 2. A subset of areas in infants demonstrates adult-like network organization. 
A) A subset of areas with SI > 0 to adult networks in infants (Figure 1H). B) The number of 
areas in each adult network with all areas (“All”) or area subset (“Subset”). C) The sorted 
average FC in infants with our area subset. D) The percentage representation of each 
network in all areas versus. E) The average within-network FC with all areas (left) versus 
area subset (right) across individual BCP sessions. FDR-corrected p for paired t-tests. *** p 
< 0.001. 
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As expected, the average SI for areas assigned to adult networks in infant FC 499 
was much higher (pbootstrap < 0.001) using our area subset (0.388, 95% bootstrap CI = 500 
[0.3792, 0.3925], pbootstrap < 0.001; Figure 2C) than using all areas. In addition, the 501 
average SI for areas assigned to adult networks in adult FC was also marginally higher 502 
(pbootstrap < 0.001) using our area subset (0.419, 95% bootstrap CI = [0.3925,0.4300], 503 
pbootstrap < 0.001) (Supplementary Figure 8A) than using all areas. Our results suggest 504 
that this subset captures the part of the adult networks with more within-network 505 
consistency in both infants and adults. Compared with all areas, our area subset was 506 
disproportionally enriched in the SMN networks (SMN hand and SMN mouth) (Figure 507 
2D). As expected, the within-network FC was significantly higher across infant sessions 508 
(paired t-test, FDR-corrected p < 0.05) for all eight partially retained networks when our 509 
area subset was used instead of all areas, with little change in variability (Figure 2E). 510 
Similarly, within-network FC was significantly higher across adult sessions (paired t-test, 511 
FDR-corrected p < 0.05) for all seven out of eight partially retained networks 512 
(Supplementary Figure 8B). Because our data spanned a wide developmental window, 513 
we further investigated whether our observation was influenced by chronological age. 514 
We found that within-network FC for all eight partially retained networks was higher in 515 
our area subset in most sessions and that there was no correlation (FDR corrected p > 516 
0.05) between the within-network FC differences and age (Supplementary Figure 9). In 517 
general, the within-network FC differences between “All” and “Subset” were larger in 518 
infants than in adults (Table 1). 519 
 520 
Table 1. Cohen’s d of the within-network FC differences in All V.S. Subset. 521 

 Aud CON DMN DAN FPN SMN 
hand 

VAN Vis 

Infant 
FC 

-2.41 -0.29 -1.80 -2.23 -1.54 -2.81 -2.64 -2.91 

Adult 
FC 

-1.13 -0.31 -0.46 -1.47 0.70 -1.09 -1.53 -2.10 

 522 
Specifically, for seven out of the eight partially retained Gordon networks the 523 

adult FC was significantly higher (FDR-corrected p < 0.05) than the infant FC with all 524 
areas (Figure 3A, Table 2). On the other hand, only five out of the eight still 525 
demonstrated significantly higher within-network FC when using the subset (FDR-526 
corrected p < 0.05) in adults compared to infants, and two out of the eight demonstrated 527 
significantly lower within-network FC (FDR-corrected p < 0.05) (Figure 3B, Table 2).   528 

 529 
Table 2. Cohen’s d of the within-network FC differences in adults V.S. infants 530 

 Aud CON DMN DAN FPN SMN 
hand 

VAN Vis 

All 2.35 2.35 0.80 2.11 0.23 1.04 0.03 1.22 
Subset 1.04 1.88 0.13 1.04 -0.26 0.43 -0.34 0.94 

 531 
Additionally, we found that the effect of chronological age on within-network FC 532 

within the infant cohort was also reduced when our area subset was used in place of all 533 
areas (Supplementary Figure 10).  534 
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Taken together, our results suggest that while the within-network FC within our 535 
area subset was higher than that within all areas in both infant and adult datasets, using 536 
our area subset would reduce the difference across age. 537 

 538 
3.3 Adult versus infant FC organizations across 1-2-year-olds 539 

 
Figure 3. Violin plot of within-network average FC in the Gordon networks. A) within-network 
average FC using all areas in adults and infants. B) Within-network average FC using our 
area subset in adults and infants. FDR-corrected p for two-sample t-tests. * p < 0.05, ** p < 
0.01, *** p < 0.001. 
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 Next, we investigated whether there was any variation between how the different 540 
network schemes fit the infant FC at various stages between 1 to 2 years (Gordon adult 541 
networks and Kardan infant networks). In addition, we also included a comparison when 542 
using our area subset (166 areas, Figure 2A). Using a moving average approach across 543 
infant ages, we found a consistent order of the network schemes across 1 to 2 years, 544 
with the Gordon (Subset), Kardan (All), and Kardan (Subset) having a similar average 545 
SI, and Gordon (All) having a much lower average SI (Figure 4A). Nevertheless, we saw 546 
a subtle decrease in difference between adult and infant networks on the infant FC with 547 
increasing age. We further investigated this trend using average SI in individual 548 

sessions spanning 8 to 60 months (Supplementary Figure 4). We found a weak to 549 
moderate negative correlation (r = -0.21, p < 0.001, Supplementary Figure 11A) in infant 550 
networks (“Kardan”) fit (average SI) with age, and a weak positive correlation (r = 0.13, 551 
p = 0.020, Supplementary Figure 11B) in adult networks (“Gordon”) fit (average SI) with 552 
age. Together, this amounted to a moderate negative correlation in the difference in 553 
average SI between infant and adult networks with age (Supplementary Figure 11C).  554 
 We also replicated Figure 4A with network parcellations derived from an 555 
independent dataset to eliminate potential circularity in using the infant networks derived 556 
from a subsample of our infant FC data (Supplementary Figure 12). 557 
 558 
3.4 Our area subset with adult-like network organization is in spatial proximity to 559 
the high consensus regions across adult individuals  560 

To quantify the spatial distribution similarity between the locations of low 561 
interindividual variability in network identity (“high consensus cortical ROIs”) (Dworetsky 562 
et al., 2021) and our area subset, we calculated the Euclidean distance between the 563 
centers of the areas within our area subset or alternative areas to the “high consensus 564 
cortical ROIs” (Figure 5). Areas within our area subset were 9.5 ± 4.5 mm to the closest 565 

Figure 4. Moving average analysis with the adult networks (“Gordon”) and the infant 
networks (“Kardan”) using all areas and our area subset. A) Average SI of the average FC 
in a window for different network assignments. B) Average SI of the window around 1 year 
old sorted by different network assignments. C) Average SI of the window around 2 years 
old sorted by different network assignments. 
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high consensus ROIs, whereas areas outside our area subset were 13.5 ± 6.6 mm to 566 
the closest high consensus ROIs (Supplementary Figure 13). On average, areas within 567 
our area subset were 3.9 mm closer to the “high consensus cortical ROIs”. To rule out 568 
the possibility that this difference was driven by the differences in the number of areas 569 
within and outside our area subset, we repeated the same analysis by permuting the 570 
binary within and outside area subset labels 1000 times to generate a null distribution. 571 
We found that the actual difference (3.9 mm) was significantly higher than the null (p < 572 
0.001, permutation testing) (Figure 5C). 573 

3.6. Within-network FC edges in our area subset have a higher test-retest 574 
reliability and a higher consistency across subjects 575 
 Comparing FC computed from non-overlapping time windows in the same 576 
session demonstrated that our area subset had significantly higher within-session 577 
reliability than all areas. In particular, four out of eight networks partially retained (Figure 578 
2B) exhibited higher average ICC with our area subset than all areas (two-sample t-test, 579 
FDR-corrected p < 0.05): Aud (Cohen’s d = 0.68), DMN (Cohen’s d = 0.13), DAN 580 
(Cohen’s d = 0.55), and VAN (Cohen’s d = 0.43) (Figure 6). To examine whether the 581 
contribution of FC edges to individual identification varied across the within- and 582 
between-network blocks by the three network schemes, we also quantified the FC 583 
group consistency (𝜙) and differential power (DP) (Finn et al., 2015). We found the FC-584 
edges connecting our area subset tend to be the ones more consistent across scans 585 
and subjects (Supplementary Materials S4, Supplementary Tables 3-6, Supplementary 586 

 
Figure 5. Comparison of area centers to high-consensus regions. A) Our area subset with 
adult-like network organization (colored surface patches) overlayed with high-consensus 
regions (rosy brown spheres). B) The areas outside the subset (colored surface patches) 
overlayed with high-consensus regions (rosy brown spheres). C) The average Euclidean 
distance between the high-consensus regions and the closest parcel center. Dashed line: 
the actual difference between the distances in panel A and panel B. Histogram: the 
difference between the distances with parcels randomly assigned to be in the adult-like 
(panel A) and not adult-like (panel B) groups 1000 times.  
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Figure 14). 587 

 588 
 589 
4. Discussion  590 
4.1. Similarity and differences between adult and infant network organization 591 

We observed that for infants at 8-60 months, adult networks captured some of the 592 
features in the infant FC (average SI>0), although much weaker than that in adult FC. 593 
Furthermore, it seemed that instead of being less modular and more random, the infant 594 
FC data were better described with notably different but related modular organization, 595 
including fragmented anterior and posterior segments of higher-order association 596 
networks (Eggebrecht et al., 2017; Eyre et al., 2021; Kardan et al., 2022; Marrus et al., 597 
2018). 598 
 599 
4.2. Identification of a subset of areas that are stable across development 600 

We found that a subset of the areas tended to exhibit more of an adult-like network 601 
FC clustering pattern even in infants, forming the cores of adult networks. While 602 
substantial attention has been devoted to the differences in infant network organization 603 
throughout development (F. Wang et al., 2023; Wen et al., 2019, 2020), it is also desirable 604 
to note their similarities to older children and adults (Fransson et al., 2007; Gao, Alcauter, 605 
Elton, et al., 2015). Here we observed that the difference in within-network FC across 606 
ages was reduced when an area subset was used instead of all areas. The FC within our 607 
area subset was also more consistent both within the session and across sessions. These 608 
areas likely form the early scaffold for what will eventually become the adult networks 609 
(Grayson & Fair, 2017).  610 
 611 
4.3. The possible role of childhood experience in shaping the interindividual 612 
differences in functional networks 613 

Our results suggest that interindividual variability in functional network topography 614 
might have a developmental origin. To a first approximation, the spatial topography of our 615 

 
Figure 6. Reliability of within-network edges using our area subset versus all areas. 
Reliability of within-network edges across two non-overlapping 6-minute windows. Bars 
show the mean of the ICC and error bars show the standard error of the mean. FDR-
corrected p for two-sample t-tests. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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area subset closely matches the locations with low interindividual variability in network 616 
identity (Dworetsky et al., 2021; Gordon, Laumann, Gilmore, et al., 2017; Hermosillo et 617 
al., 2024). On the other hand, the other areas approximately correspond to previously 618 
identified hub nodes (Power et al., 2013) and integration zones (Hermosillo et al., 2024). 619 

One potential explanation for this observation is that some parts of the brain 620 
mature earlier than others in terms of functional network organization. There might be 621 
biological or evolutionary reasons that parts of the adult networks mature later, such as 622 
to devote prenatal resources to regions most important for early survival (Hill et al., 2010). 623 
In addition, the regional variability of network stability might also be linked to variability in 624 
the expression of excitatory and inhibitory features across the cortex (Sydnor et al., 2021). 625 
The idea that areas with higher FC variability have more significance in interindividual 626 
differences is further reinforced by research demonstrating that FC in cortical areas with 627 
high FC variability has more predictive power in behavioral and cognitive domain features  628 
(Mueller et al., 2013). It is important that future researchers recognize the regional 629 
variability in functional network stability. This variability may serve as a useful biomarker 630 
for psychopathology (Sydnor et al., 2021), or may guide targeted brain stimulation 631 
interventions. 632 

We did not observe a strong bias in the over-representation of sensorimotor 633 
networks compared to association networks in our area subset, despite the literature 634 
suggesting that sensorimotor networks mature earlier than association networks (Gao, 635 
Alcauter, Elton, et al., 2015; Sydnor et al., 2021). Our area subset spanned both 636 
sensorimotor and association networks along the functional hierarchy of the neocortex 637 
(Flechsig, 1901; Mesulam, 1998; Sydnor et al., 2021). One potential limitation is that our 638 
infant cohort was older than eight months and significant earlier neurodevelopmental 639 
changes along the sensorimotor-association hierarchy might have happened before eight 640 
months (Bethlehem et al., 2022; Flechsig, 1901). Another possibility is that the 641 
sensorimotor functional networks definition was inaccurate, e.g. the auditory network 642 
might have incorporated parts of secondary somatosensory regions (Raju & Tadi, 2024), 643 
leading to heterogeneous FC profiles within the auditory network  644 
 645 
4.4. Using an area subset to improve statistical power and interpretability 646 
 There are pros and cons of using a pre-existing functional network model and a 647 
data-driven functional network model for infant neuroimaging research. Studies of 648 
functional networks in infants have often implemented unsupervised methods (i.e. 649 
clustering or similar types of community detection algorithms) to find age-specific modules 650 
and called them “functional networks” (Eggebrecht et al., 2017; Kardan et al., 2022; 651 
Marrus et al., 2018; Molloy & Saygin, 2022; Myers et al., 2024; Sylvester et al., 2022; F. 652 
Wang et al., 2023; Wen et al., 2019, 2020). These identified modules were by definition 653 
a good representation of the organizational structure in the data and may help alleviate 654 
the problem of reproducibility in brain-wise association studies (Hermosillo et al., 2024; 655 
Marek et al., 2022). However, unlike the adult networks that have been extensively 656 
validated with task fMRI data to corroborate their “functional” roles (Power et al., 2011; 657 
Wig, 2017; Yeo et al., 2011), those age-specific modules often lack biological support for 658 
their functions, reducing their relevance to a broader developmental context. On the other 659 
hand, using the adult-network topography directly on infants neglects the infant-specific 660 
organizational features and risks including spurious variability in neuroimaging 661 
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measurements (be they from fMRI, PET, or fNIRS), leading to reduced effect size and 662 
statistical power (Hermosillo et al., 2024), or an exaggerated difference across 663 
development. For example, our results in section 3.2 suggest that differences in within-664 
network FC across age groups might be partially attributed to the misspecification of 665 
functional network identity. 666 

Here, we propose an alternative strategy that uses an area subset that is relatively 667 
stable throughout development. This approach strikes a balance between 668 
interpretability/comparability across cohorts and reliability/reproducibility. This idea of 669 
using a subset of the brain areas to define ROIs as an approach to improve statistical 670 
power has been mentioned in prior literature (Dworetsky et al., 2021; Hermosillo et al., 671 
2024). However, instead of focusing on the subset of brain areas with interindividual 672 
variability, we focus on excluding the subset of brain areas that had a potential network 673 
misidentification in the infant cohort. Alternatively, one might be interested in focusing on 674 
the areas that are unstable across development depending on the research question at 675 
hand, which may have behavioral or clinical significance. 676 
 677 
4.5. Implications for Precision Functional Mapping in Developmental Cohorts Using 678 
Adult Group Priors 679 
 As demonstrated in our results, on average the adult functional networks did not 680 
well represent the organization of infant FC into internally similar clusters. This 681 
observation might have important implications for research using an adult functional 682 
network model to generate individual-specific functional networks in pediatric cohorts 683 
(Hermosillo et al., 2024; Moore et al., 2024; Sun et al., 2023). Motivated by recent 684 
research findings showing that functional network topography across human individuals 685 
qualitatively differs from group-average estimates (Gordon, Laumann, Gilmore, et al., 686 
2017; Gratton et al., 2018; Laumann et al., 2015), researchers have emphasized the 687 
importance of precision functional mapping (Gratton et al., 2022). However, reliable 688 
identification of individualized functional networks with unsupervised clustering or 689 
community detection procedures requires extended data acquisition. For example, with 690 
the Infomap algorithm (Power et al., 2011; Rosvall & Bergstrom, 2008), more than 90 691 
minutes of data are required to achieve an average network overlap dice coefficient of > 692 
0.75 (Gordon, Laumann, Gilmore, et al., 2017). Therefore, researchers have developed 693 
several semi-supervised methods using adult networks as priors to derive individual 694 
functional networks in data with shorter acquisition time (Cui et al., 2020; Gordon, 695 
Laumann, Adeyemo, et al., 2017; Hacker et al., 2013; Kong et al., 2019; D. Wang et al., 696 
2015). However, these approaches generally assume that the individual functional 697 
networks are highly similar to the adult group average template. This assumption might 698 
not be suitable for developmental cohorts. As we demonstrate in this paper, the adult 699 
functional networks poorly represent the organization of the infant FC into internally 700 
coherent clusters. Two unwanted consequences might arise from this observation. First, 701 
the network templates generated by averaging the FC profiles within a poorly defined 702 
network might be noisy and inaccurate. Second, the algorithms may incorrectly force a 703 
categorical label for locations that poorly match all available networks. Future studies 704 
using adult-based priors in developmental cohorts should keep those limitations in mind 705 
and develop strategies to mitigate them. 706 
 707 
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4.6. Limitations and Future Directions 708 
 The differences in state (asleep in infants and awake in adults) may contribute to 709 
the worse fit of adult networks to infant FC. Sleep and the level of arousal are known to 710 
modify the FC structure in adults (Chang et al., 2016; Mitra et al., 2017; Tagliazucchi et 711 
al., 2012), and FC patterns in sleeping 6- and 12-month-old infants more closely resemble 712 
FC patterns in sleeping adults (Mitra et al., 2017). Based on our results from a small 713 
sample of awake fMRI in 36-to-60-month-olds, the difference in the quality of clustering 714 
between awake adult and awake infant FC using the adult Gordon networks is smaller 715 
than the difference in sleeping infant FC. Taken together with the existing literature, these 716 
results tentatively support the hypothesis that infant network clustering quality is driven 717 
by the interaction of both brain development and sleeping state.  718 

Other differences in the acquisition and processing of the two datasets might 719 
introduce further confounds. Additionally, while we observed minimal effects of age on 720 
within-network FC, this could be due to the narrow age range of our sample (mostly 721 
between 1 and 3 years). The mixing of fMRI signals within the ill-defined areas using an 722 
adult parcellation  might contribute to the low SI observed in some of those areas which 723 
could be improved with the use of infant specific areas (Tu et al., 2024).  724 
 Future studies could examine the cellular, molecular, and genetic properties of the 725 
areas that have already developed an adult-like organization in infancy to fully understand 726 
the biological underpinning of our observation. Furthermore, future studies with larger 727 
samples and well-defined behavior measures can explicitly test our deduction that the 728 
use of our area subset could improve statistical power and reproducibility for brain-wide 729 
association studies. Moreover, it is worth investigating whether the topography and 730 
diversity of thalamocortical projections would relate to the variability of functional network 731 
stability across the neocortex. 732 
 733 
4.7. Conclusions 734 
 We found that there exists a subset of cortical areas whose FC profiles 735 
demonstrate adult-like network organization even in infants, despite the noticeable 736 
differences in FC organization between infants and adults. These areas were spatially 737 
closer than alternative areas to previously described locations of high network identity 738 
consensus in adults. Additionally, within-network FC defined with our area subset was 739 
higher in magnitude and more reliable across scans, individuals, and chronological age. 740 
We propose the use of adult networks defined by our area subset as a complementary 741 
approach of studying infant FC than using age-specific functional networks derived from 742 
data-driven methods. This would strengthen reliability, yet at the same time encourage 743 
interpretability and comparability across developmental stages. The biological basis of 744 
our observations as well as their psychopathological and behavioral impacts may 745 
become interesting topics for future research. 746 
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Supplementary Materials 1117 
 1118 
Supplementary Results 1119 
S1. Silhouette index in individual sessions 1120 
 We calculated the silhouette index in group-average data because individual 1121 
sessions are noisy and have a relatively short acquisition time. However, our group 1122 
level results were consistent with results obtained by calculating silhouette index in 1123 
individual sessions (Supplementary Figures 3-4). Specifically, the average SI (-0.0054 ± 1124 
0.0714) was not different from zero in individual adult sessions (two-tailed t-test, p = 1125 
0.41) for adult (“Gordon”) networks. On the other hand, the average SI (-0.0859 ± 1126 
0.0318) was significantly smaller than zero in individual adult sessions for infant 1127 
(“Kardan”) networks (two-tailed t-test, p<0.001). In addition, the average SI (-0.0636 ± 1128 
0.0492) was smaller than zero in individual infant sessions (two-tailed t-test, p < 0.001) 1129 
for adult(“Gordon”) networks. On the other hand, the average SI (0.0492 ± 0.0472) was 1130 
significantly greater than zero in individual adult sessions for infant (“Kardan”) networks 1131 
(two-tailed t-test, p<0.001).  1132 
 1133 
S2. Silhouette index of adult networks in infant FC with the mean in all alternative 1134 
networks 1135 

By default, the silhouette index compares the current network to the best 1136 
alternative network, which also depends on the quality of alternatives. However, other 1137 
researchers have chosen to use a similar metric that compares the average within-1138 
network similarity to the average between-network similarity across all alternative 1139 
networks, rather than just the best alternative (Ji et al., 2019). This approach tends to be 1140 
less conservative and generally results in a higher silhouette index when calculated in 1141 
this manner.  1142 

When the SI was calculated using the mean in all alternative networks rather 1143 
than the mean of the best alternative network, they were still moderately correlated with 1144 
the SI reported in the main results (Pearson’s r = 0.74, p <0.001). However, since the 1145 
mean of similarity to all alternative networks (especially to the ones spatially distant from 1146 
the area in question) would tend to be lower than the best alternative, the SI is positively 1147 
shifted with almost all parcels having SI > 0 (Supplementary Figure 15). 1148 
 1149 
S3. Age effect on within-network (Gordon networks) FC is smaller in magnitude 1150 
with our area subset than with all areas   1151 

To test the hypothesis that our area subset has relatively stable within-network 1152 
FC across chronological age in infants, we compared the age effect on within-network 1153 
FC when the networks include only our area subset versus all areas. The age effect of 1154 
within-network FC was quantified with a Spearman’s correlation (𝜌). The significance of 1155 
the difference between the correlation between chronological age and within-network 1156 
FC in our area subset versus all areas is calculated with a Z-test on Fisher-Z-1157 
transformed r values. 1158 

We additionally examined the within-network FC in infants across chronological 1159 
age. We computed within-network FC across age using full versus our area subset. For 1160 
the eight networks that were partially retained, five networks demonstrated a significant 1161 
correlation between within-network FC and age (p < 0.05, Spearman’s r): the within-1162 
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network Aud, SMN hand and Vis networks were negatively correlated with age and the 1163 
within-network FC in DAN and the FPN were positively correlated with age. The age 1164 
effect was greater in magnitude with the full set of areas (Figure 3A) than with only the 1165 
partially retained areas (Figure 3B) for the SMN hand network, although not significant 1166 
when comparing the Fisher-Z-transformed r values (Z = 1.588, one-sided p = 0.056). 1167 
Similar results were found for other networks, where the age effect was less negative 1168 
for Aud, SMN hand and Vis networks, and less positive for DAN and FPN, but none of 1169 
them had a significant (p < 0.05) Z-test. To examine the robustness of our result to the 1170 
selection of data samples, we generated 1000 bootstrapped samples of the infant 1171 
sessions. We found that the sign of the difference was consistent across bootstrap 1172 
samples (i.e., on average the networks using our area subset was less correlated with 1173 
age than all areas) (Figure 3C). The mean and 95% confidence interval for the 1174 
bootstrap showed a mean difference in Fisher-Z-transformed r values for full versus 1175 
subset was -0.1139 [-0.1721,0.0129] for Aud, -0.1386 [-0.1684, -0.0814] for SMN hand, 1176 
0.0020 [-0.0887, 0.0348] for Vis, -0.0205 [-0.0120, 0.1439] for DAN and 0.0089 [0.0071, 1177 
0.0511] for FPN (Figure 3C). 1178 
 1179 
S4. Group consistency and differential power of FC edges  1180 

Prior studies suggested that it was possible to identify individuals using FC in 1181 
infants from the BCP dataset (Hu et al., 2022; Kardan et al., 2022). To assess which FC 1182 
edges (i.e. connections between a pair of areas) are more consistent across individuals 1183 
versus distinct across individuals, we calculated the group consistency (𝜙) and 1184 
differential power (DP) measures (Finn et al., 2015). We aim to describe the distribution 1185 
of highly consistent edges and highly differentiating edges with respect to adult and 1186 
infant network models. For this analysis, we only use the one session from each of the 1187 
115 unique subjects with at least 13.2 min low-motion data. Given two sets of 1188 
connectivity [𝑋!"#], [𝑋!"$] obtained from the two resting scan windows (R1 and R2) after 1189 
z-score normalization, the edgewise product vector φ! 	was computed as 1190 

 1191 
φ! 	(𝑒) = 	𝑋!"#(𝑒) ∗ 𝑋!"$(𝑒), 𝑒 = 1,… ,𝑀	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2)  1192 

 1193 
where i indexed the subject, e indexed the edge, and M indexed the total number of FC 1194 
edges. The sum of φ! over all edges is the correlation between [𝑋!"#], [𝑋!"$]. The group 1195 
consistency 𝜙 was computed as the mean of φ! across all subjects. We defined the 1196 
edges with the top 10% 𝜙 values to be “highly consistent”.  1197 
 Similarly, the edgewise product vector φ!% 	was calculated between patterns from 1198 
different subjects, for example: 1199 

 φ!% 	(𝑒) = 	𝑋!"#(𝑒) ∗ 𝑋%"$(𝑒), 𝑒 = 1,… ,𝑀, 𝑖 ≠ 𝑗	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3)  1200 
𝑃!(𝑒) = 	𝑃Dφ!% 	(𝑒) > φ!! 	(𝑒)	𝑜𝑟	φ%! 	(𝑒) > φ!! 	(𝑒)D	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	4)  1201 

𝐷𝑃	(𝑒) = ∑ {−ln	(𝑃!(𝑒))}! 	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5)  1202 
 1203 
We defined the edges with the top 10% DP values as “highly differentiating”. 1204 

 Consistent with the findings in previous literature, we observed that a large 1205 
percentage (~50%) of FC edges in the within-network blocks tend to be highly 1206 
consistent. On the other hand, much fewer FC edges in between-network blocks (~6%) 1207 
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were highly consistent (Supplementary Figure 14; Supplementary Table 3). The 1208 
sensorimotor networks especially had a large proportion of highly consistent within-1209 
network FC edges (Supplementary Table 4). Moreover, using adult networks defined by 1210 
our area subset, the percentage of highly consistent edges within networks increased 1211 
substantially for all eight partially retained networks (Supplementary Table 4), indicating 1212 
that the adult network spanned by our area subset over-represented areas with highly 1213 
consistent FC between them.  1214 

On the other hand, within-network blocks tend to have only a slightly larger 1215 
percentage of highly differentiating FC edges (~15%) than between-network blocks 1216 
(~10%) (Supplementary Table 5-6), with both increased and decreased proportion of 1217 
highly differentiating edges when using our area subset instead of all areas.  1218 
  1219 
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BCP (N = 181)A

B

Supplementary Figure 1. Distribution of age and sex of individual infants in the BCP dataset. 
A) The age time points of 181 infants ordered by sex. B) The count of number of individuals with 
1-6 longitudinal points. 
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Supplementary Figure 2. Dice overlap between Adult Networks (“Gordon”) and Infant Networks 
(“Kardan”). Network abbreviations: auditory (Aud), cingulo-opercular (CON), parietal memory 
(PMN), default mode (DMN), dorsal attention (DAN), fronto-parietal (FPN), retrosplenial temporal 
(RTN), somatomotor hand (SMN hand), somatomotor mouth (SMN mouth), salience (Sal), and 
ventral attention (VAN), visual (Vis), somatomotor (SMN), temporal (Tem), posterior frontoparietal 
(pFPN), posterior default mode (pDMN), lateral visual (lVis), medial visual (mVis), anterior fronto-
parietal (aFPN), anterior default mode (aDMN).  
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  1223 

Supplementary Figure 3. Silhouette index (SI) of adult and infant networks on individual adults’ FC. 
A) SI across adult networks (“Gordon”, 286 areas). B) SI across infant networks (“Kardan”, 328 
areas). C) average SI of adult and infant networks across areas on individual adults’ FC. *** p < 0.001 
in paired t-test. D) Pearson’s correlation of SI of adult networks on group average FC and the mean 
of SI on individual FC across 286 areas. E) Pearson’s correlation of SI of infant networks on group 
average FC and the mean of SI on individual FC across 328 areas.  
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E

A B

D

C

Supplementary Figure 4. Silhouette index (SI) of adult and infant networks on individual infants’ FC. 
A) SI across adult networks (“Gordon”, 286 areas). B) SI across infant networks (“Kardan”, 328 
areas). C) average SI of adult and infant networks across areas on individual infants’ FC. *** p < 
0.001 in paired t-test. D) Pearson’s correlation of SI of adult networks on group average FC and the 
mean of SI on individual FC across 286 areas. E) Pearson’s correlation of SI of infant networks on 
group average FC and the mean of SI on individual FC across 328 areas. Sessions in A and B are 
sorted by increasing age from left to right.  
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95% CI: [0.1048, 0.1895] 95% CI: [0.0952, 0.1635]

BCP awake 36-60 months,
N = 15 (49.9 ± 7.4 months)

BCP asleep 36-60 months,
N = 14 (43.5 ± 8.8 months)

95% CI: [0.0355, 0.0962] 95% CI: [0.1646, 0.2360]

A B

D E

C

F

Supplementary Figure 5. Awake V.S. sleeping infant FC organized by adult (“Gordon”) and 
infant (“Kardan”) networks. A) The average FC for 15 BCP sessions sorted by adult networks 
(“Gordon”). B) The average FC for 15 BCP sessions sorted by infant networks (“Kardan”). C) 
Average silhouette index for individual sessions. D-F) Same as A-C, but for 14 BCP sessions also 
in approximately the same age range (36-60 months). *** p < 0.001 in paired t-test. 
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95% CI: [0.2582,0.2742] 95% CI: [0.1993, 0.2165]

C D

avg SI: 0.268 avg SI: 0.210

A B

E F

Supplementary Figure 6. Infant FC sorted by the Tu (326) 12 and 19 networks. A) The 
average FC for 313 BCP sessions sorted by Tu (326) 12 networks. B) The average FC for 
313 BCP sessions sorted by Tu (326) 19 networks. C-D) Silhouette index for each area 
parcel for A-B. E-F) Average silhouette index for individual sessions. *** p < 0.001 in paired t-
test. 
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Supplementary Figure 7. Frequency of SI > 0 across 1000 bootstraps. 
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  1232 

Supplementary Figure 8. Adult FC using our area subset. A) The sorted average FC 
in adults with our area subset. B) The average within-network FC with all areas (left) 
versus our area subset subset (right) across sessions. 

A B 
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Supplementary Figure 9. Within-network FC difference (All – Subset) across eight partially-retained 
networks. 
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Supplementary Figure 10. Correlation between age and within-network FC in using our area subset versus 
all areas. A) Scatter plot of within-network FC versus age for SMN hand network using all areas. B) Scatter 
plot of within-network FC versus age for SMN hand network using our area subset. C) The within-network 
FC for three networks is negatively correlated with age (Aud, SMN hand, Vis), and the within-network FC 
for two networks is positively correlated with age (DAN, FPN). The x-axis is the Fisher-Z-transformed 
Spearman’s correlation (r) between within-network FC using all areas and age. The y-axis is the Fisher-Z-
transformed Spearman’s correlation (r) within-network FC using our area subset and age). Each data point 
represents a bootstrap sample of sessions (N = 1000). Red line shows the line of least-squared fit in A-B 
and the line of identity in C. 

B

C

A SMN hand (All) SMN hand (Subset)

𝜌(Subset) = -0.10,
p(Subset) = 0.08

𝜌(All) = -0.22,
p(All) = 0.001
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Supplementary Figure 11. A scatter plot between chronological age in years and average 
SI for individual BCP sessions. A) infant networks (“Kardan”). B) adult networks 
(“Gordon”). C) Difference in infant networks (“Kardan”) and adult networks (“Gordon”).  
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Supplementary Figure 12. Moving average analysis (Figure 4A) adding the results using infant 
networks from an independent dataset.  
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 1238 
 1239 
 1240 
 1241 
 1242 
 1243 
 1244 
 1245 
 1246 
 1247 
 1248 
 1249 
 1250 
 1251 
 1252 
 1253 
  1254 Supplementary Figure 13. Distance between our area subset and alternative areas to the 153 

Dworestky high consensus ROI. 
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Supplementary Figure 14. Fraction of high consistency (ϕ) and high differential power (DP) edges (top 10%) 
across (A-B) adult networks (“Gordon”), (C-D) adult networks (“Gordon” Subset), (E-F) infant networks 
(“Kardan”). 
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Supplementary Figure 15. Correlation between silhouette index calculated with the best network 
or with all alternative networks. 
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Supplementary Table 1 
 

Cohort BCP WashU 120 
Acquisiti
on 

Location University of Minnesota Washington University in St. Louis 
 

Scanners Siemens Prisma 3T Scanner Siemens 3T Trio Tim  
Headcoil 32-channel 12-channel  
Sequence 
type 

Gradient-echo EPI Gradient-echo EPI 
 

Resolution 
(BOLD) 

2mm isotropic 4 mm isotropic 
 

Phase 
encoding 
direction 

AP+PA AP 

 
TR (s) UMN - 0.72 (N = 70), 0.8 (N = 107) 2.5  
TE (ms) 37 27  
Resolution 
(T1) 

0.8 mm 1 mm 
 

Multi-band 
factor 

8 N/A 
 

State Natural Sleep Fixation on crosshair  
Average 
clean data 
frames 

 
14.0 min 

 
Frames 
per BOLD 
run 

420 120 

 
BOLD runs 2-4 2 

Processi
ng 

Processing 
pipeline 
version 

DCAN-Infant (0.0.22) adult EPI (BOLD) preprocessing 
pipeline using the 4dfp tool suite 

 
Distortion 
correction 

ANTs SyN registration None 
 

Bias field 
correction 

N4 method None 
 

Denoising Respiratory notch filter, demean, 
detrend, 24 parameters nuisance 
regression, remove FD>0.3mm to 
apply bandpass filtering (0.008-0.09 
Hz) then interpolate the missing 
frames 

Demeaning and detrending, 
, multiple regression including: 
whole-brain, ventricular and white 
matter signals, and motion 
regressors derived by Volterra 
expansion 
(Friston et al. 1996), and a band-
pass filter (0.009 Hz < f < 0.08Hz).  

Scrubbing 
threshold 

filtered FD<0.2mm, outlier (across-
vertex STD on low FD frames >3MAD 
of the median of all frames) 

FD<0.2mm, at least 5 consecutive 
low-motion frames 

 
Tissue 
Segmentat
ion 

ANTs Joint Label Fusion was 
performed using a set of ALBERT 
atlases with segmentations generated 
and manually corrected by DCAN for 
ages 0-5 months old. For older ages, 
the atlases used for JLF were a set of 
10 ABCD subjects for which we 
generated segmentations. Manual 

FreeSurfer’s default recon-all 
processing pipeline (version 5.0) 
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curation of tissue segmentation was 
performed where necessary. 

 
Surface 
reconstruct
ion & 
registration 

Modified FreeSurfer reconstruction 
(no hires, aseg from JLF, adjusted 
class means of tissue to fit T1w 
contrasts), registered to fs_LR32k 
using spherical registration (with 
MSMsulc). 

FreeSurfer’s default recon-all 
processing pipeline (version 5.0) 

 
BOLD data 
geodesic 
smoothing 

σ = 2.55 mm σ = 2.55 mm 

Quality 
Control 

   

  
BrainSwipes crowdsource ratings with 
average aggregated passing 
rate >75% for anatomical or 
functional images + manual 
screening. 

N/A 

 
Data 
availability 

https://nda.nih.gov/edit_collection.htm
l?id=2848 

https://legacy.openfmri.org/dataset/d
s000243/ 
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Supplementary Table 2 
x y z 

-18.8 -48.7 65 
-51.8 -7.8 38.5 
-18.4 -85.5 21.6 
-47.2 -58 30.8 
-38.1 48.8 10.5 
-55.9 -47.7 -9.3 
-14.4 -57.8 18.4 
-8.8 -49.8 4.2 
-11.3 -83.2 3.9 
-1.7 -17.7 39.1 
-10 33.9 21.5 

-10.7 -47.5 60.3 
-15.6 -33.1 66.1 
-10.9 -29.3 69.5 
-6.6 -20.4 74.2 
-10.8 -41.1 64.9 

-5 -28.2 60.4 
-5.4 -15.9 48.8 
-35.8 -29.7 54.5 
-41.5 -12.5 50.4 
-42.1 -4.5 47.3 
-27.3 1.9 52.9 
-19.8 6.4 55.7 
-19.5 30.1 45.5 
-36.8 -22.8 61.9 
-20.5 -24.9 64.5 
-23.4 -13.8 64.2 
-17.2 -8.6 67.9 
-28.6 -44.7 61.7 
-31.1 -48.9 47.1 
-42.9 -45 43 
-51.5 -11.9 29.7 
-51.7 -30.9 39.9 
-27.5 -37.2 61.4 
-47.2 -31.4 54.8 
-46.1 -17.8 52.7 
-44.8 -54 14.6 
-51.6 -55.9 11.4 
-48.1 -40 2.4 
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-46.3 -41.4 25.9 
-52.7 -20.6 5.4 
-58.7 -29.9 11.1 
-40.6 -38.3 14.5 
-38.7 -16 -5.3 
-50 20.8 10.6 

-37.7 2.9 11.7 
-40.3 50.4 -4.8 
-32.5 17.2 -7.8 
-44.3 33.2 -7.2 
-45.4 28.8 0.8 
-20.4 -64.6 51.4 
-34.1 -61 42.4 
-31.3 -84.2 9 
-34.2 -86.6 -0.5 
-46.2 -57.7 -7.9 
-55.1 -32.3 23 
-43 19.4 33.5 

-40.2 23.6 23.3 
-48.6 7.5 11.1 
-5.9 54.8 -11.3 
-6.8 38.2 -9.4 
-33.8 -33.2 -15.4 
-28.8 -58.8 -9.1 
-34.4 -63.9 -15.7 
-34.3 -43.8 -21.6 
-5.4 -88 18.6 
-8.6 -77.5 -3.5 
-22.6 -81.7 -11.7 
-22.5 -37.1 -15 
-15.9 48.6 37.2 
-19.5 56.3 27.5 
-21.3 63.1 1.9 
-28.6 50.9 10.1 
-6.5 54.7 18.1 
-15.7 64.7 13.7 
-26.2 26.6 38.8 
-29.3 16.8 50.7 
-41.7 16.1 47.5 
-54.4 -1.4 -0.7 
-59 -18 -3 
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20.8 -48.2 66.1 
49.6 -7.4 36.1 
22 -84.6 23.7 

47.9 -42.5 41.5 
38.1 45.9 7.7 
59.7 -41 -10.9 
13.8 -54.1 10.9 
15.5 -74.1 9.4 
6.7 5 55.9 
8.4 34.7 22.6 
3 -19.6 37.9 

8.8 10.8 45.9 
16.5 -32.8 67.7 
4.8 -27.1 64.8 
11.9 -40.7 67 
5.1 -17.1 51.6 
6.8 -8.1 50.9 
42.3 -11 47.3 
42.5 -2.3 47.2 
29.2 1.9 52.4 
21.9 21 46.2 
38.1 -22.4 60.3 
19.7 -25 65.2 
12.4 -28.3 69.6 
29.2 -13.5 64.2 
17 -16.9 70.9 

20.9 -6.4 65 
29.5 -42.5 60.4 
38.8 -42.6 40.4 
53.9 -8.3 26.1 
28 -34.8 63.1 

39.2 -34.6 57.5 
37.3 -25.9 50.9 
47.8 -15.1 49.3 
48.9 -53 28.6 
57.5 -45.3 9 
60.9 -38.7 1.7 
54.9 -27 29.6 
57.1 -17 -2.6 
53.8 -15.8 5.2 
47.4 -39.6 13.2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2024. ; https://doi.org/10.1101/2024.07.31.606025doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606025
http://creativecommons.org/licenses/by-nc-nd/4.0/


45.5 -37.3 3.4 
48.5 -26.5 -0.1 
60 -25.2 10.2 

38.8 -14.4 -5 
42.8 48.3 -5.1 
45.2 30.7 -5.6 
30.6 22.8 -4.7 
7.7 -85.6 31.6 
35.4 -77.1 21.1 
41.5 -53.5 44 
33.5 -48.2 49.4 
31.7 -85.7 2.4 
43.8 -67.2 2 
57 -53.8 -1.1 

37.8 28.7 35.6 
41.8 29.1 21.6 
50.1 3 3.9 
38.6 18.8 25.5 
28.4 57 -5.1 
4.8 65.1 -7.1 
7.2 48.4 -10.1 
34.6 -35.6 -12.3 
34.6 -23.9 -20.4 
26.9 -69.1 -6.6 
34.9 -44 -20 
13.8 -92.3 14.7 
10.5 -73.8 -1.5 
20.4 -87.3 -6.6 
5.1 -80.2 23.1 
24.5 -36.2 -13.2 
21 32.8 42.1 

21.4 42.8 35.1 
23.5 59.1 4.9 
30.9 52.2 9.9 
8.2 53.8 14 
5.9 54.9 29.4 
13.8 46.7 42.1 
6.8 44.5 34.8 
30.6 18.9 48.7 
42.4 19.5 48.2 
38.9 9.6 42.7 
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39.7 -22.5 2.6 
55.8 2 -2 
57.1 -6.3 -7.7 
46.6 -21.5 -8.5 
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  1260 Supplementary Table 3. Percentage of highly consistent (f) edges across 
different network assignment schemes 

  
Gordon All Gordon Subset Kardan 

within-network 44.1% 63.1% 49.5% 

between-network 8.3% 6.5% 5.4% 
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  1261 Supplementary Table 4. Percentage of highly consistent (f) edges across 
different network assignment schemes. The eight partially retained networks 
were bolded and had an asterisk. 

 
within-network Gordon All Gordon Subset 

Aud* 41.30% 84.21% 

CON* 35.64% 61.73% 

PMN 40.00% / 

DMN* 43.17% 59.07% 

DAN* 31.45% 65.17% 

FPN* 43.12% 50.84% 

RTN 100% 100% 

SMN hand* 61.45% 72.82% 

SMN mouth 89.29% 89.29% 

Sal 33.33% 33.33% 

VAN* 38.34% 60.94% 

Vis* 45.89% 65.17% 
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1262 Supplementary Table 5. Percentage of high differential power (DP) edges 
across different network assignment schemes. 

  
Gordon All Gordon Subset Kardan 

within-network 16.50% 14.73% 12.79% 

between-network 10.81% 10.98% 9.93% 
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 1263 Supplementary Table 6. Percentage of high differential power (DP) edges 
across different network assignment schemes. The eight partially retained 
networks were bolded and had an asterisk. 

 
within-network Gordon All Gordon Subset 

Aud* 7.97% 10.53% 

CON*  8.33% 4.94% 

PMN 50.00% / 

DMN* 10.73% 11.59% 

DAN* 30.24% 47.19% 

FPN* 15.58% 13.91% 

RTN 7.14% 7.14% 

SMN hand* 17.92% 15.82% 

SMN mouth 21.43% 21.43% 

Sal 0% 0% 

VAN* 14.62% 12.02% 

Vis* 24.97% 18.43% 
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