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Abstract: Background/Objectives: We investigated the potential diagnostic role of galectin-3 (Gal-3)
in patients presenting with suspected acute coronary syndromes (ACS). Methods: We searched
PubMed Central, Scopus, EMBASE, and the Cochrane Library from inception until 20 June 2024. We
measured effect sizes using odds ratios (OR) with 95% CIs for dichotomous data and mean differences
(MD) with CIs for continuous data. Random synthesis analysis was performed if I2 was less than
50% or Q test p values were less than 0.05. Otherwise, a fixed pooled meta-analysis was performed.
Results: The meta-analysis includes 15 eligible studies. Gal-3 levels were substantially higher in the
ACS group (12.84 ± 8.48 ng/mL) compared to the control group (7.23 ± 6.05 ng/mL; MD = 3.89;
95% CI: 2.83 to 4.95; p < 0.001). Gal-3 levels in acute myocardial infarction (AMI) and control groups
differed (10.09 ± 8.16 vs. 4.64 ± 3.07 ng/mL, MD = 4.30; 95% CI: 0.41 to 8.18; p < 0.001). Statistical
analysis revealed significant differences in Gal-3 levels between ST-elevated myocardial infarction
(STEMI) and control groups (10.62 ± 7.34 vs. 5.54 ± 2.96 ng/mL; MD = 5.54; 95% CI: 3.12 to 7.97;
p < 0.001). No significant differences were found between the non-ST-elevated myocardial infarction
(NSTEMI) vs. control groups or patients with STEMI vs. patients with NSTEMI. Conclusions: Gal-3
may be beneficial for detecting acute coronary syndromes but not NSTEMI or differentiating between
ACS types. This meta-analysis is promising, but further research is needed to prove Gal-3’s potential
diagnostic value, exact cut-offs, and advantages over cardiospecific troponins. Gal-3 may be a useful
diagnostic biomarker; however, more clinical trials are needed to prove its utility.

Keywords: galectin-3; inflammation; biomarker; diagnosis; acute coronary syndrome

1. Introduction

Despite advances in diagnostics and therapeutic procedures in invasive cardiology,
acute coronary syndrome (ACS) remains a significant clinical problem associated with a
risk of premature death. A remarkable 50% reduction in age-standardised mortality rates
has been observed over the past 20 years in developed countries. However, this positive
trend is not mirrored in developing countries, where limited access to modern therapeutic
methods impedes improvements in patient results [1].

To improve patient outcomes, there is a need for the development of new diagnostic
models to identify patients at risk of ACS within the general population. Furthermore,
it is crucial to identify patients at risk of adverse outcomes, such as rehospitalization or
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cardiovascular death after ACS [2]. Current risk assessment tools, such as the GRACE score,
are based on multifactorial risk estimation and require detailed history taking, laboratory
tests, or other medical procedures [3,4], which are costly and time-consuming. As a
result, there is growing interest in biomarkers, especially metabolomics, that can facilitate
accelerated diagnosis, identification of high-risk patients, and prognosis [5].

There are many diagnostic and prognostic biomarkers with potential use in cardiovas-
cular diseases. A significant group of these are based on inflammatory markers, e.g., the
neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) [6–8].
Inflammatory markers are sometimes combined with other markers with a well-known
role in the pathogenesis of atherosclerosis, as seen with the monocyte-to-HDL ratio [9].
Another extensively studied group of biomarkers are microRNAs (miRNAs). Zhang et al.
demonstrated that increased expression of miR-361-5p is observed among patients with
ACS, suggesting it as a new potential diagnostic parameter [10].

Galectin-3 (Gal-3) has recently emerged as a biomarker of significant interest, prompt-
ing renewed research and investigation of its potential applications. Gal-3 belongs to the
β-galactosidase-binding lectins and is located mainly in the cytoplasm, although it can also
be found in other cellular organelles, such as the nucleus. Produced mainly by cells of the
immune system, Gal-3 is a pro-inflammatory factor involved in the process of apoptosis
and activation of cytokine pathways [11]. In the context of cardiac remodeling, Gal-3 plays
a significant role in the process of fibrosis, especially following acute inflammation [12].
Regardless of the effect of Gal-3 on cardiac fibrosis, Gal-3 contributes to pro-inflammatory
damage to the vascular endothelium, triggering a cascade of inflammatory reactions. It also
contributes to thrombus formation and the destabilization of the atherosclerotic plaque.
All these processes are fundamental to the pathophysiology of atherosclerosis, ultimately
leading to ACS [13]. Given the complex influence of Gal-3 on the mechanisms leading to
the development of ACS, it is not surprising that interest in Gal-3 as a potential diagnostic
and prognostic biomarker after ACS is growing [14,15].

The aim of this systematic review and meta-analysis is to explore the potential signifi-
cance of galectin-3 levels as a diagnostic biomarker in patients with coronary syndrome.

2. Materials and Methods

The present meta-analysis was planned, conducted, and reported in accordance
with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA)
guidelines [16]. The review protocol was registered in the PROSPERO International
prospective register of systematic reviews, under registration number CRD42024553402, on
16 June 2024.

2.1. Search Strategy

A comprehensive literature search was conducted in databases including the
PubMed/MEDLINE, Scopus, and EMBASE electronic databases (via the Ovid interface)
and unpublished sources, such as the Cochrane Trial Registry and Clinicaltrials.gov, cover-
ing all records until 20 June 2024. The following search keywords were used: “galectin-3”
OR “galectin 3” OR “Gal-3” OR “Gal 3” AND “acute coronary syndrome” OR “ACS” or
“ST Segment Elevation Myocardial Infarction” OR “ST Elevated Myocardial Infarction”
OR “ST-elevation MI” OR “STEMI” OR “non-ST elevation myocardial infraction” OR
“NSTEMI” OR “myocardial Infarction” OR “unstable angina”. Furthermore, an additional
investigation was conducted using Google Scholar. To identify additional relevant studies,
reference lists of systematic reviews and relevant individual studies were examined. For
studies with overlapping patient data, only the most recent publication was considered.

2.2. Inclusion and Exclusion Criteria

The following inclusion criteria were used: (1) Patients: adult patients with ACS.
(2) Articles discussing the levels of galectin-3 in various types of ACS. (3) Articles providing
sufficient data to estimate standard mean differences (SMDs) among ACS types or the
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relative risk (RR) of mortality or major adverse cardiovascular events. (4) The study type
included both RCTs and non-RCTs. (5) Full-text articles published in English.

The exclusion criteria included: (1) incomplete data or unpublished literature; (2) duplicate
publications; (3) animal studies; and (4) review articles, letters, editorials, case reports/series,
or conference abstracts.

2.3. Selection Process

We imported all articles identified through the search into EndNote X6 (Clarivate,
London, UK), a reference management software, and removed duplicates. Two review-
ers, M.P. and Z.G., independently screened titles and abstracts of the identified studies
against the eligibility criteria. Then the potentially eligible studies underwent a full-text
review—the same reviewers evaluated full texts for final eligibility, documenting reasons
for exclusion. A third reviewer (L.S.) resolved any disagreements.

2.4. Data Collection

Two investigators independently performed data extraction. Extracted data included
the following: study characteristics (first author, country, study design, study groups, and
sample sizes), patient demographics (baseline characteristics), types of major adverse car-
diovascular events (MACEs), mortality outcomes across different follow-up periods, and
galectin-3 values. We used a pre-prepared data abstraction form in Microsoft Excel. We con-
tacted the corresponding authors for further clarification or any unpublished relevant data.

2.5. Risk of Bias Assessment

Two researchers (M.P. and Z.G.) independently assessed the risk of bias using the
Newcastle Ottawa Quality Assessment Scale (NOS) [17]. Each study received a score
from 0 to 9 based on three categories: group selection (four items), comparability between
groups (one item), and outcome (three items). Group selection, outcome, and exposure
assessment categories could each receive a maximum of one star, while comparability could
be awarded up to two stars. Thus, the maximum score was nine points, and a total score of
six or above indicated high quality [17].

2.6. Data Analysis

Statistical analyses were performed using Stata 18.0 (Stata Corp., College Station,
TX, USA) and RevMan 5.4 (Copenhagen: The Nordic Cochrane Centre, The Cochrane
Collaboration, Copenhagen, Denmark). A two-sided p < 0.05 was considered statistically
significant for all statistical analyses. For continuous outcomes, such as galectin-3 levels,
effect sizes were expressed as mean differences (MD) with 95% CIs. Dichotomous variables
were evaluated using odds ratios (OR). When continuous outcomes were reported as
medians, ranges, and interquartile ranges, the formula described by Hozo et al. [18] was
used to estimate means and standard deviations. The heterogeneity across all eligible
studies was assessed using Cochran’s Q and I2 statistics. The I2 values of 25%, 50%,
and 75% as cut-off points indicated low, moderate, and high degrees of heterogeneity,
as per Cochrane’s guidelines [19]. We performed DerSimonian and Laird random effect
models with inverse variance weights without any additional corrections [20]. For analyses
including more than 10 studies, potential publication bias was evaluated using funnel plots
and Begg’s or Egger’s tests. Sensitivity analysis was performed using the single study
removal method to assess the robustness of the combined data.

3. Results
3.1. Results of Study Selection

The flow diagram in Figure 1 shows the study’s selection method. We removed
777 duplicates from the 3786 results that the search yielded. After the title and abstract
sieve, we excluded a total of 2776 studies, selecting 234 for full text review. This meta-
analysis included a final total of 15 studies [21–35].
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3.2. Descritpion of the Included Trials

Table 1 summarizes the baseline characteristics of the included studies. A total of
2286 patients were involved in this analysis. We included 15 trials, published between 2012
and 2024. Among the 15 trials included in this meta-analysis, two studies were conducted
in Egypt, Turkey, and India. The majority of the studies were prospective in design (n = 15).
Most trials had two arms, while three arms were identified in four studies. The number of
participants per arm varied between 17 and 196. Men constituted a significant proportion
of participants included in the studies, ranging from 52.2% to 89.4%. The mean age of
participants spanned from 34.6 to 67.4 years, with the notably younger cohort observed
in the study by Winter et al. (2016) [35]. Table 1 illustrates considerable comorbidity
among participants, including hypertension, diabetes mellitus, and hypercholesterolemia.
A frequent reduction in left ventricular ejection fraction was also observed across the trials.
Figure 2 displays a graphical representation of the origin of the studies included in the
meta-analysis. Table 1 displays the NOS’s assessment of quality studies, with all studies
receiving a high-quality rating.
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Table 1. Baseline characteristics of included trials.

Study Country Study Design Study
Group

No. of
Patient’s

Age, Years Sex, Male
Comorbidities

LVEF, % NOS
ScoreHTN, % DM, % HCL, % Smoking, %

Alturfan et al.,
2014 [21]

Turkey
Prospective

study

MI 29 NS 19 (65.5%) NS 12
(41%)

18
(62%) NS NS

7
Control 29 NS 21 (72.4%) NS 0

(0%)
3

(10%) NS NS

Bivona et al.,
2016 [22]

Italy
Prospective

study

STEMI 125 63.9 (14) 97 (77.6%) NS NS NS NS 47.5
(37.2–55) 8

NSTEMI 90 67.4 (13.5) 64 (71.1%) NS NS NS NS 48 (40.5–55)

George et al.,
2015 [23] India

Prospective
study

STEMI 64 51.48 (10.6) 54 (84.4%) 26
(40.6%) 28 (43.8%) 30

(46.9%) 29 (45.3%) 44.18 (9.2)

8NSTEMI
and UA 38 54.82 (10.03) 24 (63.2%) 15

(39.5%) 19 (50.0%) 15 (39.5%) 7 (18.4%) 53.3 (11.38)

Control 58 53.22 (9.45) 39 (67.2%) 28
(48.3%) 28 (48.3%) 23

(39.6%) 7 (12.5%) 52.82
(12.87)

Goenka et al.,
2017 [24] India

Prospective
study

STEMI 57 55.39 (11.88) 49 (86.0%) 15 (26.3%) 20 (35.1%) 5 (8.8%) 20 (35.1%) 46.00 (7.42)

9
NSTEMI
and UA 63 54.10 (9.76) 42 (66.7%) 32 (50.8%) 28 (44.4%) 9 (14.3%) 13 (20.6%) 57.48 (8.56)

Control 64 39.59 (12.94) 36 (56.2%) 13 (20.3%) 10 (15.6%) 4 (6.2%) 7 (10.9%) 60.13 (6.10)

Grandin et al.,
2012 [25] USA

Case-control
study

ACS 100 65.7 (10.9) 73 (73.0%) 68 (68.0%) 32 (32.0%) NS NS NS
7

Control 100 65.7 (10.9) 73 (73.0%) 54 (54.0%) 23 (23.0%) NS NS NS

Gucuk Ipek
et al., 2016 [26]

Turkey
Prospective

study
ACS 19 64.5 (7.6) 11 (57.9%) 7 (36.8%) 4 (21.1%) 4 (21.1%) 6 (31.6%) NS

8
Control 17 60.9 (7.6) 9 (52.9%) 4 (23.5%) 1 (5.9%) 6 (35.3%) 6 (35.3%) NS

Li et al.,
2022 [27] China

Retrospective
study

STEMI 139 58.49 (13.19) 120 (89.4%) 76 (54.6%) 22 (15.8%) 3 (2.2%) 70 (50.4%) 58 (22–74)
9

NSTEMI 97 61.95 (10.17) 82 (84.5%) 60 (75.9%) 22 (22.7%) 3 (3.1%) 37 (38.1%) 62 (30–80)
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Table 1. Cont.

Study Country Study Design Study
Group

No. of
Patient’s

Age, Years Sex, Male
Comorbidities

LVEF, % NOS
ScoreHTN, % DM, % HCL, % Smoking, %

Lisowska et al.,
2016 [28] Poland

Prospective
cohort study

STEMI 143 63.3 (9.9) 116 (81.1%) 97 (67.8%) 41 (28.7%) 52 (36.4%) 96 (67.1%) 44.5 (9.8)

9NSTEMI 90 63.5 (11.8) 62 (68.9%) 51 (56.7%) 12 (13.3%) 37 (41.1%) 57 (63.3%) 48.6 (10.5)

Control 100 61.5 (7.9) 67 (66.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 28 (28.0%) 55.0 (12.5)

Milner et al.,
2014 [29] UK

Prospective
study

STEMI 53 60.6 39 (73.8%) 24 (45.3%) 5 (9.4%) 19 (35.8%) 30 (56.6%) NS
7

Control 23 54.1 12 (52.2%) 8 (34.8%) 0 (0.0%) 7 (30.4%) 9 (39.1%) NS

Mitic et al.,
2022 [30] Serbia

Prospective
study

STEMI 42 63.81 (9.84) 27 (64.3%) NS NS NS 15 (35.7%) 50
(46.5–55.0)

8
NSTEMI 23 64.00 (9.60) 18 (78.3%) NS NS NS 6 (26.1%) 54

(50.0–58.0)

Osman et al.,
2024 [31]

Egypt Prospective
study

ACS 90 59.4 (6.49) 59 (65.6%) 48 (53.3%) 42 (44.6%) 44 (48.9%) 50 (55.6%) 50.86 (5.13)
8

Control 50 57.9 (7.83) 33 (66.0%) 23 (46.0%) 11 (22.0%) 24 (48.0%) 17 (34.0%) 59.46 (6.3)

Soltan et al.,
2020 [32]

Egypt Prospective
study

ACS 72 56.3 (12.7) 54 (75.0%) 30 (41.7%) 33 (45.8%) 9 (12.5%) 56 (77.8%) NS
7

Control 20 51.6 (7.7) 14 (70.0%) 10 (50.0%) 7 (35.0%) 3 (15.0%) 12 (60.0%) NS

Tsai et al.,
2012 [33] Taiwan

Prospective
study

AMI 196 62.2 (12.1) 126 (82.7%) 109 (55.6%) 67 (34.2%) NS 115 (58.7%) NS
8

Control 30 62.1 (7.1) 23 (76.7%) 0 (0.0%) 0 (0.0%) NS 0 (0.0%) NS

Wei et al.,
2022 [34] China

Prospective
study

STEMI 35 57.25 (10.58) 22 (62.9%) 11 (31.4%) NS NS 16 (45.7%) 49.37 (7.97)
8

Control 24 57.84 (10.32) 15 (62.5%) 6 (25.0%) NS NS 8 (33.3%) 58.33 (1.58)

Winter et al.,
2016 [35] Austria

Multicenter
case-control

study

MI 72 35.6 (4.3) 64 (89%) 30
(42%) 19 (26%) NS 55 (76%) NS

8
Control 72 34.6 (4.6) 64 (89%) 6 (8%) 4 (6%) NS 37 (51%) NS

Legend: MI = myocardial infarction; STEMI = ST-elevation myocardial infarction; NSTEMI = non-ST-elevation myocardial infarction; UA—unstable angina; ACS—acute coronary
syndrome; DM = diabetes melitus; HCL = hypercholesterolemia; HTN = hypertension; NS = not specified; LVEF = left ventricle ejection fraction; NOS = Newcastle–Ottawa Scale.
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3.3. Meta-Analysis Outcomes

A pooled analysis of six studies showed that Gal-3 levels were statistically signif-
icantly higher in the ACS group (12.84 ± 8.48 ng/mL) compared to the control group
(7.23 ± 6.05 ng/mL; MD = 3.89; 95% CI: 2.83 to 4.95; p < 0.001; Figure 3).

Four studies reported Gal-3 levels among acute myocardial infarction (AMI) and
control groups. Pooled analysis of Gal-3 among AMI and control groups varied and
amounted to 10.09 ± 8.16 vs. 4.64 ± 3.07 ng/mL, respectively (MD = 4.30; 95% CI: 0.41 to
8.18; p < 0.001).

Statistical analysis also showed statistically significant differences in Gal-3 levels
between ST-elevated myocardial infarction (STEMI) and the control group (10.62 ± 7.34 vs.
5.54 ± 2.96 ng/mL; MD = 5.54; 95% CI: 3.12 to 7.97; p < 0.001).

In contrast, there were no statistically significant differences between the non-ST-elevated
myocardial infarction (NSTEMI) and control group (8.81 ± 4.55 vs. 5.62 ± 3.43 ng/mL;
MD = 2.84; 95% CI: −0.03 to 5.71; p = 0.05), or between patients with STEMI and pa-
tients with NSTEMI (13.35 ± 8.19 vs. 11.89 ± 4.75 ng/mL; MD—3.12; 95% CI: −0.34 to 6.58;
p = 0.08).

The sensitivity analysis carried out did not show an impact on the results obtained.
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Figure 3. Forest plots of galectin-3 levels among different patient groups [21–35].

4. Discussion

Our meta-analysis showed significantly higher levels of Gal-3 in the group of patients
with ACS compared to the control group. A statistically significant difference was also
found when comparing patients with AMI or STEMI to the control group. Additionally,
there were no statistically significant differences between the NSTEMI and control or
between patients with STEMI and patients with NSTEMI. The elevated Gal-3 values in the
experimental groups may indicate increased inflammation and fibrosis following ACS.

The potential diagnostic and prognostic properties of the Gal-3 biomarker have been
extensively studied in the context of cardiovascular diseases. Agnello et al. described
the possible use of Gal-3 as a prognostic biomarker in heart failure (HF) following ACS,
including in the prediction of cardiovascular death or HF following ACS [36]. Similar
conclusions are also supported by other meta-analyses [37,38]. In the context of atrial
fibrillation (AF), Gong et al. showed that elevated Gal-3 values were observed among
patients with persistent AF [39]. While the current meta-analysis focuses mainly on the
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potential diagnostic utility of the Gal-3 biomarker, Chen et al. suggested that Gal-3 may
also have potential prognostic value after acute heart failure, e.g., for predicting mortality
and cardiovascular mortality [40]. Gal-3 has also shown predictive value in patients
with aortic stenosis after transcatheter aortic valve replacement (TAVR) in terms of all-
cause mortality [41]. Furthermore, elevated Gal-3 levels also correlate with an increased
risk of cardiovascular events among patients with type 2 diabetes. Tan et al. defined
a cardiovascular event as a composite endpoint including: first non-fatal myocardial
infarction, non-fatal stroke, coronary revascularization, or cardiovascular-related death.
In an observational study of 1495 patients, the authors demonstrated that Gal-3 levels
were significantly elevated in patients who experienced a cardiovascular event during
follow-up [42].

Gal-3 may offer certain advantages over cardiospecific troponins, which are widely
used to diagnose and differentiate forms of ischemic heart disease and are a fundamental
part of the diagnostic criteria for MI. Gal-3 may enable very early stratification of patients
with an unfavourable prognosis or requiring intensified medical care or long-term sec-
ondary prevention [43]. However, it should be noted that Gal-3 is not a highly specific
biomarker, which may significantly limit its application in the diagnosis utility of car-
diovascular diseases. Syn et al. reported that elevated Gal-3 levels are also observed in
chronic renal failure and may serve as a prognostic factor for disease progression [44], as
well as a prognostic factor for renal failure following intensive care unit admission [45].
Some studies also indicate the potential diagnostic use of Gal-3 in certain cancers, such
as pancreatic cancer [46]. King et al., showed that increased Gal-3 levels correlated with
more severe depressive symptoms. However, this relationship is influenced by multiple
variables such as multimorbidity, which may also be associated with increased depressive
symptoms while also influencing increased Gal-3 values [47]. In chronic obstructive pul-
monary disease (COPD), Gal-3 may predict symptom exacerbation [48]. These examples
highlight the fact that the lack of specificity of Gal-3 may pose a significant challenge to its
use as a potential diagnostic biomarker in cardiovascular diseases. The clinical superiority
of Gal-3 compared to established biomarkers, such as B-type natriuretic peptide (BNP), has
not been conclusively demonstrated. Both cardioselective troponins and Gal-3 are useful in
cardiovascular risk stratification, but their prognostic value is not statistically significant
after accounting for clinical factors [49].

In the context of pathophysiological mechanisms, it is worth noting that Gal-3 is known
to induce inflammation, e.g., by activating macrophages; and inflammation itself plays an
important role in promoting the development of atherosclerotic changes and atherosclerotic
plaque instability. Thus, Gal-3 itself is sometimes referred to as a “biomarker of plaque
progression and destabilization” [50,51]. Sygitowicz et al. noted that one reason for Gal-3’s
impact on cardiovascular disease progression is its promotion of lipid accumulation in
macrophages. Additionally, Gal-3’s pro-inflammatory properties contribute to endothelial
dysfunction [52].

Gal-3’s impact on apoptosis also plays an important role in the pathophysiology
of ACS. Gal-3 seems to be responsible for promoting apoptosis, which may initially in-
crease the damage resulting from myocardial ischemia. Moreover, in the long term, the
influence of Gal-3 on apoptosis may lead to increased fibrosis and, consequently, remod-
elling, contributing to the development of heart failure. Despite many studies, the pro- or
anti-apoptotic properties of Gal-3 require further investigation, especially since inhibition
or promotion of Gal-3 may potentially constitute a new target for drug development in
cardiovascular diseases [53].

Regardless of its effect on fibrosis and apoptosis, Gal-3 may destabilise atherosclerotic
plaque [36]. Gal-3 also contributes to increased oxidative stress [54]. It is worth noting that
only a small number of compounds have been tested in the context of Gal-3 inhibition,
mainly in animal models, including N-acetyllactosamine or LacDiNAc. TDI 139 is in early
clinical trials for idiopathic pulmonary fibrosis. Zaborska et al. indicated that one of the
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main obstacles to advancing Gal-3 inhibitors from preclinical to clinical phases is the lack
of appropriate animal models reflecting the complexity of HF [55].

The results of our meta-analysis are not entirely consistent with the pathophysiology
discussed earlier. Gal-3 levels were higher in both patients with ACS and patients with
MI, as compared to the control groups. While Gal-3 levels are elevated in patients with
STEMI compared to controls, there were no statistically significant differences between the
NSTEMI group and controls, as well as between patients with STEMI and patients with
NSTEMI. These findings suggest that Gal-3 may be useful for diagnosing acute coronary
syndromes, but it appears less effective for diagnosing NSTEMI or differentiating between
all ACS types.

When interpreting the results of this meta-analysis, several limitations of the study
must be considered. First, subgroup analyses revealed significant heterogeneity. A high
level of heterogeneity indicates that the trials included in the meta-analysis differ widely
in terms of the magnitude of change of Gal-3 in patients with acute coronary syndromes.
Hence, the high heterogeneity indicates that meta-analysis results should be interpreted
with caution. Future research should aim to standardise methodologies and include more
consistent trials to mitigate the above-mentioned limitations.

Furthermore, the definition of controls varied between the included studies. Another
limitation is the lack of a clearly defined cut-off, a typical limitation of diagnostic biomarker
meta-analyses. Further studies are necessary to validate the use of Gal-3 as a potential
diagnostic biomarker, particularly in establishing cut-offs in prospective clinical trials as
well as to determine its advantage over commonly used biomarkers of cardiovascular
diseases, such as cardiospecific troponins.

Finally, we cannot perform a meta-analysis with specific diagnostic parameters such
as ROC curves and C-statistics or estimate sensitivity and specificity since there is currently
insufficient evidence to conduct such comprehensive analyses. Moreover, these indicators
are particularly useful in assessing the clinical utility of diagnostic tests during their
implementation in clinical practice, such as evaluating the clinical effectiveness of in vitro
diagnostic medical devices. This meta-analysis is focused on exploring the potential
diagnostic properties of Gal-3 and remains at the exploratory stage.

5. Conclusions

Our meta-analysis demonstrated significantly higher levels of Gal-3 in patients with
ACS, AMI, or STEMI compared to controls, but with no differences between both NSTEMI
compared to controls and STEMI vs. NSTEMI groups. These findings suggest that Gal-3
may have potential utility in diagnosing ACSs, but it appears less effective for diagnosing
NSTEMI or differentiating between all ACS types. However, high heterogeneity in all
subgroups indicates a lot of variability between studies, alongside the lack of standardised
cut-off values, and should be considered when interpreting the results. Gal-3’s roles in
inflammation, endothelial dysfunction, lipid accumulation in macrophages, apoptosis, and
oxidative stress underscore its complex involvement in cardiovascular pathophysiology.
Despite its diagnostic potential in cardiovascular diseases, the lack of specificity of Gal-3
limits its clinical use. While the findings of this meta-analysis are promising, additional
studies are needed to explore Gal-3’s diagnostic utility, establish precise cut-offs, and con-
firm its advantages over established biomarkers such as cardiospecific troponins. Although
the results suggest the potential value of Gal-3 as a diagnostic biomarker, further clinical
studies are needed to confirm its utility and implementation in clinical practice.
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