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Abstract: The history of effective anti-cancer medications begins with the discovery of cisplatin’s
anti-cancer properties. Second-generation analogue, carboplatin, with a similar range of effectiveness,
made progress in improving these drugs with fewer side effects and better solubility. Renewed interest
in platinum-based drugs has been increasing in the past several years. These developments highlight
a revitalized enthusiasm and ongoing exploration in platinum chemotherapy based on the series of
dinuclear platinum(II) complexes, [{Pt(L)Cl}2(µ-bridging ligand)]2+, which have been synthesized
and evaluated for their biological activities. These complexes are designed to target various cancerous
conditions, exhibiting promising antitumor, antiproliferative, and apoptosis-inducing activities. The
current work aims to shed light on the potential of these complexes as next-generation platinum-based
therapies, highlighting their enhanced efficacy and reduced side effects, which could revolutionize
the approach to chemotherapy.

Keywords: dinuclear platinum(II) complexes; antitumor effect; apoptosis; cell proliferation; DNA
interaction; biological evaluation; cancer therapy

1. Introduction

The medicinal application of metals can be traced back almost 5000 years, but the
development of modern medicinal inorganic chemistry was stimulated by the discovery
of cisplatin in 1969 [1]. Cisplatin (cis-diamminedichloroplatinum(II), platinol, Table 1) is
the most well-known conventional platinum anticancer complex which effectively treats
testicular, ovarian, head, neck and small/cell lung cancer [2]. Cisplatin binds the covalent
to DNA, after undergoing a ligand substitution where a chloride ion is replaced by a water
molecule, blocking transcription and replication, which initiates the apoptosis process in
cells [3,4]. This reaction occurs more readily in the cytoplasm than in the bloodstream, due
to lower chloride concentrations [5]. Once aquated, cisplatin interacts with DNA, prefer-
entially binding to guanine bases and forming intrastrand cross-links, which can disrupt
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DNA structure and lead to cell death if not repaired. DNA repair mechanisms, particularly
nucleotide excision repair, can influence the effectiveness of cisplatin. Proteins that bind to
distorted DNA, like the high-mobility group box proteins, might shield platinum adducts
from repair, affecting treatment outcomes. In addition, platinum drugs can interact with
blood proteins and cellular detoxification systems, contributing to drug resistance [6–8].

Table 1. Platinum(II) complexes approved as anticancer drugs for human use.

General Name Chemical Structure Trade Name Year of Approval

cisplatin
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Nevertheless, the application of cisplatin is limited, due to the characteristic side
effects such as emetogenicity, ototoxicity, nephrotoxicity and neurotoxicity, as well as
increasing resistance in tumor cells [9–11]. The clinical limitations of cisplatin have been
the motivation for the creation of cisplatin analogues.

Carboplatin ([Pt(CBDCA-O,O’)(NH3)2], paraplatin, Table 1) has been used in oncother-
apy since 1989 [12]. It has fewer toxic side effects than cisplatin and is more easily used
in combination therapy, due to the slower rate of conversion of carboplatin to reactive
species. Because of its low reactivity, carboplatin is better tolerated by patients and can
be administrated at higher doses than cisplatin. Carboplatin is mostly used for ovarian
cancer, lung cancer, head and neck cancer, brain cancer, and neuroblastoma treatment [13].
Studies on the interaction of carboplatin with DNA indicate the same mode of action as
cisplatin (covalent binding to DNA), suggesting identical products formed by cisplatin and
carboplatin interaction with DNA [14]. Cross-links formed after guanine base binding, can
occur between guanines on the same DNA strand (intrastrand) or across different strands
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(interstrand). The most common intrastrand cross-link is 1,2-d(GpG), making up 65% of
the lesions, followed by 1,2-(ApG) and 1,3-d(GpTpG) in lower percentages, with some
GG interstrand cross-links also present. Cisplatin and carboplatin form similar cross-links,
though in different proportions. These cross-links significantly alter the DNA structure,
causing bending and unwinding of the double helix, as shown by atomic resolution stud-
ies of various platinum drug adducts [14,15]. Unfortunately, resistance of tumor cells to
carboplatin was also observed in the same way as with cisplatin [16].

Oxaliplatin (trans-R,R-cyclohexane-(1,2-diamine), eloxatin, Table 1), as a drug, was
used for the first time in France in 1996, and licensed for Europe in 1999 and for the US
in 2002, 23 years after being patented [13]. Oxaliplatin was approved for the treatment
of colorectal cancer [17]. It was the first platinum(II)-based anticancer drug to overcome
tumor cell resistance. However, a major oxaliplatin side effect of oxaliplatin is neurotoxicity,
which limits the dose of the drug [18]. DNA-binding products of oxaliplatin are similar,
but not identical, to those formed by cisplatin and carboplatin. The main advantage of
oxaliplatin efficiency is that it binds to DNA by covering major groove and prevents the
binding of proteins for the reparation of the DNA chain [19–21].

In 1983, the Japanese company Shionogi Pharmaceutical Company, located in Osaka,
Japan, designed nedaplatin (cis-diammine-glycolatoplatinum(II), aqupla, Table 1) [22]. The
use of nedaplatin in medicine began in 1995 in Japan. Nedaplatin is used to treat head
and neck, esophageal, and lung tumors [23]. As the glycolato chelate ligand increases
the solubility of nedaplatin in water, this drug is administered intravenously in a higher
dose than cisplatin [24]. Nedaplatin, a cisplatin analog (Table 1), shows cross-resistance
with cisplatin. It forms nucleoside–platinum complexes similarly to cisplatin and, after
cellular uptake and hydrolysis, binds to DNA to inhibit its replication. The primary dose-
limiting side effect of nedaplatin is myelosuppression, including issues like leucopenia,
anemia, and, mainly, thrombocytopenia [25]. Histopathological studies in rats have shown
that nedaplatin can cause nephrotoxicity, characterized by apoptosis or necrosis in both
proximal and distal renal tubules, as well as the collecting duct, with potential regeneration
and cystic dilatation [26]. These findings suggest that while nedaplatin can cause kidney
damage, particularly in patients with pre-existing renal issues, strategies can be developed
to use it safely in clinical settings [24].

Heptaplatin (cis-malonate[(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane]
platinum(II), SunPla, Table 1) entered the market in 1999 through the Japanese pharma-
ceutical company Yakult Honsha Co., Ltd. (Tokyo, Japan), and is used for the treatment
of colorectal tumors in the Republic of Korea [27]. Clinical investigation showed that the
combination of heptaplatin with 5-fluorouracil has the same effect as the combination of
cisplatin and 5-fluorouracil, with fewer hematological side effects [21,23]. Heptaplatin
was chosen for clinical trials due to its comparable or superior cytotoxicity to cisplatin
in various cell lines, high stability, minimal toxicity, and effectiveness against cisplatin-
resistant cancer cells. In clinical trials, heptaplatin showed improved response rates when
combined with 5-fluorouracil and leucovorin compared to its use alone, and lower nephro-
toxicity than cisplatin. Overall, response and survival rates with heptaplatin are similar to
those with cisplatin, but with reduced severity of certain side effects like neutropenia and
proteinuria [23].

However, heptaplatin showed side effects such as myelosuppression, thrombocy-
topenia, mucositis and alopecia [23]. Heptaplatin binds to DNA by forming covalent
adducts with DNA bases, leading to crosslink and inhibition of DNA replication and
transcription [27].

Lobaplatin ([1R,2R-2-(aminomethyl)cyclobutyl]methanamine-2-hydroxypropanoic
acid platinum(II), Table 1) is approved in China for the treatment of breast tumor metas-
tasis, chronic myelogenous leukemia and lung cancer [12]. Newly formed DNA-drug
adducts such as GG and AG intra-strand crosslinks affect the expression of the c-Myc gene,
which is responsible for apoptosis [28]. Lobaplatin has been efficient against tumor cells
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that are resistant to cisplatin [29]. The dose-limiting toxicity of lobaplatin is reflected in
thrombocytopenia [23].

Regardless of unwanted effects of chemotherapeutic agents, it is evident that platinum-
based compounds are an essential component of contemporary cancer-intervention strate-
gies and the demand for platinum antitumor agents constantly grows. Listed clinically used
drugs are neutral square-planar complexes of platinum(II), which contain two outgoing
ligands in the cis-position (classical platinum complexes) [30–32]. In order to find a plat-
inum complex with more efficient antitumor activity, non-classical platinum complexes that
cannot be structurally connected to cisplatin were synthesized and tested [33]. Platinum(II)
complexes that are structurally different from cisplatin and its analogs provide numerous
opportunities for finding antitumor agents whose mechanism of action will be different,
compared to cisplatin [34–36].

Beside mononuclear platinum(II) and platinum(IV) complexes, polynuclear platinum(II)
complexes show antitumor activity against certain types of cancerous diseases [37,38].
Polynuclear complexes usually contain from two to four platinum(II) ions, which are
interconnected by various bridging diamine ligands. These bridging diamine ligands
are often flexible molecules with a linear structure [39], while in some cases platinum(II)
ions are interconnected with less-flexible bridging ligands, such as aromatic heterocyclic
compounds, which contain two or more nitrogen atoms in the ring [40,41]. Polynuclear
platinum(II) complexes can bind to nucleic bases in the DNA strand, forming platinum(II)
DNA products that are structurally different from those formed by cisplatin and similar
complexes, leading to minimal distortion of the DNA helix [42]. Thanks to the presence of
two platinum(II) centers, dinuclear platinum(II) complexes cause two different types of
binding, intermolecular binding between DNA strands and intramolecular binding within
the DNA strand [43].

The trinuclear complex, Triplatin (or BBR3464), showed better antitumor activity and
lower tumor-cell resistance compared to cisplatin, regardless of the fact that a different
way of binding to DNA has been proven [44,45]. Complex Triplatin does not have the
potential for covalent binding, intercalation or groove binding. Instead, the positively
charged BBR3464 complex (+4) binds to the phosphate backbone, through the electrostatic
interaction [46]. These polynuclear platinum(II) complexes with flexible aliphatic ligands
demonstrate greater effectiveness than cisplatin in treating LNZ308 and LN443 glioma cells,
as well as HCT-116, DLD1, SW480, and HT29 colon cancer cells in both culture and animal
models [47]. Although patients with neuroblastoma and ovarian tumor did not show
resistance to the treatment with trinuclear BBR3464 complex, they had gastrointestinal and
hematological side effects that limit the dose of the used complex. [48,49]. Additionally,
the pyrazine-bridged dinuclear platinum(II) complex shows equal or superior cytotoxicity
compared to cisplatin in WIDR colon and IGROV ovarian cancer cell lines, and exhibits
significant effectiveness against the cisplatin-resistant L1210 murine leukemia cell line [47].

Therefore, the synthesis and investigation of polynuclear platinum(II) complexes are
important steps in the field of antitumor-agent improvement. This review article focuses
on recent advances in dinuclear platinum(II) complexes as future anticancer agents. The
dinuclear platinum(II) complexes exhibit a potent antitumor effect, selectively targeting
cancer cells over normal cells. Furthermore, their ability to induce apoptosis in cancer
cells, a critical mechanism for cancer therapy, underscores their potential as effective
anticancer agents. Recent studies have demonstrated that these complexes can significantly
reduce tumor-cell viability and proliferation, indicating their promise in enhancing current
chemotherapy strategies.

2. Synthesis of Dinuclear Platinum(II) Complexes, [{Pt(L)Cl}2(µ-Bridging Ligand)]2+

In this review article, Figures 1–3 depict various dinuclear platinum(II) complexes
with the general formula [{Pt(L)Cl}2(µ-bridging ligand)]2+. Figure 4 illustrates the synthesis
process for diazine-bridged dinuclear platinum(II) complexes. Mononuclear [Pt(L)Cl2]
complexes, where L represents either two monodentate ammine ligands (NH3) or a single
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bidentate diamine ligand (such as ethylenediamine, en; (±)-1,2-propylenediamine, 1,2-pn;
isobutylenediamine, ibn; trans-(±)-1,2-diaminocyclohexane, dach; 1,3-propylenediamine,
1,3-pn; 2,2-dimethyl-1,3-propylenediamine, 2,2-diMe-1,3-pn and 1,3-pentanediamine 1,3-
pnd), were synthesized following established procedures [50–54]. The synthesis reaction
starts with the formation of the mononuclear [Pt(L)I2] complex by addition of the four
equivalents of potassium iodide in a aqueous solution of K2[PtCl4], followed by heating
the mixture at 40 ◦C for 5 min. After the addition of an equimolar amount of diamine
ligand (L), stirring continued for 30 min at the same temperature. The resulting [Pt(L)I2]
complexes were converted into aqua derivatives by adding 1.98 equivalents of AgNO3 and
stirring overnight at room temperature in the dark [54]. After filtration to remove AgCl, an
excess of potassium chloride was added to form mononuclear [Pt(L)Cl2] complexes.
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These mononuclear complexes then reacted with 0.98 equivalents of AgNO3 to replace
one chloride ion with a dmf. To obtain the dinuclear {[Pt(L)Cl]2(µ-bridging ligand)}2+

complexes, the resulting [Pt(L)Cl)dmf)]+ complex, obtained after AgCl removal, reacted
with an equivalent amount of the corresponding bridging ligand (X, Y, or Z, as shown in
Figures 1–3) and were stirred at room temperature in the dark for 3–24 h.

The bridging ligands X include two condensed aromatic rings with nitrogen atoms in
different rings (e.g., 1,5-naphthyridine, 1,5-nphe [55]; 1,6-naphthyridine, 1,6-nphe [56] for
complexes Pt1–Pt9, Figure 1), Y contain a single aromatic ring with two nitrogen atoms (e.g.,
pyrazine (1,4-diazine), pz [57]; 2,5-dimethylpirazine (2,5-dimethyl-1,4-diazine), 2,5-pz [58],
pyrimidine (1,3-diazine), pmn [58]; pyridazine (1,2-diazine), pydz [59] for complexes Pt10–
Pt25, Figure 2), and Z have two condensed aromatic rings with nitrogen atoms in one (e.g.,
phthalazine (2,3-benzodiazine), phtz; quinazoline (1,3-benzodiazine), qz [58] for complexes
Pt26 and Pt27, Figure 3).
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complex.

The dinuclear platinum(II) complexes were crystallized as chloride, nitrate or perchlo-
rate salts from aqueous solutions with excess of LiCl, LiClO4 or by evaporating methanol
solvent for nitrate salts (Pt10, Pt16 and Pt24). Detailed procedures for the preparation of all
dinuclear platinum(II) complexes have been previously described [55–60].

3. Dinuclear Platinum(II) Complexes Have a Potent Antitumor Effect In Vitro

This article presents the pivotal anticancer activity mechanisms in vitro of the din-
uclear platinum(II) complexes with 1,6-naphthyridine-bridging ligand described in the
literature to date. Derivatives of 1,6-naphthyridine have demonstrated noteworthy biologi-
cal activity, attracting the interest of pharmacists because of their lower toxicity. Several
of these compounds are utilized in drugs for preventing and treating infections caused by
various bacteria [61]. Additionally, derivatives like 1,4-dihydro-4-oxo-1,6-naphthyridine
and 8-methylbenzo[b]naphtho [1,6]-naphthyridine have shown antibacterial properties [62].
Numerous 1,6-naphthyridine derivatives are being explored as potential anticancer agents,
and some have shown promise for antimalarial and antidiabetic applications [63]. For
instance, 5-substituted 8-hydroxy-1,6-naphthyridine-7-carboxamides are effective as HIV
integrase inhibitors for treating HIV infection [61]. The presence of naphthyridine in these
compounds and its impact on their antibacterial or antitumor activities has led to the
synthesis and investigation of various transitional metal complexes.

Studies on cell lines indicate that metal complexes, especially the dinuclear platinum(II)
complexes, are selective for cancer cells [55–59,64,65]. Much effort has been put into the
development of new platinum-based anticancer complexes, but none have reached world-
wide clinical application so far. Since it was revealed that dinuclear platinum(II) complexes
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with 1,6-naphthyridine-bridging ligand play an important role in the biology of cancers,
we have summarized current knowledge about the cytotoxic abilities of these complexes.

Recently, we demonstrated [56] high cytotoxic activity of dinuclear platinum(II) com-
plexes with 1,6-naphthyridine-bridging ligand against mouse breast (4T1) and colon (CT26)
cancer cell lines, and human breast (MDA-MB-468), colon (HCT-116), and lung (A549)
cancer cell lines. Dinuclear platinum(II) complexes with 1,6-naphthyridine as the bridging
ligand reduced the viability of all tested cancer cell lines, although the established cytotoxic
effects were less compared to cisplatin as the gold standard [56]. Among all tested newly
synthesized dinuclear platinum(II) complexes, it appears that [{PtCl(NH3)2}2(µ-1,6-nphe)]2+

(Pt1, Figure 1) may cause fewer side effects compared to cisplatin. In contrast, [{Pt(en)Cl}2(µ-
1,6-nphe)]2+ (Pt2, Figure 1) complex had non-significant cytotoxic activity against tested
cancer cell lines with IC50 values of 281.03 µM and higher [56]. Furthermore, based on
the calculation of selectivity index (SI) values, the SI values for Pt1 and Pt2 complexes
were at least nine times higher than those calculated for cisplatin, implying that Pt1 and
Pt2 complexes may have fewer side effects. Despite the fact that different isomeric forms
of naphthyridines showed broad biological abilities such as anti-inflammatory, antiviral,
antimicrobial and anticancer effect, the main limitation of these studies is the lack of effects
on immune cells [64]. Additionally, complexes with iridium(III) and rhodium(III) with
1,8-naphthyridine have cytotoxic activity against colon and breast cancer cell lines [65]. In
line with these findings, Konovalov and coworkers [56] recently demonstrated that ligands
in dinuclear complexes might play a key role in their cytotoxicity. Newly synthesized Pt1
complex contains two ammonia ligands, whereas Pt2 complex contains ethylenediamine,
which are responsible for different cytotoxic effects [56]. Previously, Konovalov et al. [55]
investigated seven new 1,5-naphthyridine-bridged (1,5-nphe) dinuclear platinum(II) com-
plexes, and the results confirmed their antitumor role (Pt3–Pt9, Figure 1). Almost all tested
complexes had no cytotoxic effects on murine mammary carcinoma cell lines (4T1) and
very low cytotoxicity towards murine lung cancer cells (LLC1) [55]. In contrast to the
cytotoxic effects on LLC1 and 4T1 cancer cells, complexes with two ammines (Pt3) or one
bidentate coordinated diamine (ethylenediamine, Pt4) had significant cytotoxic activity
towards CT26 murine colon carcinoma cells [55]. These findings indicated that the dinu-
clear platinum(II) complexes containing an aromatic 1,5-naphthyridine bridging ligand
could be good candidates for therapeutic purposes for colon cancer. In line with these
results, dinuclear [{Pt(L)Cl}2(µ-pydz)]Cl2 (Pt10–Pt15, Figure 2) complexes showed high
cytotoxic effects in a dosage- and time-dependent manner, correlating the concentration
of the tested complexes with the cell viability of tumor cells after 48 h and 72 h against
mouse cell lines (4T1, LLC1, and B16F10) and human cell lines (MDA-MB 468, A549, and
A375) [59]. The cytotoxic effect of dinuclear Pt10–Pt15 complexes was dose dependent: a
concentration decrement in all tested compounds was followed by marked increment in
tumor cell viability. The obtained data from this study [59] also revealed that, following
48 h of exposure, Pt13 showed a dose-dependent cytotoxic effect against mouse breast
cancer cells (4T1) (IC50 = 146.48 ± 75 µM), while other tested complexes were cytotoxic for
these cells only at the highest concentrations (250 and 500 µM). A similar pattern of newly
synthesized complexes’ cytotoxicity towards all tested cell lines was determined following
72 h of exposure. Moreover, after 72 h of exposure, the selectivity indices of cisplatin
for all tested tumor cell lines were less than 2, indicating general toxicity (5). In another
study, Vasic and coworkers [57] showed the cytotoxicity of cationic platinum(II) complexes
against the murine colon carcinoma (CT26) cell line. An increase in the cytotoxicity of
all tested complexes was observed 72 h after treatment. The highest cytotoxicity against
CT26 was exhibited by Pt11 and Pt16–Pt23 (Figure 2), while complex Pt16 managed to kill
about 50% of tumor cells at the lowest tested concentration (8.82 µM), which is suitable
for in vivo application. Most importantly, this complex showed significantly higher cy-
totoxicity than oxaliplatin at some tested concentrations [57]. In addition, the cytotoxic
effects of azine-bridged complexes (Pt10, Pt16, Pt24–Pt27, (Figures 2 and 3) were also well
documented in several human tumor cell lines such as MCF and EVSA-T (breast cancer),
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WIDR (colon cancer), IGROV (ovarian cancer), M19 (melanoma), A498 (renal cancer), and
H226 (non-small-cell lung cancer) [58]. Among the three tested dinuclear compounds
(Pt25–Pt27), antitumor effect was lower than for cisplatin [58].

Due to intensive research work, the dinuclear platinum(II) complexes with 1,6-naphthy
ridine-bridging ligand compounds (Pt1, Pt2), as shown in the present article [55–58,64,65],
demonstrate great potential for application, and may soon be used as anticancer drugs.

4. Dinuclear Platinum(II) Complexes Induce Apoptosis of Target Cells

The analysis and elucidation of the molecular mechanisms of cell death has greatly
contributed to the insight into the pathogenesis of malignancy, as well as the sensitivity of
normal and malignant cells to different types of therapy [66]. Such research enabled the
identification of potential targets for new therapeutic procedures. Changes in sensitivity
to apoptosis not only contribute to uncontrolled proliferation and the development of
malignancy, but can also increase resistance to conventional anti-cancer therapies [67].
Mitochondria-dependent apoptosis is one of the key pathways for the induction of apop-
tosis [68]. Inhibition or evading of this pathway is an effective way for cancer cells to
overcome apoptosis, thus indirectly ensuring mutation accumulation and subsequent
uncontrolled cell division [69].

Understanding how this breakdown occurs in cancer cells is still a subject of intense
research [70,71]. Numerous tests conducted in our laboratory on various dinuclear plat-
inum(II) complexes have shown their strong potential to induce apoptosis in both murine
and human tumor cells. There are several methods available for detecting apoptosis in
cancer cells. One of the preferred analyses is the annexin V-FITC-propidium iodide flow
cytometric analysis, which involves staining with annexin V that has a high affinity for
phosphatidylserine on the outer surface of apoptotic cell membranes, and propidium iodide
that can bind to DNA and enter necrotic or late-apoptotic cells [72]. In our previous studies,
we analyzed different stages of apoptosis in CT26 mouse colon carcinoma cells treated
with platinum(II) complexes and oxaliplatin, using flow cytometry after double staining
with annexin V-FITC and propidium iodide 24 h after treatment with all complexes. We
have demonstrated that treatment of mouse colon carcinoma CT26 cells with platinum(II)
complexes (Pt11, Pt16–Pt23) increases the level of both late and early apoptosis. The highest
percentage of apoptotic CT26 cells, particularly early-apoptotic CT26 cells, was observed
following the treatment with complexes Pt17, Pt18, and Pt19 [57].

Also, treatment of CT26 tumor cells with Pt3 and Pt4 complexes (Pt3 containing two
ammines and Pt4 bidentate coordinated ethylenediamine, while 1,5-nphe is a bridging
ligand) increased the sensitivity of tumor cells to apoptosis, both in the early and late
stages [55]. In our subsequent research using the same approach, we examined the potency
of the Pt13 complex in causing apoptotic cell death in mouse (4T1) and human (MDA-MB
468) breast cancer cells. Exposure to the complex at a concentration of 30 µM induced
apoptosis in 4T1 cells, resulting in a significantly higher percentage of early-apoptotic 4T1
cells. In MDA-MB 468 human breast cancer cells, the complex affected cells in both the
early and late stages of apoptosis [59].

Cellular stress caused by various stimuli can trigger apoptotic cell death through two
signaling pathways: the extrinsic and intrinsic (or mitochondrial) pathways. Once the
internal apoptotic pathway is activated, cytochrome c is released from the mitochondria
forming the apoptosome and leading to the cleavage of initiator caspase 9 and subsequent
activation of effector caspase 3 [73]. The impact of Pt13 on the induction of apoptosis in
4T1 cells was further confirmed by the increased expression of effector caspase 3 mRNA
following Pt13 complex treatment. Similarly, significantly increased expression of caspase
9 mRNA in 4T1 cells after exposure to the Pt13 complex indicates that the death of mouse
breast cancer cells is mediated by the activation of the intrinsic apoptotic pathway [59].

The Bcl-2 family plays a central role in the apoptotic pathway [74]. The Bcl-2 family
of proteins consists of pro- and anti-apoptotic members, and the balance between them
maintains the equilibrium between newly formed cells and old cells that die. The balance
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between pro-survival and pro-apoptotic Bcl-2 family members determines cell survival [75].
Tumor cells can acquire resistance to apoptosis by the expression of anti-apoptotic pro-
teins such as Bcl-2 or by the downregulation or mutation of pro-apoptotic proteins such
as BAX [76]. One of the roles of Bcl-2 in the mitochondrial pathway is to regulate the
intracellular redox status, favoring a pro-oxidant milieu that ensures survival. In such an
environment, the reduced form of cytochrome c is inhibited in its activity to initiate caspase
activation [77]. Bcl-2 also can inhibit the activity of caspase-9, 3, 6, and 7, thereby preventing
apoptosis, leading to prolonged tumor cell survival and malignant cell transformation [73].
Our recent studies showed that the dinuclear platinum(II) complexes, specifically the
Pt1 complex, induce apoptosis in 4T1 and A549 cells by increasing the expression of pro-
apoptotic caspase-3 and downregulating the expression of anti-apoptotic Bcl-2 after 24 h
pretreatment with the Pt1 complex. This finding presents a significant break-through in
understanding how the Pt1 complex triggers apoptosis in cancer cells [56].

The mechanism of apoptosis caused by dinuclear platinum complexes has been the
subject of numerous studies. A new class of platinum anticancer compounds, the azine-
bridged dinuclear platinum(II) complexes show a cytotoxic effect different from cisplatin.
They induce apoptosis in murine leukemia cells and form DNA adducts that are different
from those of cisplatin and thus circumvent, to some extent, the cross-resistance with cis-
platin [58]. Similarly, TriplatinNC and TriplatinNC-A also show micromolar toxicity against
cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. Contrary to TriplatinNC,
which induces apoptosis in a manner similar to cisplatin and BBR3464, TriplatinNC-A
induces cell death in a manner that is independent of p53- or BAX-status. These agents
overcome cisplatin resistance because they accumulate in the cells, probably due to their
cationic nature and their unique mode of binding to DNA [15,78]. The aggregates of the
platinum(II) complex BDIQQ) [Pt(BDIQQ)]Cl in aqueous buffer disperse in the presence
of DNA and form single molecules that are capable of unwinding DNA. [Pt(BDIQQ)]Cl
has a dual mode of action. It attacks DNA in cells, increasing p53 and BAX levels and
inducing mitochondria-mediated apoptosis, and it accumulates in mitochondria, causing
direct damage to the mitochondria. [Pt(BDIQQ)]Cl selectively damages ovarian cancer
cells, while it has no effect on normal fibroblast cells and shows no cross-resistance with
cisplatin [15,79]. A mitochondria-mediated apoptotic cell death can also be triggered by
replacing a dichloroacetate with a vitamin E analog, α-tocopheryl succinate (a-TOS), which
inhibits the anti-apoptotic proteins Bcl-2 and Bcl-xL. Due to high lipophilicity and sus-
ceptibility to entrapment inside the cell membrane, platinum(IV) complexes comprising
cisplatin attached to two a-TOS ligands was shown to be non-toxic, while with one a-TOS
ligand Platinum(IV) complexes inhibited Bcl-xL-Bax protein–protein interactions and thus
induced DNA damage and mitochondrial membrane depolarization, and were 25 times
more cytotoxic compared to cisplatin [15,80].

5. Dinuclear Platinum(II) Complexes Affect Cell Proliferation

The major characteristic responsible for the development of cancer is uncontrolled
division of tumor cells. In comparison to healthy cells, which respond according to different
stimulative and inhibiting signals, thus controlling the normal cell cycle and the level of
proliferation, tumor cells grow and proliferate in an uncontrolled manner, eventually
spreading into different tissues and organs [81]. One of the crucial molecules that plays
an important role as a marker for cancer histopathology is Ki67. Ki67 is a molecule
predominantly placed in fast-dividing cells and is often used for cancer prognosis [82]. A
recent study suggested that Ki67 is not only involved in the process of proliferation, but
also in the complex process of tumor initiation, growth, metastasis, and drug resistance [83].
Some trials have successfully led to the rapid registration of new anticancer drugs with
a significant impact on tumor cell proliferation. As dinuclear platinum(II) complexes
with 1,6-naphthyridine-bridging ligand (Pt1, Pt2) show cytotoxic effect against different
types of mice and human tumor cell lines, their effect on proliferation was also analyzed.
Konovalov et al. showed that dinuclear platinum(II) complexes with 1,6-naphthyridine-



Int. J. Mol. Sci. 2024, 25, 8525 10 of 18

bridging ligand significantly decreased the percentage of Ki67+ 4T1 mouse breast cancer
cells, as well as Ki67+ A549 human lung cells, in comparison to the untreated group [56]. A
similar experiment was performed in another study on the murine colorectal carcinoma cell
line (CT26) [57]. The percentage of Ki67+ CT26 cells was significantly lower after treatment
with seven out of nine tested dinuclear platinum (II) complexes, with complexes Pt20 and
Pt21 showing the strongest effect compared to cells treated with oxaliplatin [57]. As Ki-67
is nowadays used as an important predictive and prognostic marker, and higher expression
correlates with poor survival, treatment modalities with dinuclear platinum (II) complexes
against Ki-67 can offer promising results.

The advantage of tumor cells for maintaining massive proliferation lies in the un-
controlled cell cycle. The fact that tumor cells lose cell-cycle checkpoints increases the
chances of making mistakes during the replication of genetic material [84]. Previous studies
showed that cisplatin, as the gold standard for tumor treatment, inhibits the cell cycle of
tumor cells by arresting them in the G0/G1 or sub-G1 cell-cycle phase [85,86]. Experiments
with dinuclear complexes of platinum(II) showed promising results, similar to cisplatin
treatment, in blocking the cell cycle. Namely, Pt13 significantly increased the percentage of
4T1 cells arrested in the sub-G1 phase [59]. Analyses were also performed on the MDA-
MB-468 human breast cancer cell line and, according to these, C2 not only arrested tumor
cells in the sub-G1 phase, but also decreased the percentage of MDA-MB-468 cells in the
Go/G1 phase [59]. Another study performed by Vasic et al. revealed that complexes such
as Pt18–Pt20 block CT26 tumor cells in the G0/G1 phase. On the contrary, complexes Pt16
and Pt22 stop CT26 cells in the G2/M cell-cycle phase, in the same manner as the drug
oxalplatin [57]. According to these results, different subtypes of dinuclear complexes of
platinum(II) can act in different ways. Some of them are able to inhibit the tumor cell cycle
by blocking the cells in the G0/G1 phase, and in this way progression into the S phase is
prevented; the tumor cell cannot duplicate genetic material and thus proliferate, but this
increases the chances of activating programmed cell death [87,88]. On the other hand, cells
arrested in the G2/M phase may induce apoptosis of tumor cells, suggesting an even more
efficient way of acting as a potential antitumor drug [89].

Delving deeper into the functioning of the cell cycle, it is important to know that cyclins
and cyclin-dependent kinases, along with inhibitors of cyclin-dependent kinases (Cdk),
play a major role in controlling the processes of cell proliferation and differentiation [90,91].
Nowadays, few drugs that act in a way to inhibit the cell cycle are used as a therapy against
tumors [92]. A study by Zornic et al. revealed important information regarding the effect
of dinuclear platinum(II) complexes (Pt12–Pt15, Figure 2) on cyclins. They showed that
complex Pt13 significantly reduced expression of Cyclin D3 mRNA in 4T1 tumor cells.
Moreover, the percentage of Cyclin E+4T1 cells was significantly decreased, compared
to untreated cells [59]. Cyclin E, together with Cdk2, is crucial for the G1/S transition,
which is a major step when the cells decide whether they enter into the S phase and start
the process of DNA replication, or stay in the G1 phase. Abnormal activation of Cyclin
E/CDK2 complex favors errors during DNA replication, thus promoting making of tumor
cells [93]. Cyclin D, in the complex with Cdk4 and Cdk6, also plays a major role in the G1/S
transition, and it is known that hyperexpression and abnormal activity of cyclin D induces
uncontrolled cell proliferation, thus having an impact on tumor pathogenesis [94]. Besides
affecting cyclins, the examined Pt13 dinuclear platinum(II) complex significantly increased
expression of P27 mRNA in 4T1 cells, thus showing the same effect as cisplatin [59]. A key
role of P27 is inhibition of the cyclin E-Cdk2 complex, and in that way, it regulates the G1
phase and prevents the cell from entering into the S phase [95]. Another molecule important
for cell-cycle regulation is c-Myc. This transcriptional factor, a member of the Myc proto-
oncogene family of proteins, is involved in major cell processes such as proliferation and
differentiation, metabolism and cell death. C-Myc is able to stimulate cell proliferation and
to inhibit antiproliferative molecules at the same time [96,97]. Many relevant studies
confirmed continuous aberrant expression of c-Myc gene in more than 70 percent of
human tumors, suggesting a very important role in tumorigenesis [97,98]. Zornic et al.
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investigated the effect of dinuclear platinum(II) complexes and revealed that Pt13 complex
significantly decreased expression of c-Myc RNA in 4T1 cell in comparison to group of cells
treated with cisplatin [59]. Moreover, they analyzed the effect of platinum complexes on
the phosphatidylinositol-3 kinase (PI3K)–AKT pathway. pAKT coordinates proliferation,
angiogenesis, and tumorigenesis, and thus serves as a significant target for antitumor
pharmacy [99]. Although not as efficient as cisplatin, treatment with Pt13 significantly
reduced the percentage of pAKT+ 4T1 cells in comparison to untreated cells [59].

Overall, dinuclear platinum(II) complexes remarkably reduced the possibility for
tumor cells to proliferate by decreasing the expression of Ki67 and blocking the cell cycle in
the Go/G1 and G2/M phase. Moreover, the suppression of cyclin D, cyclin E, c-Myc and
AKT expression, together with increased activity of P27, makes these complexes attractive
as an anticancer therapy.

6. Dinuclear Platinum(II) Complexes Inhibit Migratory Capacity of Target Tumor Cells

Alongside enhanced proliferation, unrestrained migration of a malignant cell is one
of the hallmarks of a malignancy. To improve and boost cancer therapy, it is equally
important to target both of these characteristics [100]. As the migration of a malignant cell
causes various metabolic alterations, paving the way through the extracellular matrix for
adaptations and proliferation in a tissue other than the one from which the malignant cell
originates, it is, still, a great challenge to find a therapeutic agent that successfully impedes
tumor cell migration effectively, at every step [101,102]. One of the well-studied tests to
determine the inhibitory capacity of a therapeutic agent on tumor cell migration is the
scratch assay [103]. The scratch assay is an in vitro assay where target cells are put to grow
in a multiwall assay plate, after which a cell-free zone is created by scratching, after which
the cell migration rate is monitored [104]. This simple assay is still one of the most effective
ways to determine the migration potential of target cells [105].

As it is important to find new therapeutics to impede tumor cell proliferation, and
it is, likewise, important to investigate therapeutic potential to impede cell migration,
therefore potentially inhibiting tumor cell metastasis [106]. One of the most recently
investigated newly synthesized anti-cancer agents, such as platinum-based therapeutics,
is shown to be rather efficient in inhibiting tumor cell proliferation. When it comes to the
migratory potential of malignant cells, platinum-based chemotherapeutics also exhibit
beneficial effects. In a study by Bai et al., it has been shown that platinum-based anti-cancer
chemotherapeutics significantly impede breast cancer cells’ migration, and therefore hinder
breast cancer metastasis [106]. Our results align with these findings, suggesting that the
administration of platinum-based chemotherapeutics has multiple effects on breast cancer
expansion [107]. There is also evidence that platinum-based chemotherapeutic inhibits
cancer cell migration in other tumor types, such as prostate cancer and oral cancer [108,109].
When it comes to prostate cancer, platinum-based compounds tend to downregulate the
expression of epithelial–mesenchymal transition (EMT)-related gene expression, such as
BCL-2 and BAX, therefore decreasing the metastatic potential of cancer cells [108]. In
oral carcinoma, cisplatin decreases the expression of E-cadherin in a dose-dependent
manner [109].

As mentioned above, inhibition of tumor cell migration is one of the main mechanisms
to suppress cancer progression, as it is crucial for metastasis. Platinum-based anti-cancer
agents seem to express favorable effects, by utilizing various molecular pathways, putting
them in the limelight for treatment of advanced malignant disease. However, more studies
are required to further elucidate migration inhibition of platinum-based agents in order to
combat more effectively the spread of a malignancy.

7. Dinuclear Platinum(II) Complexes Exhibit Strong Antitumor Effects with Reduced
Side Effects In Vivo

Recent advances in cancer treatment have led to the development of dinuclear plat-
inum(II) complexes, which are designed to target cancer cells more selectively, while mini-
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mizing side effects [110]. These complexes incorporate bridging ligands with aromatic rings
containing nitrogen atoms, thus enhancing their ability to interact with cellular targets [59].
This section discusses the in vivo efficacy and safety profiles of two types of such complexes,
highlighting their potential advantages over traditional chemotherapy agents like cisplatin.

In cancer research, considerable attention has been focused on dinuclear platinum(II)
complexes that incorporate bridging ligands with aromatic rings containing two nitro-
gen atoms, specifically pyridazine and pyrazine (Figure 2). A particular complex with
pyridazine, Pt14, demonstrated substantial cytotoxic effects against breast cancer cells
in vitro [59]. However, in vivo studies on mice administered doses of 3 milligrams per
kilogram and 6 milligrams per kilogram revealed that this complex unexpectedly en-
hanced tumor growth, compared to cisplatin. Despite these results, the lower dose resulted
in improved survival rates from the 18th day onward, while the higher dose saw a de-
cline in survival rates, highlighting a complex interaction between tumor growth and
survival outcomes [59]. In contrast, dinuclear platinum(II) complexes featuring pyrazine
ligands (Pt16–Pt23) significantly reduced tumor volumes in a heterotopic mouse model
of colon cancer, similar to the effects observed with oxaliplatin, a standard component
in colorectal cancer treatment protocols such as FOLFOX (Folinic Acid, Fluorouracil, and
Oxaliplatin) [57,111]. At necropsy, the primary tumors in mice treated with these pyrazine
complexes or oxaliplatin weighed significantly less, compared to untreated controls. Addi-
tionally, there was a significant reduction in metastatic foci in the livers and lungs. Only
10% of treated mice developed lung metastases, which were fewer and smaller in size,
compared to 50% of the untreated group. Liver metastases were also notably less frequent
in treated groups [57]. Furthermore, the complexes were well tolerated, with no significant
differences in the levels of Alanine Aminotransferase (a marker of hepatotoxicity), urea, and
creatinine (markers of nephrotoxicity) between the treated and untreated groups. These
findings underscore the complexes’ efficacy in targeting cancer cells while preserving liver
and kidney health [57].

8. Antimicrobial Activity of Dinuclear Platinum(II) Complexes

The relationship between infectious agents and the host in oncology is a complex
interaction that has not been studied enough. The significant spread of resistant strains and
the formation of bacterial biofilms is a serious health concern [112,113]. It is increasingly
clear that producing effective antibiotics is not enough to treat infectious diseases. This
highlights the need for ongoing testing of anticancer and antimicrobial activity of other
compounds, such as the platinum complex, for use in clinical practice.

Cisplatin was initially discovered as a substance that inhibits the division of Es-
cherichia coli bacteria [114]. Clinical trials have demonstrated that platinum complexes
have strong antimicrobial properties [115]. A recent systematic study examined 906 metal
complexes and found that they have a 10-fold higher hit rate against critical ESCAPE
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens and fungi compared to
organic molecules. Among 63 platinum-containing compounds, 43% showed antimicrobial
potential. Further evaluation identified 18 platinum compounds with antimicrobial activity,
without toxic effects on mammalian cells at the same concentration [116]. Frei et al. [116]
investigated the antibacterial properties of platinum cyclooctadiene (COD) complexes and
found that Pt(COD)Cl2 (Pt1) and Pt(COD)I2 (Pt2) complexes exhibit excellent antibacterial
activity against a wide panel of Gram-positive strains, particularly S. aureus, including
methicillin-resistant Staphylococcus aureus and vancomycin-resistant strains, as well as
S. epidermidis and B. subtilis. It is worth noting that, despite their similarity to cisplatin,
these compounds did not show any cytotoxicity towards human cells, even at the highest
concentrations tested [117]. Jawad et al. [118] demonstrated that the platinum(IV) com-
plex with a bidentate ligand of 4-amino-5-(3,4,5-trimethoxyphenyl)-4I-1,2,4-triazole-3-thiol
showed high antimicrobial activity against bacteria Staphylococcus aureus (Gram-positive)
and Escherichia coli (Gram-negative).
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9. Conclusions

This comprehensive review elucidates the significant strides made in the development
of dinuclear platinum(II) complexes as potential anticancer agents. The insights from vari-
ous studies underscore the promising cytotoxic activities of these complexes against a range
of cancer cell lines. Unlike traditional platinum-based therapies, which often present severe
side effects and drug resistance, dinuclear complexes offer a distinct mechanism of action.
This mechanism includes unique DNA-binding patterns that contribute to their effective-
ness while potentially reducing adverse effects. Furthermore, these complexes demonstrate
enhanced selectivity and potency, indicative of their capability to induce apoptosis and
inhibit cell proliferation in a targeted manner (Figure 5). However, despite their profound
in vitro efficacy, the translation of these complexes into clinical use necessitates rigorous
in vivo testing to ascertain their therapeutic indices and to optimize their pharmacological
profiles. As research progresses, dinuclear platinum(II) complexes continue to represent a
compelling avenue for novel anticancer drug development, aligning with ongoing efforts
to refine chemotherapy and improve patient outcomes.
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consequently increasing the expression of Caspase 3 in tumor cells. They enhance the expression of
the cyclin-dependent kinase inhibitor p27, while decreasing the expression of c-Myc and pAKT; this
is accompanied by a reduction in the expression of cyclins D and E, thereby arresting the cell cycle in
the G0/G1 phase. The expression of Ki67 is reduced, further indicating the inhibition of proliferation.
Consequently, the migratory ability of tumor cells is decreased, leading to slower primary-tumor
growth, with reduced hepatotoxicity and nephrotoxicity observed.

Author Contributions: The conceptualization of the study was developed by D.L. and S.R. Method-
ology formulation was carried out by M.J. (Marina Jovanović), A.A.F. and M.D.Ž. I.J. oversaw the
validation process. S.P. and N.G. were responsible for the formal analysis. The investigation was
collaboratively conducted by B.S.M. and R.P. The acquisition of essential resources was managed
by N.G. and M.J. (Milena Jurisevic). The original draft of the manuscript was written by D.L., S.R.
and B.S., and, subsequently, it underwent rigorous revisions and review by B.S.S., M.D.Ž., N.G. and
I.J., who also contributed to the visualization of data. I.J. and N.G. coordinated the overall research
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to the published version of the manuscript.
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