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Abstract: Lipid metabolism is a critical component in preserving homeostasis and health, and
lipids are significant chemicals involved in energy metabolism in living things. With the growing
interest in lipid metabolism in recent years, an increasing number of studies have demonstrated the
close relationship between abnormalities in lipid metabolism and the development of numerous
human diseases, including cancer, cardiovascular, neurological, and endocrine system diseases. Thus,
understanding how aberrant lipid metabolism contributes to the development of related diseases
and how it works offers a theoretical foundation for treating and preventing related human diseases
as well as new avenues for the targeted treatment of related diseases. Therefore, we discuss the
processes of aberrant lipid metabolism in various human diseases in this review, including diseases
of the cardiovascular system, neurodegenerative diseases, endocrine system diseases (such as obesity
and type 2 diabetes mellitus), and other diseases including cancer.

Keywords: abnormal lipid metabolism; endocrine system diseases; cardiovascular system diseases;
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1. Introduction

The complex physiological process of lipid metabolism is involved in the regulation of
nutrients, hormones, and organismal homeostasis [1]. Abnormalities in lipids and their
metabolites in the segments of synthesis, storage, and catabolism tend to alter plasma
lipoprotein levels, structure, and function, which, in turn, cause the emergence and pro-
gression of related diseases [2]. The normal function of its various components is essential
for maintaining the health of the body. In recent years, with the improvement of people’s
living standards, dietary habits, and lifestyle changes, the incidence of lipid metabolism
disorders and the incidence of many human diseases related to them have shown an in-
creasing trend [3]. Being the most prevalent metabolic disease of the endocrine system,
obesity is primarily caused by improper lipid metabolism and excessive caloric intake.
Disorders related to lipid metabolism also exacerbate the development and occurrence of
obesity. One of the common metabolic diseases affecting the endocrine system is type 2
diabetes mellitus (T2DM). Recent research has linked abnormalities in lipid metabolism to
the onset and progression of the disease. Additionally, pathological studies have revealed
that ectopic adipose tissue surrounds the β cells in the pancreatic islets, exacerbating the
abnormalities in insulin secretion. Simultaneously, aberrant lipid metabolism also raises
the risk of cardiovascular disease (CVD), particularly atherosclerosis and coronary heart
disease [4,5]. It has been discovered that aberrant lipoprotein and polyunsaturated fatty
acid metabolism contribute to the onset and progression of CVD, and an increasing num-
ber of studies has shown that abnormal lipid metabolism can either directly or indirectly
raise the incidence of cardiovascular disease and mortality [6–9]. Anomalies related to the
metabolism of lipids can impact not only the beginning and course of metabolic disorders
but also the development and advancement of cancer. One of the defining characteristics of
the development of cancer is abnormal intracellular lipid metabolism, whereby increased
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fatty acid (FA) de novo synthesis results in intracellular lipid accumulation in cancer cells,
as well as increased levels of β-oxidation (intracellular oxidative stress) and, subsequently,
more energy. Additionally, abnormal lipid accumulation occurs in the tumor microenvi-
ronment (TME), exacerbating tumor infiltration and further contributing to the creation
of an immunosuppressive tumor microenvironment, which allows tumor cells to evade
immune attack. Chronic disorders like neurodegenerative diseases, nonalcoholic fatty liver
disease (NAFLD), chronic kidney disease (CKD), and osteoarthritis are also accompanied
by abnormalities in lipid metabolism.

Thus, there is significant theoretical significance as well as actual clinical value in
the thorough investigation of the role of aberrant lipid metabolism and its mechanism
in the development of linked diseases. As a result, this study examines the contribution
of aberrant lipid metabolism to the development of associated diseases, such as cancer,
neurological disorders, cardiovascular diseases, and endocrine system disorders.

2. Abnormalities in Lipid Metabolism and Endocrine System Diseases

Lipid metabolism plays a key role in maintaining the homeostasis of the body. Ab-
normal lipid metabolism often leads to endocrine hormone disorders and further leads
to obesity, diabetes, hyperglycemia, hyperlipidemia, and other endocrine diseases [10].
Obesity is a metabolic disease that causes excessive fat accumulation in the human body
due to a variety of reasons and even leads to excessive weight gain and causes pathological
and physiological changes. Endocrine-related metabolic disorders, such as obesity and dia-
betes, are caused by the dysregulation of lipid metabolism. Therefore, in order to provide
new perspectives for future research on abnormal lipid metabolism and the occurrence
and development of endocrine system disorders, this section focuses on the relationship
between obesity, T2DM, and abnormal lipid metabolism.

2.1. Obesity and Abnormal Lipid Metabolism

Globally, obesity is becoming a serious health concern, and its incidence is increasing
everywhere. The majority of the time, obesity is brought on by an imbalance between
the body’s energy expenditure and intake [11]. This imbalance encourages the growth of
white adipose tissue (WAT) in obese individuals, which, in turn, causes lipid metabolism
abnormalities in the body. The body uses WAT as its primary adipose tissue for energy
storage [12]. The big lipid droplets found in its cells include cholesterol ester (CE), triglyc-
erides (TGs), and other lipids. Large amounts of free fatty acids (FFAs) are released during
the hydrolysis of accumulated TGs in the WAT of obese patients. This leads to plasma FFA
levels that are typically higher in obese patients [13,14], and the existence of large amounts
of free fatty acids further exacerbates obesity [15]. This section primarily addresses the
abnormal lipid metabolism process, its associated metabolites, and important enzymes in
relation to obesity. The goal is to provide theoretical support for the treatment of other
obesity-induced diseases as well as to clarify the mechanisms underlying obesity and
its symptoms.

The body’s ability to maintain homeostasis depends, in large part, on lipid metabolism,
and defects in these systems frequently contribute to or worsen the development of obesity.
Normally, fats are stored in our bodies as TGs, which lipases hydrolyze to release FAs and
glycerol (GI). β-oxidation then gradually breaks down the free fatty acids in mitochondria
or peroxisomes. TG hydrolysis is controlled by a mix of substances, enzymes, and hormones.
Research indicates that animals on a high-fat diet can create more adrenaline in their visceral
adipocytes than mice fed a regular diet [16]. Among these, REEP6 is crucial for β-adrenergic
signaling in adipocytes. When REEP6 is inactivated, β-adrenergic signaling is reduced,
which reduces energy expenditure and increases obesity. Furthermore, adenylate cyclase
3 (ADCY3) is not expressed in brown adipose tissue (BAT) due to the gene REEP6 KO,
which also downregulates REEP6 in adipocytes and decreases plasma membrane-targeted
ADCY3 [17]. This enzyme catalyzes the synthesis of ATP to cAMP during the hydrolysis of
TGs and also plays a role in mediating the involvement of energy, lipid, and glucose control.
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Furthermore, studies using cord blood DNA samples and ADCY3-knockout mouse models
discovered that increased methylation of genomic DNA sequences can lead to decreased
activity of the ADCY3 gene and that decreased expression of the ADCY3 gene at the mRNA
and protein levels contributes to obesity [18,19]. Therefore, obesity is made worse by an
abnormally low expression of ADCY3 during TG hydrolysis.

G protein-coupled receptors (GPCRs) have been utilized as a major drug target for
the treatment of diseases like diabetes mellitus, obesity, AD, and psychiatric disorders
because they are crucial links in the adipose hydrolysis process that connect the hormonal
stimulation and activation of adenylate cyclase [20]. In a study by Patricio Atanes et al.,
β-cells in obese individuals’ pancreatic islets were shown to be surrounded by ectopic
adipose tissue. They also evaluated the expression of GPCR mRNA. Ectopic adipose
tissue enveloping β-cells in obese patients can secrete local adipokines and modify islet
GPCR expression and activity through the accumulation of macrophages and the cytokines
they secrete [21]. For instance, visceral adipose tissues from obese human donors and
subcutaneous fat pads from obese mice both had higher expression of the adherent GPCR
family member adhesion G protein-coupled receptor L1 (ADGRL1), and the β-cells in these
tissues produced more cAMP. According to this, obese people’s greater insulin secretion
is correlated with increased ADGRL1 expression in their pancreatic islets; as a result,
reducing ADGRL1 expression may prevent obesity from developing [21,22]. David Ho et al.
provided evidence that adenylyl cyclase type 5 (ADCY5) deficiency guards against obesity.
They showed that ADCY5 KO mice had significantly lower percentages of body fat and
visceral and inguinal fat pads and that their visceral adipocyte size was significantly smaller
when they were on a high-fat diet (HFD) [23]. Therefore, the initiation and progression of
obesity may be inhibited by blocking ADCY5 activity.

Further research by London, E. et al. revealed that PKA is involved in the regulation of
adipose tissue metabolism. PKA also facilitates the binding of hormones, neurotransmitters,
and other signaling molecules to the GPCR, which, in turn, controls the levels of cAMP.
Through the use of mouse models, it was discovered that diet-induced obesity mice with
WAT had decreased cAMP concentrations, PKA and HSL activities, and lipid droplet
perilipin phosphorylation. Elevated PKA levels may also regulate lipid metabolism by
encouraging lipolysis [24]. The most traditional method of activating the AMPK pathway
is PKA signaling, which plays a crucial role in controlling the AMPK pathway. Hanyuan
Xu et al. discovered that hordenine could alter lipid metabolism by significantly increasing
AMPK phosphorylation, inhibiting adipogenesis (SREBP1, FAS, and ACC), promoting
lipolysis (HSL and ATGL), and increasing adipokine expression (FGF21 and ZAG) in the
liver and eWAT. Hordenine reduced body weight and fat mass by altering lipid metabolism
in mice fed a high-fat diet, while it also increased the energy expenditure of the mice [25].
The body weights of RII KO (PKA RII subunit) mouse pups were lower than those of
WT pups following a two-week exposure to an HFD. Furthermore, PKA is expressed
differently in important metabolic organs due to the absence of RII subunits, as shown
by the increased cAMP-stimulated PKA activity in gonadal adipose tissue but decreased
activity in the liver [26]. This implies that targets of PKA signaling may be viable avenues
for therapeutic intervention in the context of obesity.

Obesity may also result from abnormal metabolism during fatty acid β-oxidation. A
key regulator of β-oxidation, carnitine palmitoyl transferase I (CPTI), in the mitochondria
of the liver, heart, and skeletal muscle cells makes it easier for acyl groups to enter the
mitochondria for oxidation. The above studies suggested that promoting fatty acid β-
oxidation significantly reduces body fat. In animal experiments in rats and mice, when the
specific activity of CPTI was effectively increased in skeletal muscle and cardiac tissues, the
fat in the epididymis (and viscera) of the experimental subjects was significantly reduced,
and the expression of genes related to fatty acid synthesis was suppressed [27]. Further
in vivo findings in mice have demonstrated that upregulating CPTI activity stimulates
fatty acid oxidation and raises ATP levels, thereby stimulating energy expenditure and
reducing body weight in obese mice [28]. Acetyl-coa carboxylase (ACC) is essential for both
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fatty acid production and fatty acid β-oxidation. FA synthases can employ malonyl-CoA,
which is created when ACC catalyzes the carboxylation of acetyl-CoA, to carry out FA
biosynthesis. Malonyl coenzyme A is a direct inhibitor of mitochondrial FA absorption
and can also decrease CPTI activity [29], which, in turn, inhibits β-oxidation because it
is a substrate for FA production. 5 ‘adenosine monophosphate-activated protein kinase
(AMPK) controls the metabolism of FAs by blocking FA production and promoting FA
β-oxidation via the phosphorylation of decreased ACC activity [30].

2.2. T2DM and Abnormal Lipid Metabolism

T2DM is a prevalent metabolic condition characterized by endocrine problems, specif-
ically insulin resistance (IR) [31] and pancreatic β-cell abnormalities [32]. Elevated TG
levels, decreased HDL-c levels, delayed catabolism of TG-rich lipoproteins, leading to
elevated postprandial TG levels, residual lipoprotein accumulation, and increased LDL
production are among the clinical features of abnormal lipid metabolism in T2DM [33,34].
Current studies have shown that obesity is usually a major causative factor of IR [35].
At the same time, IR, during the course of T2DM, will have some negative effects on
patients’ lipid metabolism, including dyslipidemia, cholesterol deposition in blood vessels,
and cardiovascular diseases like atherosclerosis and coronary artery diseases [33,36,37].
Some studies have found that abnormal cytokines and the recruitment of different types of
macrophages (ATMs) are important factors leading to metabolic dysfunction, including
T2DM [38–41]. Additionally, higher plasma levels of both phosphatidylcholines and SMs
have been linked to an increased risk of cardiac autonomic dysfunction in recent-onset type
2 diabetes, according to studies [42,43]. Consequently, research on the connection between
lipid metabolism and T2DM is very crucial.

Clarifying the connection between aberrant lipid metabolism and IR is crucial for
understanding the genesis and progression of T2DM illness since several studies have
demonstrated that lipid metabolism abnormalities can further promote T2DM through IR.
IR is frequently brought on by abnormalities in lipid metabolism, which impede insulin sig-
naling by accumulating improperly metabolized intracellular lipid mediators and saturated
fatty acids, as well as promoting chronic tissue inflammation [44]. Lipid abnormalities
and chronic tissue inflammation are closely related. Abnormal lipid metabolism leads to
an increase in macrophages (ATMs) in adipose tissue. These ATMs are typically polar-
ized pro-inflammatory M1-like cells [45]. They are recruited by the secretion of different
cytokines, including leptin, lipocalin, TNFa, and others [46]. TNFa causes IR through
three pathways: paracrine inhibition of IR, paracrine inhibition of IR, and paracrine inhi-
bition of IR. TNFa, IL-1β, leptin, lipocalin, and other cytokines are known to induce IR
via three different mechanisms: paracrine inhibition of cells that target insulin, endocrine
entry into the internal circulation, and action on the insulin transcriptional machinery to
decrease insulin expression [47]. Intracellular specific kinases, receptors, and cytokines
that are suitable for the job mediate inflammatory signaling in cells. Pro-inflammatory
factors activate their intracellular specific receptors, which raises the expression levels of
downstream protein kinases and ultimately triggers the development of inflammation and
insulin resistance [35].

Furthermore, through paracrine or endocrine regulatory mechanisms, the miRNAs
found in exosomes (Exos) secreted by ATMs can also be targeted to different insulin cell
types, with significant effects on cellular insulin action, in vivo insulin sensitivity, and
overall glucose homeostasis. According to Jordan et al., obesity increases the production
of miR-143 in the liver. By inhibiting its target gene, ORP8, the miRNA reduces the
sensitivity of the liver to insulin [48]. Wei Ying et al. discovered that miR-155, which is
released by obese mouse ATMs, is absorbed by insulin target cells both in vivo and in vitro.
By suppressing the expression of its target gene, PPARg, miR-155 can increase glucose
intolerance, systemic insulin resistance, and cellular insulin resistance [49]. Both obese
mouse models and human subjects’ livers have been found to express higher levels of
miR-802, which inhibits insulin transcription and secretion by driving the Ca2+ signaling
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pathway by encouraging the binding of CREB to the Sox6 promoter [50]. Additionally,
miR-802 can reduce insulin sensitivity by blocking the expression of Hnf1b, which also
inhibits insulin transcription and secretion [51]. In conclusion, aberrant lipid metabolism
can cause IR and an inflammatory response, which can ultimately result in the onset and
progression of T2DM.

3. CVD and Lipid Metabolism

Globally, there is an exceptionally high death and recurrence rate associated with
CVD, a category of illnesses affecting the heart or blood vessels [52,53]. The incidence
of abnormal lipid metabolism has been on the rise in recent years due to changes in
dietary habits, lifestyle modifications, and improved living standards. Abnormal lipid
metabolism is a major risk factor for CVD, particularly atherosclerosis (As) and coronary
heart disease (CHD). Anomalous vascular endothelial function and an increased risk of
CVD in individuals might result from disorders of lipid metabolism in the blood, which
can also impact vasodilatory function and vascular structural remodeling [54]. According
to research by Soppert, J. et al., the development of CVD is influenced by the buildup
of LDL-C, HDL-C, lipoproteins, TG, FAs, and derivatives [55]. Among them, reducing
plasma apoB, which comprises lipoproteins, has been thought to be crucial for both treating
and preventing CVD since it reduces the incidence and progression of the disease [56].
Furthermore, research has demonstrated that during obesity, hormones produced from
adipose tissue, such as resistin and leptin, are harmful to cardiovascular health [6–8]. Many
CVDs, such as coronary heart disease, heart failure, hypertension, stroke, atrial fibrillation,
and sudden cardiac death, have been linked to abnormalities in lipid metabolism. These
abnormalities can also either directly or indirectly raise the morbidity and mortality rates
associated with cardiovascular diseases [52–57].

3.1. Arachidonic Acid Metabolic Pathway, Abnormal Metabolism, and CVD

According to a recent study, TGs and polyunsaturated fatty acids (PUFAs) are impor-
tant in the prevention and treatment of CVD. Lowering TG levels has been shown to lessen
the risk of CVD [58]. Arachidonic acid (AA) is a long-chain polyunsaturated omega-6 fatty
acid that is very prevalent in the human body. A plethora of research conducted in the past
few years has indicated that AA is crucial for cardiovascular health. Since CVD affects the
inner lining of the arteries, it is a chronic inflammatory disease. It is primarily brought on by
abnormalities in lipid metabolism and the buildup of macrophages that contain cholesterol
in the arterial walls. These events trigger an adverse immune response in the body, which
typically manifests as plaques in medium- and large-sized arteries [59], which causes the
arteries to become stiffer and less elastic [60]. Several metabolites in the AA metabolic
pathway have been demonstrated in several studies to influence cardiovascular disorders
like As. Certain AA metabolites generated by cytochrome P450 (CYP), arachidonic acid
lipoxygenases (ALOXs), and prostaglandin-endoperoxide synthase (PTGS) are significant
contributors to the development and incidence of CVD in the AA metabolic pathway [61].
For instance, phospholipase A2 liberates phospholipids from cell membranes as AA, which
is then processed by three separate enzymes, PTGS, ALOX, and CYP, and enters three
distinct metabolic pathways. Because it influences the key pathophysiological elements
of As and ischemic heart disease, such as platelet aggregation, arterial wall tone, and in-
flammatory processes in motile As lesions, the PTGS pathway is one of the most important
therapeutic targets in both conditions. Prostaglandins (PGs), prostacyclin (PGI2), throm-
boxane A2 (TXA2), hydroxye icosatetraenoic acids (HETEs), leukotrienes (LTs), lipoxins
(LXs), and epoxyeicosatrienoic acids (EETs) are among the products that are produced by
AA’s three metabolic pathways [62]. These products all modulate vascular tone by acting
on various receptors, and each is crucial in cardiovascular complications [63]. For example,
the metabolites PGD2 [64–66], PGF2 [67], and PGI2 [68] in the PTGS pathway inhibit throm-
bosis by lowering blood pressure and vascular tone to cause vasodilatation, whereas the
products PGE2 [69–74] and TXA2 [75–77] have the opposite effect. In the ALOX pathway,
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the metabolites LTs play a role in promoting vasoconstriction and thrombosis [78,79], while
another product, LXs, has an inhibitory effect on thrombosis, in contrast [80–82]. The
HETEs in the third CYP pathway, which play their respective roles in the vasculature
according to their different isomers, are noteworthy [83–86] (Table 1). Therefore, from
the perspective of regulating lipid metabolism, it is important to explore new therapeutic
targets and screen new drugs for the treatment of cardiovascular diseases.

Table 1. Metabolic pathways of arachidonic acids in the action of three pathways.

Pathways Metabolites Receptors Action on Blood Vessels Vascular State Reference

Prostaglandin-
endoperoxide

synthase (PTGS)

Prostaglandins
(PGs)

PGD2 DP1; DP2 Vascular tension (−);
blood pressure (−)

Vasodilation;
thrombus (−) [64–66]

PGE2
EP1; EP3 Vascular tension (+);

blood pressure (+)
Vasoconstriction;

thrombus (+) [69–71]

EP2; EP4 Vascular tension (−);
blood pressure (−)

Vasodilation;
thrombus (−) [72–74]

PGF2α FP Vascular tension (+);
blood pressure (+)

Vasoconstriction;
thrombus (+) [67]

Prostacyclin (PGI2) IP Vascular tension (−);
blood pressure (−)

Vasodilation;
thrombus (−) [68]

Thromboxane A2(TXA2) TP Vascular tension (+);
blood pressure (+)

Vasoconstriction;
thrombus (+) [75–77]

Arachidonic acid
lipoxygenases

(ALOXs)

Leukotrienes (LTs) - Vascular tension (+);
blood pressure (+)

Vasoconstriction;
thrombus (+) [78,79]

Lipoxins (LXs) - Vascular tension (−);
blood pressure (−)

Vasodilation;
thrombus (−) [80–82]

Cytochrome p450
(CYP) enzymes

Hydroxye icosatetraenoic acids
(HETEs) - Different HETEs have different effects on

blood vessels [83–87]

Epoxyeicosatrienoic acids (EETs) - Vascular tension (−);
blood pressure (−)

Vasodilation;
thrombus (−) [63]

3.2. Abnormal Lipoprotein Metabolism and CVD

A significant cause of CVD during lipid metabolism is generally thought to be the
buildup of low-density lipoprotein cholesterol (LDL-C) as a result of metabolic disor-
ders [88–90]. Several investigations have demonstrated that As can be successfully pre-
vented from occurring and developing by directly inhibiting LDL transport. Antibodies
derived from sulfated glycosaminoglycans in proteoglycans were discovered by Soto et al.
to impede the retention of LDL, which might lessen LDL modification and prevent the
growth of As [91,92]. In a study conducted by Sessa et al., mice deficient in activin receptor-
like kinase 1 (ALK1) in the arterial endothelium (Alk1i∆aEC) were crossed with mice devoid
of the LDL receptor (Ldlr−/−). Compared with the control group, the crossbred mice
showed significantly less As plaque formation, ApoB, and macrophage infiltration [93],
confirming the notion that obstructing LDL transport inhibits As development.

LDL may be modified in a number of ways, the most common being oxidation,
which can result in As [4]. Other alterations include glycation and oxidative modifica-
tion. Oxidized low-density lipoprotein (Ox-LDL) resulting from oxidative modifications,
such as oxidized phospholipids (OxPLs), can be ingested by macrophages, which subse-
quently transform into foam cells [94,95]. The build-up of foam cells increases the risk of
lipid streaks and even lipid plaques, which ultimately cause CVD to occur and progress.
Furthermore, the build-up of cholesterol within macrophages stimulates inflammatory
reactions, which, in turn, triggers the activation of the NLRP3 inflammasome through
NF-κb-mediated activation, the production of pro-inflammatory cytokines, and the aggra-
vation of the chronic inflammatory state of atherosclerosis [96]. This also damages the
vascular endothelium and increases the expression of adhesion molecules [97], which, in
turn, triggers more macrophage aggregation and matrix metalloproteinase (MMP) expres-
sion, diminishing the stability of As plaques and aggravating the spread and development
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of As plaques [98,99]. Shi et al. found that BAT-derived neuromodulin-4 (neuregulin-
4 (Nrg4)) inhibited Ox-LDL-induced inflammatory responses (TNF-α, IL-1β, and IL-6)
and the migration of RAW264.7 cells. In vivo, Nrg4 was shown to reduce endothelial
damage and ameliorate the onset and progression of As in mice [100]. In experimental
and in vitro studies in HFD-fed mice, Gang Luo and colleagues found that inhibiting p38
MAPK phosphorylation and p16 expression in the p38 MAPK/p16 pathway dramati-
cally decreased Ox-LDL-induced macrophage senescence and reduced the development of
As [101]. Furthermore, glycated low-density lipoprotein (G-LDL), which is produced when
LDL glycation is modified, stimulates macrophage foam cell formation, increases oxidative
stress and inflammation in human endothelial cells, and binds to scavenger receptor A
(SR-A) to upregulate SR-A gene expression and extend its half-life, which stabilizes the
transfer of more G-LDL and exacerbates the As outbreak [102]. As a result, anomalies
in lipid metabolism cause LDL to aggregate underneath the endothelium in the artery
vasculature, which aids in the onset and advancement of As (Figure 1).
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As the enzyme converts citric acid to acetyl coenzyme A, it offers precursor material for
the subsequent production of fatty acids and cholesterol. This makes the study-confirmed
ATP citrate lyase (ACLY) an attractive target for LDL-C reduction and cardiovascular
protection. In fact, ACLY uses distinct pathways to target macrophages and hepatocytes in
order to achieve its dual regulatory actions [103,104]. In an animal model of As, Pinkosky
et al. discovered that using benzoic acid to suppress ACLY expression in hepatocytes
was successful in lowering circulating LDL-C levels [105]. After inhibiting ACLY activity
with the inhibitor 326E, Zhifu Xie et al. upregulated LDLr expression and discovered that
apolipoprotein E (ApoE)-deficient mice had significantly fewer As plaques, both in terms of
number and size, as well as the expression of inflammation-associated genes Cd68, F4/80,
and Il1b, as well as ATP-binding cassette subfamily G member 5 and 8 (ABCG5 and ABCG8)
genes, which are linked to hepatic cholesterol efflux [106]. This suggests that the anti-As
blocked ACLY functions through hepatic cholesterol efflux. Meanwhile, lipopolysaccharide
(LPS) and IL-4-induced macrophage activation are modulated by ACLY-dependent acetyl
coenzyme A doping of histones, which mostly exacerbates As by boosting inflammatory
responses. In vitro studies showed that blocking ACLY decreased oxPAPC, a stimulus
linked to in vivo atherosclerosis, as well as LPS-induced IL-1β synthesis and hypoxia-
inducible factor (HIF)-1α signaling, which, in turn, decreased macrophage inflammatory
responses [107]. Pathological analysis of the As plaques in AclyM-KO mice revealed
increased atherosclerosis of the plaques’ thick fibrous cap and significantly smaller areas
of plaque necrosis. Additionally, the AclyM-KO mice’s macrophages had elevated levels
of transforming growth factor β (TGF-β), indicating that ACLY exerts its effects on As
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through the expression of TGF-β by macrophages [108]. As a result, As can be successfully
prevented from occurring and from developing when ACLY activity in lipid metabolic
pathways is inhibited. This makes ACLY an important target for possible As therapy.

Apart from the issues with low-density lipoprotein (LDL), new research has demon-
strated that high levels of triglyceride-rich lipoprotein residues (TRLs) derived from the gut
and liver are linked to cardiovascular disorders such As [109,110]. Newly secreted TRLs
in chylomicron (CM) undergo intravascular lipolysis to produce chylomicron remnants,
which, in turn, yield a variety of highly modified particles in very low-density lipoproteins
(VLDLs), including remnants in the VLDL density range, intermediate-density lipoproteins
(IDLs), and LDLs. These smaller, highly modified TRL remnant particles are becoming
more widely acknowledged as crucial As therapeutic targets [109]. Moreover, Bäck et al.
discovered that FAs can control intimal inflammation in a variety of ways [59]. Omega-3
polyunsaturated fatty acids (w3 PUFAs) interact with free fatty acid receptor 4 (FFAR4)
to attenuate vascular inflammation, arterial thrombosis, and intimal hyperplasia, thereby
acting as a vascular repair agent. For instance, omega-3 fatty acids themselves can directly
activate specific free fatty acid receptors (FFARs) [111,112]. However, fatty acid-derived
peroxidation products, like lipoaldehyde 4-hydroxy-nonenal (HNE), can cause plaque
instability and rupture by forming HNE-apoB adducts. These adducts can divert LDL
metabolism from pathways that allow macrophages to scavenge receptors, which can result
in the formation of foam cells and may also locally cause apoptosis in smooth muscle cells
and macrophages. Ultimately, this can cause plaque instability and rupture and raise the
risk of atherosclerotic thrombotic events [113,114]. In conclusion, As is mostly regulated by
lipid metabolism, and more research into this area should lead to improved As symptoms
through lipid metabolism interventions.

Sphingolipids are a highly diverse and complex structure of lipid families, widely dis-
tributed in cell membranes or plasma lipoproteins, including ceramide (Cer), sphingosine
(So), sphingomyelin (SM), sphingosine-1-phosphate (S1P), and glucosylceramide. With
the advancement of plasma lipidomics, more and more researchers have recognized the
role of sphingomyelins in the onset and progression of cardiovascular disease. The risk
of CVD was associated with circulating ceramides and sphingomyelin, which changed
depending on the length of connected acylated saturated fatty acids [115,116]. Heart failure
was associated with greater plasma levels of Cer-16 and SM-16, but not with higher levels
of Cer-22 or SM, a very-long-chain saturated fatty acid [115]. A study of older persons in
the Cardiovascular Health Study (CHS) indicated that higher levels of plasma Cer-16 or
SM-16 increased the risk of death, while lower levels of longer fatty acid species decreased
the risk of mortality [116]. Higher levels of plasma Cer, particularly Cer-16, have been
linked to an increased risk of diabetes, as well as an increased risk of cardiovascular disease
after diabetes development [117]. The plasma concentrations of Cer-16 and SM-16 were
linked to an increased risk of sudden cardiac death (SCD) [118]. Currently, the beneficial
processes of a greater length of acylated saturated fatty acid coupled to Cer and SM are
unknown. Therefore, future research is needed to investigate the beneficial processes of
longer acylated saturated fatty acid chains coupled to Cer and SM.

4. Abnormalities of Lipid Metabolism in Neurodegenerative Diseases

Major constituents of neuronal cells in the brain, lipids perform both structural and
physiological roles in processes such as neural communication, neurogenesis, synaptic
transmission, signal transduction, membrane region compartmentalization, and gene ex-
pression control. Neurodegenerative illnesses including Alzheimer’s and Parkinson’s have
been shown to exhibit dysregulation of certain lipid classes and lipid homeostasis. Deficits
in emotion control, stress management, and learning and memory are caused by experi-
mental suppression of neural stem cell (NSC) activity in the brain [119]. Lipids’ function
in controlling NSC behavior has drawn more attention in the last several years. Lipid
metabolism genes represent a prominent category of transcriptional variations between
resting and active NSCs in the adult subventricular zone (SVZ) ecotope [120]. Moreover,
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fatty acid oxidation is necessary for neural precursors to proliferate in the SVZ and hip-
pocampal dentate gyrus (DG) ecotopes [121], whereas NSCs are found in the SVZ and are
especially sensitive to ambient lipid signals. It has been discovered that monotherapy with
omega-3 unsaturated fatty acids (N-3 PUFAs) slows down indications of neurodegenerative
illnesses, such as decreased practice and spoken language skills [122].

Alzheimer’s disease (AD) is a chronic, progressive neurological illness that has gar-
nered a lot of attention in recent years [123]. Patients with AD may have lipid metabolic
abnormalities, including TG, TC, LDL-C, apolipoprotein B (ApoB), apolipoprotein E (ApoE),
etc. Thus, the onset of AD is intimately linked to brain lipid metabolite abnormalities [124].
Arachidonic acid (AA), acrylic acid (ALA), eicosapentaenoic acid (EPA), and docosahex-
aenoic acid (DHA) are examples of polyunsaturated fatty acids (PUFAs) that have been
shown to have anti-inflammatory or pro-inflammatory effects as well as some neuronal
protective properties [125]. For example, DHA and EPA have been shown to decrease the
secretion of pro-inflammatory cytokines by increasing the production of growth factors
like neurotrophic factors, which, in turn, helps AD [126].

Endocannabinoids are lipophilic compounds containing long-chain polyunsaturated
fatty acids that can bind to and activate cannabinoid receptors such as CB1 and CB2 [127].
Cannabinoid (CB) receptors are G protein-coupled receptors found throughout the body, in-
cluding the central and peripheral neurological systems [128]. Under pathological settings,
CB1 receptors are more common and more upregulated in microglia than CB2 receptors,
and binding to endocannabinoids or phytocannabinoids can trigger microglia to change
into the less damaging M2 phenotype and protect neurons [127,129]. A recent study demon-
strated that endocannabinoids N-arachidonoyl ethanol amide and noladin directly interact
to hinder Aβ42 self-assembly [130]. AppNL-G-F mice with APP knock-in showed enhanced
expression of CB2 receptors at 6 and 12 months of age, as well as GPR55 mRNA levels and
immunoreactivity [131].

Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), and other neurological
diseases are included in the category of dementia with Lewy bodies (DLB) disorders [132].
The risk of developing Parkinson’s disease is influenced by dietary fat consumption. A high
intake of saturated fats, such as cholesterol and arachidonic acid, may raise this risk, while a
reduced intake of saturated fats may be advantageous for the prevention of Parkinson’s dis-
ease [133,134]. Maintaining the homeostasis of organismal lipid metabolism is also crucial,
as evidenced by the discovery that neuropeptidergic neurons exhibit excessive endoplasmic
reticulum–mitochondrial contact sites during disrupted early sleep patterns in Parkinson’s
patients [135]. These excessive contact sites cause aberrant lipid transport, depletion of
phosphatidylserine in the ER, and disruption of neuropeptide-containing vesicle produc-
tion. Functional studies have revealed that the wild-type PTEN-induced putative kinase
1 (PINK1) protein may protect nerve cells from stress-induced mortality [136]. A PINK1
gene mutation may cause Parkinson’s disease. CB1 receptors in homozygous PINK1−/−

mice drastically impair corticostriatal glutamatergic synaptic transmission ability [137].
Compared with the control group, patients with Parkinson’s disease had significantly
higher mRNA levels of CB1 receptors [138].

5. Abnormalities in Lipid Metabolism in Cancer

One of the main indicators of the onset of cancer is abnormal lipid metabolism in cells.
Lipid metabolism disorders frequently affect a range of signaling pathways involved in
cancer genesis, invasion, and metastasis [2–8]. Understanding the mechanism of aberrant
lipid metabolism in cancer cells in order to target and control the expression of key genes
in the lipid metabolic pathway is anticipated to be a new approach to cancer treatment,
aided by extensive domestic and international research. The development of cancer is
significantly influenced by lipid metabolism [139], and problems with lipid metabolism
frequently result in the aberrant expression of several genes and proteins as well as the
dysregulation of cytokines and signaling cascades.
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5.1. Abnormalities in Lipid Metabolism in Tumor Cells

Rapid cancer cell proliferation is a key step in the process of cancer growth, and the
FA continuous composite membrane and signal molecules are required to support cancer
cell proliferation [140]. Consequently, it is important to investigate the impact of lipid
metabolism on cancer formation by examining how FA production and fatty acid oxidation
(FAO) affect cancer cell metabolism. Simultaneously, elevated levels of β-oxidation and FA
de novo synthetic production have been demonstrated in cancer cells. And these noticeably
raised properties have been confirmed in several cancer types [141,142].

During the synthesis of endogenous lipids in cancer cells, FAs are synthesized from
a cytoplasmic acetyl coenzyme produced from glucose, glutamine, or acetate, and subse-
quently undergo a condensation step catalyzed by acetyl coenzyme a carboxylase (ACC1/2,
also known as ACACA/B), malonyl coenzyme a, and fatty acid synthase (FASN) to form
16-carbon saturated FA palmitate [143], and finally, palmitate forms non-essential fatty
acids including 18-carbon monounsaturated fatty acids (C18:1) by the action of fatty acid
elongase of very-long-chain fatty acids 1–7 (ELOVL1-7), stearoyl coenzyme a desaturase,
or fatty acid desaturase 1–3 (FADS1-3), with the key enzymes involved in this process all
playing an important role in the development of cancer [144]. Sphingolipids (glucose ce-
ramides) and glycerophospholipids (cardiolipins) are synthesized in response to mTORC2
stimulation during hepatocellular carcinogenesis. This process further amplified mTORC2
activity and caused hepatocellular carcinoma (HCC) in a rat model [145]. Similar to this, in
ovarian cancer cells, fatty acid synthesis and the phosphorylation of the NF-κB signaling
pathway are inhibited by blocking FASN and carnitine palmitoyl transferase 1A (CPT1A)
activity through miR-33b’s targeting of growth factor β-activated kinase 1 (TAK1), which,
in turn, prevents the peritoneal metastasis of ovarian cancer [146]. In prostate cancer cells,
xenografts, and clinical tumors, the direct activation of androgen receptor (AR)-mediated
fatty acid elongase of very-long-chain fatty acid 5 (ELOVL5) has been shown [147]. More-
over, it was discovered that the MAPK pathway’s MEK5-ERK5 is necessary for the survival
and growth of SCLC cell lines both in vivo and in vitro and that its loss compromises
lipid metabolism pathways like the mevalonate pathway, which regulates the synthesis of
cholesterol [148].

In addition, sphingolipid metabolism abnormalities are commonly detected in several
kinds of cancer [149–151]. Ceramide kinase (CERK) is a sphingolipid metabolic enzyme
that can phosphorylate intracellular ceramide and, hence, promote cancer cell growth [152].
Upregulating CERK expression levels may prevent tamoxifen-induced Cer accumulation,
which is related to a poor prognosis in estrogen receptor-positive breast cancer patients
receiving endocrine therapy [153]. As the S1P/Cer ratio grows, tumor cell survival and/or
proliferation increase, boosting colorectal cancer progression while decreasing chemother-
apy sensitivity [154]. Exosomes, a potential non-invasive cancer biomarker, are gaining
popularity among researchers. A study discovered that nine lipid species in urine exo-
somes were significantly different between a prostate cancer patient group and a healthy
group [151]. According to the studies mentioned above, several classes of sphingolipids
may be raised in certain human malignancies, and sphingolipid metabolic abnormalities
may contribute to the occurrence and development of cancer.

During lipid metabolism, monoacylglycerol lipase (MAGL) transforms into free fatty
acids and glycerol. In tumor cell lines, MAGL gene expression and protein levels rise
with tumor cell malignancy [155]. MAGL exhibits high levels of expression in invasive
human carcinomas and primary tumors. Through the upregulation of pro-tumor-signaling
lipids in tumor cell lines [156], as well as the increased expression of its protein and
gene [155–158], MAGL facilitates tumor invasion and metastasis. After that, fatty acids go
into the β-oxidation phase. In cancer biology, β-oxidation has drawn a lot of interest as
one of the key mechanisms to stop tumorigenesis and development. Gloria Pascual and
colleagues showed that the fatty acid receptor CD36, by increased lipid absorption and
activating β-oxidation, increases the development of human oral carcinomas by increasing
oral carcinogenesis in a mouse model of oral squamous cell carcinomas (OSCCs) [159].
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Hepatocellular carcinoma (HCC) cells have been found to significantly under-express
medium-chain acyl-coenzyme a dehydrogenase (ACADM), an enzyme that catalyzes the
first step of mitochondrial fatty acid oxidation. When caveolin-1 (CAV1) expression is
increased, this leads to the nuclear accumulation of SREBP1, which inhibits ACADM
activity and, as a result, fatty acid oxidation, and increases the invasiveness of HCC
cells [160]. In MNA neuroblastoma, the fatty acid metabolism process is promoted, and
lipid metabolism becomes unbalanced due to the increased expression of ACADM and the
inhibition of aurora kinase A (AURKA) and aurora kinase B (AURKB) [161]. Furthermore,
in clear-cell renal-cell carcinoma (ccRCC), there is an increased expression of stearoyl
coenzyme a desaturase 1 (SCD1), fatty acid synthase (FASN), and acetyl coenzyme a
carboxylase (ACC). This results in the formation of abnormal pathways that produce high
levels of acetyl coenzyme a and fatty acids [162]. In conclusion, aberrant lipid metabolism
found in cancer cells is closely linked to the development of cancer.

5.2. Abnormalities in Lipid Metabolism in the Tumor Microenvironment

Cancer cells regulate their own metabolism, including lipid metabolism, in order to
adapt to the changes in the tumor microenvironment (TME) that are typically associated
with the occurrence and progression of malignant tumors [163]. These changes are char-
acterized by aberrant changes in metabolic signals, lipid transport proteins, metabolic
substrates, metabolic enzymes, and metabolites in lipid metabolism [140], which are pri-
marily manifested as abnormal accumulation of lipids in tumor cells [164]. Abnormal lipid
accumulation in the tumor microenvironment can influence the phenotype and functional-
ity of immune cells that infiltrate tumors, which helps create an immunosuppressive tumor
microenvironment and allows tumor cells to evade the immune system. Stearoyl-CoA
desaturase 1 (SCD1), a rate-limiting enzyme, is involved in the conversion of saturated
fatty acids into monounsaturated fatty acids (MUFAs), and it is a key indicator of the tumor
microenvironment. Because SCD1 is expressed at high levels in a number of cancer types
and regulates fatty acid metabolism, it has been proposed as a possible target for cancer
therapy [165]. It has been shown that these SCD1-related signals activate the β-catenin path-
way, which has been linked to inflammatory tumors that are not T-cell-related in a range
of human malignancies, such as melanoma, colorectal, and hepatocellular cancers [166].
Prostate cancer and other tumor types have also been shown to have upregulated SCD1
expression or activity, which may aid in the development of cancer by stimulating the AKT
signaling pathway or by blocking AMPK and GSK3, which, in turn, promotes downstream
β-catenin activity and triggers associated tumor growth signals [167]. The research con-
ducted by FRITZ et al. provided additional confirmation that pharmacological inhibition
of SCD1 activity reduces lipid synthesis, inhibits the growth of androgen-sensitive and
androgen-resistant prostate cancer cells, stops the growth of prostate tumor xenografts in
nude mice, and improves survival in nude mice [168]. Furthermore, CYH33, an inhibitor
of the phosphatidylinositol 3-kinase (PI3K) pathway, stimulates FA metabolism, raises
free FA (FFA) levels, and activates CD8+ T cells in the TME. These actions prevent tumor
development and improve host immunity [169]. Lipid lung mesenchymal cells (MCs) use
exosome-like vesicles to transfer their lipids to tumor cells and natural killer (NK) cells.
MCs specifically alter mouse adipose triglyceride lipids (ATGLs), which increases tumor
cell proliferation, impairs NK cell function, and increases lung metastasis from breast can-
cer [170]. Therefore, control of lipid metabolism in the tumor microenvironment frequently
significantly contributes to the initiation and spread of cancer.

6. Lipid Metabolism Abnormalities in Other Diseases

The capacity to control lipid metabolism is essential for sustaining health since it is a
complicated physiological process that is intimately tied to dietary management, hormone
regulation, and homeostasis. However, severe lipid metabolism abnormalities are a result of
long-term dietary excess and bad lifestyles in modern culture. Chronic illnesses including
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polycystic ovaries, osteoarthritis, chronic kidney disease (CKD), nonalcoholic fatty liver
disease (NAFLD), and others frequently coexist with lipid metabolism abnormalities.

Hepatic steatosis results from increased hepatic fat buildup combined with impaired
hepatic lipid clearance, and non-alcoholic fatty liver disease (NAFLD) is intimately linked to
changes in lipid metabolism [171]. The lipid metabolism transcription factor FOXO1 has a
dual regulatory function in nonalcoholic fatty liver disease (NAFLD); overexpression of this
factor in the liver can result in increased TG production, decreased hepatic lipid oxidation,
and worsened lipoatrophy. The majority of the current research on NAFLD prevention and
therapy has focused on disrupting the disease’s lipid metabolism signaling system. For
example, Yue Li et al. [1] negatively regulated the transcription factor SREBP1, which causes
fat deposition and ameliorates NAFLD symptoms. According to Chen et al. [171], hypericin
(HP) directly binds to PKACα, triggering the PKA/AMPK signaling cascade to produce its
regulatory effects on non-alcoholic fatty liver disease. Furthermore, studies have discovered
that a variety of food extracts can target hepatic fatty acid degeneration by triggering the
corresponding lipid metabolism signaling pathways. For example, the extract cochineal
orange Bixin functions as a Nrf2 activator, which targets oxidative inflammation and hepatic
steatosis [172]; meanwhile, it can activate PPARα, which, in turn, triggers hepatic fatty acid
oxidation, improving lipid and carbohydrate metabolism in obese mice [173].

In the kidneys, glomeruli function as selective filters, eliminating harmful substances
from the blood. Chronic kidney illness is frequently the result of glomerulus lesions,
and podocytes functionally specialized, terminally differentiated cells of the glomeru-
lar filtration barrier are highly susceptible to lipotoxicity [174]. Diabetic kidney disease
(DKD) is mostly determined by lipid buildup in podocytes; hence, it is now crucial, from
a clinical standpoint, to identify possible treatment targets by modulating podocyte lipid
metabolism [175]. Through the SIRT1-mediated SREBP1 signaling pathway, JAML causes
enhanced lipid accumulation in podocytes when junctional adhesion molecules (JAMs) are
overexpressed in the cells. According to Ming Wu et al. [176], treatment of inflammatory
vesicles enriched with nucleotide-containing leukocyte polypeptide 3 (NLRP3) siRNA
significantly inhibited the production of mitochondrial ROS in podocytes, cytoskeletal
changes, lipid accumulation, and high-glucose-induced apoptosis. It has been demon-
strated that lipotoxicity-induced podocyte damage results from the dysregulation of lipid
metabolism, which raises intracellular free fatty acid levels or accumulates cholesterol and
is linked to mitochondrial dysfunction [177].

The most frequent joint condition that affects a large percentage of the senior popula-
tion is osteoarthritis (OA) [178]. Proteomic analyses have revealed a significant relationship
between OA and lipid metabolism, with research showing that adipokines are important
regulators in the pathophysiology of OA [179] and that disorders of lipid metabolism
and low-grade inflammation have a greater impact on joint tissues [180]. Meanwhile,
n-3 PUFAs increase osteoblast production by downregulating PPARγ and boosting os-
teoblast activity, n-6 PUFAs limit osteoblast differentiation by raising the expression of
peroxisome proliferator-activated receptor gamma (PPARγ) and encouraging adipose for-
mation [181,182]. Through the inhibition of mTORC1 and the promotion of chondrocyte
autophagy and cell survival, greater synthesis of n-3 PUFAs from endogenous n-6 PU-
FAs may postpone the beginning of OA, according to the results of mice research [183].
Prostaglandin E2 (PGE2), a metabolite of arachidonic acid (AA), and its own nuclear
factor kappa-B ligand (RANKL) pathway receptor activators are important regulators of
osteoblast development [184]. It was shown that modest doses of omega-3 polyunsaturated
fatty acid supplementation were adequate to mitigate the effects of obesity on osteoarthri-
tis (OA) and aided in expediting OA healing in mouse tests including dietary fatty acid
supplementation. Meanwhile, increased bone mineral production, heterotopic ossification,
synovitis, and enhanced macrophage infiltration in synovial tissue were all consequences
of osteoarthritis following joint damage caused by SFA and ω-6 PUFA supplementation,
respectively [185].
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7. Summary

As the study of lipid metabolism continues, anomalies in this process are becoming
more and more linked to the onset and progression of many illnesses. In order to compre-
hend the role of lipid metabolism in the pathogenesis of various diseases and ultimately
achieve the goal of the effective prevention and treatment of related diseases, researchers
are currently concentrating on investigating the association mechanism between lipid
metabolism and various related diseases. The dynamic equilibrium of lipid metabolism
in the body is achieved by the combined activity of several genes and metabolic enzymes.
Lipid metabolism is a complicated metabolic process that takes place in several organ
groups and at different levels. It is anticipated that research on important lipid metabolism
genes or enzymes as therapeutic targets may yield new insights into the etiology and
management of associated disorders. The application of lipidomics in the exploration of
various disease markers is still in its infancy. There are also few studies on the role of lipid
metabolism-related genes in the disease, the specific biological mechanisms, and the related
key signaling pathways. This review focused on the role that aberrant lipid metabolism
plays in the development of several illnesses, including cancer, neurological disorders,
endocrine system diseases, and cardiovascular system diseases (Figure 2). Thus, the rela-
tionship between the abnormal expression of more key lipids, lipid molecules, key lipid
metabolism genes, and key lipid metabolism enzymes and the occurrence and development
of various diseases has been further clarified. It also provides a new perspective for the
efficient prevention, diagnosis, treatment, and mechanism research of diseases related to
abnormal lipid metabolism.
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