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Abstract: Obstructive sleep apnea (OSA) has been linked to disruptions in circadian rhythm and
neurotrophin (NFT) signaling. This study explored the link between neuromodulators, chronotype,
and insomnia in OSA. The participants (n = 166) underwent polysomnography (PSG) before being
categorized into either the control or the OSA group. The following questionnaires were completed:
Insomnia Severity Index (ISI), Epworth Sleepiness Scale, Chronotype Questionnaire (morningness-
eveningness (ME), and subjective amplitude (AM). Blood samples were collected post-PSG for protein
level assessment using ELISA kits for brain-derived neurotrophic factor (BDNF), proBDNF, glial-cell-
line-derived neurotrophic factor, NFT3, and NFT4. Gene expression was analyzed utilizing qRT-PCR.
No significant differences were found in neuromodulator levels between OSA patients and controls.
The controls with insomnia exhibited elevated neuromodulator gene expression (p < 0.05). In the
non-insomnia individuals, BDNF and NTF3 expression was increased in the OSA group compared
to controls (p = 0.007 for both); there were no significant differences between the insomnia groups.
The ISI scores positively correlated with all gene expressions in both groups, except for NTF4 in
OSA (R = 0.127, p = 0.172). AM and ME were predicting factors for the ISI score and clinically
significant insomnia (p < 0.05 for both groups). Compromised compensatory mechanisms in OSA
may exacerbate insomnia. The correlation between chronotype and NFT expression highlights the
role of circadian misalignments in sleep disruptions.

Keywords: insomnia; OSA; neurotrophins; BDNF; NGF; NTF; neuromodulation

1. Introduction

The intricate relationship between obstructive sleep apnea (OSA), insomnia, and neu-
romodulatory mechanisms presents a fascinating realm of study within the field of sleep
medicine. OSA is a prevalent condition characterized by repeated episodes of partial or
complete upper airway obstruction during sleep, leading to disrupted sleep architecture
and significant daytime morbidity [1–3]. The prevalence and impact of OSA on public
health are underscored by numerous studies, highlighting its association with cardiovas-
cular disease, metabolic disorders, and cognitive impairment [4–8]. Insomnia, a common
comorbidity in OSA patients, exacerbates the patient’s burden by impairing sleep quality
and duration, further diminishing quality of life and cognitive function [9–12].

The neurobiological underpinnings of both OSA and insomnia involve complex in-
teractions among various neuromodulators, including brain-derived neurotrophic fac-
tor (BDNF), its precursor proBDNF, glial-cell-line-derived neurotrophic factor (GDNF),
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neurotrophin-3 (NTF3), and neurotrophin-4 (NTF4) [13–18]. These neuromodulators
play crucial roles in neural plasticity, resilience, and the regulation of the sleep archi-
tecture [17,19,20]. Notably, alterations in the levels of these neurotrophins have been
implicated in the pathophysiology of a wide array of neuropsychiatric disorders, including
depression [21–24], Alzheimer’s disease [25–27], and vascular dementia [28,29], further
emphasizing their importance in maintaining neural health and function. BDNF’s function
differs when regulating various neuronal systems. It is necessary to mention that OSA is a
highly complex condition, involving both intermittent hypoxia and significant changes in
sleep architecture caused by frequent awakenings. Thus, obtaining a proper insight into
its pathophysiology requires investigating various factors affecting sleep, such as cortisol
and norepinephrine. Studies have demonstrated that the hypothalamus–pituitary–adrenal
axis, which regulates cortisol production, might be disrupted in individuals with OSA [30].
Interestingly, norepinephrine uptake inhibitors might decrease the severity of OSA [31].
Both of these factors are related to the circadian rhythm, which may also be somewhat
impaired in this condition [32].

Emerging research has begun to elucidate the specific links between OSA and alter-
ations in neuromodulator dynamics. Studies have shown that intermittent hypoxia, a hall-
mark of OSA, can lead to the dysregulation of BDNF and other neurotrophins, potentially
contributing to the cognitive and mood disturbances observed in OSA patients [20,33–35].
Peripherally, BDNF might aid in the repair of neurons that maintain airway patency [36]. In
the central nervous system, BDNF contributes to breathing regulation via the hypoglossal
nucleus [37]. Notably, BDNF’s role differs in its modulation of various neuronal systems.
For instance, in the hippocampus, BDNF is vital for neurogenesis and synaptic plasticity,
influencing mood regulation and the pathophysiology of depression [38]. The dysregula-
tion of BDNF in this region can precipitate depressive symptoms, while its upregulation is
associated with antidepressant effects [38]. In the dopaminergic system, BDNF was shown
to affect the activity of dopaminergic neurons and increase dopamine turnover [39]. It also
promotes dopamine release in the striatum and hippocampus [40]. In vitro, BDNF was
shown to promote the survival of dopaminergic neurons in the midbrain of rat embryos [39].
Interactions between dopamine and BDNF in the mesencephalic neurons might be a crucial
process in the pathophysiology of substance addiction [41].

Mutations of the GDNF gene might predispose individuals to OSA independently
of other factors, including obesity [42,43]. To date, NTF3 and NFT4 remain poorly re-
searched in the context of OSA. Since NTF4 activates the same receptor as BDNF, it could
be suspected that their actions could be redundant; however, this subject requires thorough
investigation [44]. NTF3 on the other hand, is considered the most versatile neurotrophin,
since it acts upon a wide range of NTF receptors [44]. Apart from their influence on sleep
architecture (e.g., the intraventricular administration of NTF3 and 4 was shown to increase
the number of NREM episodes [45]) they, similarly to BDNF, might potentially aid in the
maintenance of the nerves innervating the upper airway muscle, which vibrations can
damage during snoring [20].

Furthermore, insomnia in the context of OSA has been associated with distinct neu-
rotrophin profiles, suggesting a unique neurobiological substrate that may influence treat-
ment responses and outcomes [46–48], while chronotype has been shown to be associated
with insomnia symptoms among OSA individuals [49].

This study aimed to investigate the relationship between gene expression and protein
levels of neuromodulators and circadian rhythm through chronotype and insomnia in OSA
patients and explore possible mechanisms involved through a search for predictive factors
for insomnia presence and severity.

2. Results

No differences were observed between study groups in any of the neuromodulators
either on gene expression or protein level. The comparison of demographics, polysomnogra-
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phy, questionnaires, neuromodulator gene expressions, and protein levels between control
and OSA groups are presented in Table 1.

Table 1. Comparison of demographic, polysomnography, questionnaires, neuromodulator gene
expressions, and protein levels between study groups.

Control (n = 51) OSA (n = 115) p-Value

D
em

og
ra

ph
ic Age [years old] 45.2 ± 12.4 54.0 ± 11.5 <0.001

Sex (male [n]) 33 (64.7%) 98 (85.2%) 0.003

BMI [kg/m2] 26.8 (24.3–30.5) 31.6 (27.9–36.2) <0.001

PS
G

pa
ra

m
et

er
s

Sleep Onset Latency [min] 22.5 (10.6–35.9) 21.0 (11.0–40.9) 0.363
Sleep Maintenance Efficiency [%] 89.7 (82.7–96.7) 86.1 (73.8–93.9) 0.436

TST [hours] 6.2 ± 1.1 6.2 ± 1.2 0.875
REM [hours] 1.3 ± 0.6 1.3 ± 0.6 0.939

nREM [hours] 4.9 ± 0.9 4.9 ± 0.9 0.874
Arousal Index [events/hour] 10.5 ± 7.9 20.2 ± 14.2 <0.001

AHI [events/hour] 1.8 (1.0–3.1) 26.8 (12.4–46.4) <0.001
Total number of desaturations 11.5 (6.0–20.8) 146.0 (68.0–293.0) <0.001

Desaturation Index [events/hour] 2.0 (1.0–3.0) 26.5 (11.6–49.5) <0.001

Q
ue

st
io

nn
ai

re
s ISI score 14.0 (10.3–18.0) 12.0 (9.0–16.0) 0.993

ESS score 9.0 (5.3–11.0) 8.0 (5.0–12.0) 0.993

ME score of CQ 23.0 (18.0–27.0) 19.0 (16.0–23.0) 0.002

AM score of CQ 23.0 (18.0–26.0) 21.0 (18.0–24.0) 0.091

G
en

e
Ex

pr
es

si
on BDNF 4.0 (2.0–13.1) 7.2 (3.2–17.2) 0.065

GDNF 2.3 (0.6–5.1) 2.6 (1.0–5.3) 0.583

NTF3 4.6 (1.3–7.8) 4.7 (1.7–11.3) 0.229

NTF4 5.9 (2.2–11.1) 4.9 (1.7–13.0) 0.874

Pr
ot

ei
n

Le
ve

l BDNF [ng/mL] 13.7 (7.5–22.7) 12.0 (6.4–20.1) 0.537

proBDNF [ng/mL] 5.7 (3.1–10.4) 5.3 (2.8–8.6) 0.485
GDNF [ng/mL] 94.1 (78.7–116.5) 94.1 (84.3–122.1) 0.577
NFT3 [ng/mL] 143.1 (120.3–169.6) 131.7 (106.7–156.7) 0.110
NFT4 [pg/mL] 2.3 (1.5–3.0) 2.2 (1.7–2.7) 0.896

AHI—apnea-hypopnea index; AM—subjective amplitude; BDNF—brain-derived neurotrophic factor; BMI—body
mass index; CQ—Chronotype Questionnaire; ESS—Epworth Sleepiness Scale; GDNF—glial-cell-line-derived
neurotrophic factor; ISI—Insomnia Severity Index; ME—morningness-eveningness; nREM—non-rapid eye
movement; NTF3—neurotrophin 3; NTF4—neurotrophin 4; proBDNF—precursor of BDNF; REM—rapid eye
movement; TST—total sleep time. Bold text represents statistically significant results.

Based on the ISI score, the OSA and control groups were divided into subgroups with
and without clinically significant insomnia (Ins(+) for ISI ≥ 15 and Ins(−) for ISI < 15,
respectively).

Higher gene expression of all neuromodulators was present in Ins(+) in the control
group while no differences were observed in the Ins(+) OSA group (all p < 0.05). Addi-
tionally, BDNF and NFT3 were greater in Ins(−) control compared to Ins(−) OSA (both
p = 0.007).

In the control subjects, the Ins(+) subgroup scored higher on ISI and ME of CQ (both
p < 0.001); meanwhile, in the OSA participants, the Ins(+) subgroup exhibited greater
results in all questionnaires than Ins(−) (all p < 0.05). All comparisons of questionnaire
data, neuromodulator gene expressions, and protein levels in the context of clinically
significant insomnia are presented in Table 2.
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Table 2. Comparison of questionnaire data, neuromodulator gene expressions, and protein levels in
the context of clinically significant insomnia.

Control

p-Value

OSA

p-Value

p-Value
Control vs.

OSA
ISI < 15

p-Value
Control vs.

OSA
ISI ≥ 15

Ins(−) (n = 29) Ins(+) (n = 23) Ins(−)
(n = 72) Ins(+) (n = 46)

G
en

e
Ex

pr
es

si
on

BDNF 2.7 (1.3–7.1) 8.8 (3.6–21.5) 0.004 7.0 (3.0–15.2) 8.4 (3.9–29.5) 0.142 0.007 0.809

GDNF 1.1 (0.4–3.4) 3.7 (1.9–5.5) 0.012 2.1 (0.9–4.4) 3.5 (1.2–6.8) 0.085 0.107 0.712

NTF3 1.8 (0.8–4.9) 7.6 (4.6–16.2) <0.001 4.1 (1.7–10.9) 5.3 (1.78–11.7) 0.487 0.007 0.340

NTF4 5.0 (1.4–7.4) 7.2 (3.4–17.8) 0.032 5.5 (2.2–13.0) 4.8 (1.1–13.2) 0.570 0.179 0.112

Pr
ot

ei
n

Le
ve

l

BDNF [ng/mL] 7.8 (6.1–21.8) 16.8 (10.6–23.8) 0.103 11.4
(6.41–19.9) 12.8 (6.4–21.4) 0.588 0.910 0.296

proBDNF
[ng/mL] 3.9 (2.6–10.6) 6.3 (4.9–10.3) 0.161 5.2 (3.0–8.3) 6.1 (2.6–9.1) 0.788 0.852 0.235

GDNF
[ng/mL]

89.7
(73.1–119.0)

94.6
(86.2–129.9) 0.245 92.5

(83.93–127.5)
96.9

(85.7–116.8) 0.338 0.346 0.739

NFT3 [ng/mL] 140.5
(119.2–164.3)

155.7
(120.3–173.4) 0.497 133.6

(102.2–156.8)
131.7

(120.3–156.0) 0.666 0.300 0.311

NFT4 [pg/mL] 1.8 (1.4–2.8) 2.6 (1.8–3.3) 0.113 2.2 (1.8–2.7) 2.24 (1.4–2.8) 0.656 0.239 0.244

Q
ue

st
io

nn
ai

re
s ISI score 11.0 (8.5–13.0) 18.0 (16.0–22.0) <0.001 10.0

(8.0–12.0)
17.0 (15.
8–19.00) <0.001 0.239 0.147

ESS score 7.0 (3.5–10.5) 9.0 (6.0–12.00) 0.123 7.0
(6.0–12.00) 9.0 (5.8–14.0) 0.041 0.904 0.893

ME score of CQ 20.0 (17.0–23.8) 26.0 (23.0–28.0) <0.001 18.0
(15.0–21.8) 20.5 (17.0–25.0) 0.015 0.170 0.001

AM score of
CQ 22.5 (17.3–25.8) 25.0 (20.0–26.0) 0.146 19.5

(17.0–22.0)
23.0

(21.0–26.00) <0.001 0.104 0.636

AM—subjective amplitude; BDNF—brain-derived neurotrophic factor; CQ—Chronotype Questionnaire;
GDNF—glial-cell-line-derived neurotrophic factor; ISI—Insomnia Severity Index; ME—morningness-eveningness;
NTF3—neurotrophin 3; NTF4—neurotrophin 4; OSA—obstructive sleep apnea; proBDNF—precursor of BDNF.
Bold text represents statistically significant results.

The ISI score correlated with gene expression of all neuromodulators in the control
and OSA groups, except for NTF4 (R = 0.127, p = 0.172) in the OSA group. On the other
hand, the ESS score only positively correlated with the expression of NFT3. Both the ME
dimension of chronotype and ESS correlated with the AM dimension within the OSA group,
but not the control group. The AM dimension of chronotype was associated with the gene
expression of all neuromodulators in the OSA, but none in the control group. No significant
relationships were observed between protein levels of evaluated neuromodulators and
questionnaire data. All correlations between questionnaire data, neuromodulator gene
expressions, and protein levels are presented in Table 3.

Table 3. Correlations between questionnaire data, neuromodulator gene expressions, and protein
levels.

ISI Score ESS Score ME Score of CQ AM Score of CQ

Control OSA Control OSA Control OSA Control OSA

Q
ue

st
io

nn
ai

re
s ESS score R = 0.310

p = 0.025
R = 0.208
p = 0.024

ME score of CQ R = 0.540
p < 0.001

R = 0.352
p < 0.001

R = 0.137
p = 0.339

R = 0.175
p = 0.058

AM score of CQ R = 0.346
p = 0.013

R = 0.514
p < 0.001

R = −0.098
p = 0.493

R = 0.355
p < 0.001

R = 0.227
p = 0.109

R = 0.228
p = 0.013

G
en

e
Ex

pr
es

si
on

BDNF R = 0.310
p = 0.025

R = 0.223
p = 0.015

R = −0.219
p = 0.119

R = 0.020
p = 0.833

R = 0.137
p = 0.339

R = 0.049
p = 0.597

R = −0.098
p = 0.493

R = 0.251
p = 0.006

GDNF R = 0.288
p = 0.042

R = 0.193
p = 0.038

R = −0.014
p = 0.921

R = 0.008
p = 0.934

R = 0.135
p = 0.351

R = 0.081
p = 0.387

R = −0.048
p = 0.741

R = 0.191
p = 0.039

NTF3 R = 0.347
p = 0.012

R = 0.196
p = 0.034

R = −0.168
p = 0.234

R = 0.268
p = 0.003

R = 0.158
p = 0.269

R = −0.080
p = 0.389

R = −0.082
p = 0.566

R = 0.223
p = 0.015

NTF4 R = 0.296
p = 0.033

R = 0.127
p = 0.172

R = −0.074
p = 0.603

R = 0.078
p = 0.400

R = 0.123
p = 0.391

R = 0.058
p = 0.535

R = −0.196
p = 0.169

R = 0.225
p = 0.014
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Table 3. Cont.

ISI Score ESS Score ME Score of CQ AM Score of CQ

Control OSA Control OSA Control OSA Control OSA

Pr
ot

ei
n

Le
ve

l

BDNF R = 0.005
p = 0.978

R = 0.097
p = 0.470

R = 0.215
p = 0.236

R = 0.192
p = 0.150

R = 0.033
p = 0.859

R = 0.094
p = 0.481

R = 0.182
p = 0.327

R = −0.097
p = 0.470

proBDNF R = −0.032
p = 0.863

R = 0.142
p = 0.285

R = 0.127
p = 0.487

R = 0.121
p = 0.360

R = 0.042
p = 0.823

R = 0.062
p = 0.643

R = 0.060
p = 0.750

R = −0.041
p = 0.760

GDNF R = 0.236
p = 0.148

R = 0.013
p = 0.919

R = 0.082
p = 0.620

R = 0.028
p = 0.825

R = −0.095
p = 0.570

R = 0.203
p = 0.105

R = 0.112
p = 0.503

R = 0.122
p = 0.334

NFT3 R = 0.147
p = 0.373

R = 0.093
p = 0.462

R = 0.185
p = 0.261

R = 0.071
p = 0.576

R = 0.129
p = 0.441

R = 0.162
p = 0.199

R = 0.125
p = 0.453

R = 0.155
p = 0.217

NFT4 R = 0.170
p = 0.300

R = 0.092
p = 0.466

R = −0.068
p = 0.682

R = −0.042
p = 0.742

R = −0.055
p = 0.742

R = 0.049
p = 0.697

R = −0.047
p = 0.778

R = −0.087
p = 0.489

AM—subjective amplitude; BDNF—brain-derived neurotrophic factor; CQ—Chronotype Questionnaire;
ESS—Epworth Sleepiness Scale; GDNF—glial-cell-line-derived neurotrophic factor; ISI—Insomnia Severity
Index; ME—morningness-eveningness; NTF3—neurotrophin 3; NTF4—neurotrophin 4; OSA—obstructive sleep
apnea; proBDNF—precursor of BDNF. Bold text represents statistically significant results.

The linear regression model for the ISI score in the control group included the fol-
lowing: constant (p = 0.509), NTF4 gene expression (p < 0.001), ME and AM score of CQ
(p = 0.006 and p = 0.004, respectively), and explained 47.2% of the variance; meanwhile, in
OSA, it was comprised of the constant (p = 0.209), ME and AM scores of CQ (p < 0.001 and
p = 0.002, respectively), and amounted to 31.4%. All information about the linear regression
models is presented in Table 4.

Table 4. Linear regression models for ISI score in OSA and control group. AM—subjective amplitude;
CQ—Chronotype Questionnaire; ISI—Insomnia Severity Index; ME—morningness-eveningness;
NTF4—neurotrophin 4; OSA—obstructive sleep apnea.

Control group

ISI Score

Model R2 = 0.472, F = 13.845, p < 0.001

Parameters B B 95% CI t p-Value

Constant −2.095 −8.434–4.244 −0.665 0.509
ME score of CQ 0.317 0.095 –0.539 2.871 0.006
AM score of CQ 0.373 0.125–0.621 3.023 0.004

NTF4 gene expression 0.719 0.359–1.079 4.017 <0.001

Excluded variables: ESS score, BDNF, GDNF, NTF3 gene expressions

OSA group

ISI Score

Model R2 = 0.314, F = 26.047, p < 0.001

Parameters B B 95% CI t p-Value

Constant −2.766 −7.108–1.575 −1.262 0.209
ME score of CQ 0.476 0.302–0.649 5.432 <0.001
AM score of CQ 0.281 0.106–0.455 3.193 0.002

Excluded variables: ESS score, BDNF, GDNF, NTF3, NTF4 gene expressions

AM—subjective amplitude; CQ—Chronotype Questionnaire; ISI—Insomnia Severity Index; ME—morningness-
eveningness; NTF4—neurotrophin 4; OSA—obstructive sleep apnea. Bold text represents statistically
significant results.

Significant predictors of clinically significant insomnia (ISI ≥ 15) in the control group
included the following: NTF3 gene expression (OR: 14.0, 95% CI: 1.3–154.4, p = 0.031)
and ME and AM score of CQ (OR: 1.3, 95% CI: 1.0–1.5, p = 0.017 and OR: 1.3, 95% CI:
1.0–1.6, p = 0.049, respectively); meanwhile, in the OSA group, predictors were ME and
AM scores of CQ (OR: 1.1, 95% CI: 1.0–1.2, p = 0.043 and OR: 1.1, 95% CI: 1.0–1.3, p = 0.019,
respectively).
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3. Discussion

In the corpus of the existing literature, investigations concerning the role of neuro-
modulators in OSA are limited, with the majority of the extant research predominantly
concentrating on the protein levels of BDNF. The current study represents a pioneering
effort in this domain, to elucidate no significant disparities in the levels of BDNF, proBDNF,
GDNF, NTF3, and NTF4 between OSA patients and control subjects, evaluated both at the
protein and mRNA expression levels. This finding aligns with the trajectory of contempo-
rary research suggesting that the mere presence of OSA does not intrinsically modulate the
systemic concentrations of these neuromodulators [50–53].

However, the findings of this study elucidate a distinctive pattern in the expression of
neuromodulator genes within individuals exhibiting clinically significant insomnia in the
control group, marked by an elevated gene expression of all neuromodulators. This pattern
was notably absent in the OSA cohort, implying that the underlying pathophysiology
of insomnia might entail a compensatory upregulation of neuromodulators in non-OSA
individuals, potentially serving as a neuroprotective mechanism to mitigate sleep disrup-
tions [54]. Such compensatory mechanisms appear to be compromised in OSA patients,
potentially contributing to the heightened prevalence of depressive disorders and cognitive
deficits observed in this demographic [55–59]. This dysregulation may be attributed to the
deleterious effects of intermittent hypoxia associated with OSA. For instance, Xie et al. have
demonstrated in a murine model that intermittent hypoxia precipitates a downregulation
of hippocampal BDNF, correlating with compromised long-term potentiation (LTP) and
consequent cognitive impairments [33]. Furthermore, the exogenous administration of
BDNF was shown to restore LTP amplitude [33]. This phenomenon aligns with observa-
tions from additional animal studies on intermittent hypoxia, which similarly reported a
reduction in BDNF levels [60–63]. However, it must be mentioned that individuals with
no clinically significant insomnia had higher expression levels of BDNF and NTF3 in the
OSA group compared to controls. This may indicate that the compensatory mechanism
is disrupted not by a reduction in the expression of neuromodulators but rather by their
constant and increased expression. It may lead to a reduction in the tissue’s sensitivity to
their positive neuromodulatory effect and promote the occurrence of clinically significant
insomnia [19].

Subsequent analyses revealed a more pronounced association between the ME and
AM dimensions of chronotype and neuromodulator gene expression within the OSA
cohort. This observation suggests that OSA may modulate or exacerbate the influence of
an individual’s chronotype on neuromodulator gene expression, potentially altering sleep
architecture and the severity of insomnia as well as presenting a pronounced dysfunction
among OSA individuals in the ability to adapt to functioning at various times of the day.
Furthermore, the chronotype scores emerged as significant predictors of insomnia severity
and the occurrence of clinically significant insomnia across both the control and OSA groups.
This phenomenon may reflect the interplay between circadian disruptions induced by OSA
and intrinsic circadian rhythms [64–67]. The influence of chronotype on the timing of sleep
and physiological processes, juxtaposed with the sleep–wake cycle disruption characteristic
of OSA, could intensify sleep disturbances and modulate neuromodulator levels. The
research by Tirassa et al. demonstrated that the chronotype in young healthy women
correlates with serum BDNF levels, albeit this correlation was contingent upon the timing
of measurements. For instance, individuals of the evening type exhibited an ascension
in BDNF levels from morning to evening, whereas morning types displayed a zenith of
BDNF levels in the morning [68]. However, this study did not incorporate an assessment
of insomnia. Additionally, the evidence suggests an interaction between the circadian clock
and BDNF. Specifically, BDNF knockout in zebrafish resulted in the attenuation of rhythmic
expression of circadian clock genes [69]. Furthermore, Sadhukhan et al. reported that
post-stroke cognitive impairment is associated with the reduced expression of CLOCK and
BDNF genes, indicating that transcriptional dysregulation of these genes could underlie
cognitive decline post-stroke [70]. Further research is needed to clarify the relationship
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between the circadian clock and neuromodulators in OSA patients and its possible effect
on insomnia. Moreover, it is noteworthy that among genomic factors, only the expression
of NTF4 and NTF3 genes in the healthy control group were predictive of insomnia severity
and the onset of clinically significant disease, respectively. None of the genes tested were
predictors of insomnia in the OSA group.

4. Materials and Methods
4.1. Participant Recruitment

At the Sleep and Respiratory Disorders Centre in Lodz (Poland), 166 participants
were recruited for the study. All individuals were between 18 and 75 years old and had a
body-mass index (BMI) of 20–45 kg/m2. Psychiatric/neurological/inflammatory/chronic
respiratory diseases, infection, cancer, and hypnotic medications were included in the exclu-
sion criteria. The Ethics Committee at the Medical University of Lodz (RNN/432/18/KE)
approved the study; all participants provided informed consent.

4.2. Polysomnography

Physical examination preceded nocturnal polysomnography (PSG) recording (Alice 6,
Phillips-Respironics), which included electroencephalography (EEG), electromyography
(EMG), electrooculography (EOG), thermistor gauge, snoring recordings, body position
tracking, piezoelectric gauges, and electrocardiogram (ECG) to monitor sleep stages, apnea,
hypopnea and arousal events, heart activity, and hemoglobin oxygen saturation (SpO2).
PSG data were scored according to the American Academy of Sleep Medicine (AASM)
guidelines from 2017, Version 2.3, using the epoch length of 30 s [71]. Interpretation was
conducted by the same physician-researcher with expertise in PSG evaluation. Apnea was
identified as a reduction in airflow to less than 10% of the baseline for a minimum of 10 s.
Hypopnea was defined as a decrease in airflow by at least 30% for at least 10 s, along with
either a reduction in SpO2 by more than 3% or an arousal. OSA diagnosis and severity was
based on the apnea-hypopnea index (AHI) ≥ 5.

4.3. Assessment of Gene Expression and Protein Level

In the morning after a PSG examination, blood samples were collected (within 10 min
of awakening, around 06:00) using tubes with an EDTA and with clot activator.

Blood samples with the clot activator were immediately centrifuged at 4 ◦C, and the
serum was subsequently collected and stored at −80 ◦C. The concentration of neurotrophin
proteins in the serum was measured using ELISA kits (FineTest for BDNF and proBDNF,
EIAab Science for GDNF, NTF3, and NT4, Wuhan, China). Absorbance was read at a
wavelength of 450 nm using a BioTek 800 TS absorbance reader (Agilent Technologies,
Santa Clara, CA, USA). RNA was isolated from peripheral blood leukocytes using TRIzol
reagent (Invitrogen, Waltham, MA, USA), and the RNA Integrity Number (RIN) and con-
centration were determined using a Nanodrop Colibri Microvolume Spectrometer (Titertek
Berthold, Bad Wildbad, Germany). The isolated RNA was reverse transcribed following the
manufacturer’s protocol using the SuperScript IV First-Strand Synthesis System (Thermo
Fisher Scientific Inc., San Jose, CA, USA). The reverse transcription process included three
steps, with annealing conducted at 60 ◦C for 60 s. Gene expression levels were quantified
using a quantitative real-time PCR, with the reaction mixture containing nuclease-free
water, Master Mix TaqMan Universal, cDNA, and gene-specific probes (TaqMan assays for
BDNF, GDNF, NTF3, and NTF4; reference gene: β-Actin). Each sample and the reference
gene were run in triplicate, and the cycle threshold (CT) values were determined. The
∆Ct values were calculated and used for mRNA expression analysis using the 2−∆Ct and
multiplied by 10.

4.4. Questionnaires

In the morning after the PSG examination, the participants completed the following
questionnaires: Insomnia Severity Index (ISI), Epworth Sleepiness Scale (ESS), and Chrono-



Int. J. Mol. Sci. 2024, 25, 8469 8 of 12

type Questionnaire (CQ) comprising two dimensions, morningness-eveningness (ME) and
subjective amplitude (AM).

4.4.1. Insomnia Severity Index (ISI)

The severity of insomnia was assessed using a self-report questionnaire. Patients
responded to seven questions evaluating various sleep aspects, including difficulties in
falling asleep, staying asleep, waking up too early, dissatisfaction with sleep quality, the
impact of sleep issues on daily activities, noticeable effects on quality of life, and concerns
or distress about sleep. Each question was rated on a scale from 0 to 4 based on its relevance
to the patient’s condition. The scores were summed to produce an overall score, which
classified patients into four categories: no clinically significant insomnia (0–7), subthreshold
insomnia (8–14), moderate clinical insomnia (15–21), and severe clinical insomnia (22–28).

4.4.2. Epworth Sleepiness Scale (ESS)

This questionnaire includes eight questions where patients rated the likelihood of
falling asleep in specific situations, such as while sitting and reading, watching TV, or
having a conversation. The scale ranges from 0 to 3 for each situation and is designed
to evaluate excessive daytime sleepiness. The total score is obtained by summing the
responses. A score of 0 to 7 indicates a low probability of abnormal sleepiness, while
scores of 8 to 9 reflect an average level of daytime sleepiness. Scores between 10 and
15 suggest potential excessive sleepiness, and scores from 16 to 24 indicate significant
daytime sleepiness.

4.4.3. Chronotype Questionnaire (CQ)

The Chronotype Questionnaire is a self-assessment tool used to determine an individual’s
chronotype, reflecting their natural preference for activity and sleep times. Participants answer
a series of questions regarding their usual sleep–wake patterns, peak periods of alertness,
and daily performance. Each response is rated on a scale, and the cumulative score indicates
whether the individual is a morning type (AM), evening type (ME), or intermediate type. The
AM dimension assesses the preference for morning activities and alertness, while the ME
dimension evaluates the tendency towards evening activities and peak performance later in
the day. This information helps in understanding a person’s optimal functioning times and
aligning daily activities with their natural biological rhythms.

4.5. Statistical Analysis

Statistical analysis was performed with SPSS 28.0 (IBM, Armonk, NY, USA). The
distribution was evaluated using the Shapiro–Wilk test. Variables with normal distribution
were compared using independent Student t-tests, and non-normally distributed param-
eters by Mann–Whitney U test. Nominal variables were analyzed using chi-square tests.
Correlations were examined by Spearman’s rank correlation test. Multivariable linear
regression with a stepwise procedure was applied to investigate the predictive factors of
the ISI score. Logistic regression models were created to search for predictive factors of
clinically significant insomnia (ISI ≥ 15) and estimated odds ratio (OR) with 95% confidence
intervals (CI). The level of statistical significance was set at p < 0.05.

5. Conclusions

This comprehensive investigation into the role of neuromodulators in OSA and its
association with insomnia severity and chronotype distinctions contributes significantly to
the understanding of OSA’s complex pathophysiology. This study’s findings highlight the
nuanced interplay between neuromodulator expression, circadian rhythm disruptions, and
sleep architecture in OSA patients, diverging from patterns observed in control subjects
with insomnia. Notably, the altered regulation of neuromodulators in OSA patients, po-
tentially influenced by chronic intermittent hypoxia, suggests a disrupted compensatory
mechanism that might underlie insomnia. Furthermore, the pronounced relationship be-
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tween chronotype dimensions and neuromodulator gene expression in OSA individuals
underscores the potential impact of circadian misalignments on sleep disturbances and
neuromodulatory processes. These insights pave the way for future research aimed at
elucidating the mechanisms by which OSA affects neuromodulator dynamics and circadian
regulation, offering potential targets for therapeutic intervention to ameliorate insomnia
and related comorbidities in OSA patients.
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