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Abstract: Electronic cigarette (e-cig) use, otherwise known as “vaping”, is widespread among ado-
lescent never-smokers and adult smokers seeking a less-harmful alternative to combustible tobacco
products. To date, however, the long-term health consequences of vaping are largely unknown. Many
toxicants and carcinogens present in e-cig vapor and tobacco smoke exert their biological effects
through epigenetic changes that can cause dysregulation of disease-related genes. Long non-coding
RNAs (lncRNAs) have emerged as prime regulators of gene expression in health and disease states.
A large body of research has shown that lncRNAs regulate genes involved in the pathogenesis
of smoking-associated diseases; however, the utility of lncRNAs for assessing the disease-causing
potential of vaping remains to be fully determined. A limited but growing number of studies has
shown that lncRNAs mediate dysregulation of disease-related genes in cells and tissues of vapers as
well as cells treated in vitro with e-cig aerosol extract. This review article provides an overview of the
evolution of e-cig technology, trends in use, and controversies on the safety, efficacy, and health risks
or potential benefits of vaping relative to smoking. While highlighting the importance of lncRNAs in
cell biology and disease, it summarizes the current and ongoing research on the modulatory effects
of lncRNAs on gene regulation and disease pathogenesis in e-cig users and in vitro experimental
settings. The gaps in knowledge are identified, priorities for future research are highlighted, and the
importance of empirical data for tobacco products regulation and public health is underscored.
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1. Introduction

Electronic cigarettes (e-cigs) are electronic nicotine delivery systems (ENDS) that simu-
late tobacco smoking [1,2]. E-cigs are battery-powered devices that heat a solution (e-liquid)
containing varying concentrations of humectants, nicotine, and flavors to produce a vapor,
which users inhale through a mouthpiece [1,3]. E-cig use is also known as “vaping”, and
e-cig users are commonly referred to as “vapers” [4,5]. E-cigs have been promoted origi-
nally as safe and subsequently as a less-harmful alternative to tobacco cigarettes [6,7]. This
perception has promulgated by the fact that e-cigs “heat” e-liquid to render inhalable vapor,
unlike traditional cigarettes that burn tobacco leaves to generate smoke [1,7]. Importantly,
chemical analyses of e-cig vapor and e-liquid have shown the presence of many of the
same toxicants and carcinogens as those found in cigarette smoke, although generally at
substantially lower levels [1,4,8]. Currently, e-cig use is widespread among adolescent
never-smokers and adult smokers seeking a reduced-harm substitute for combustible
cigarettes [2,6,7,9]. To date, however, the long-term health effects of vaping are largely
unknown [7,8,10]. Investigating the biological consequences of e-cig use can clarify the
health risks or potential benefits of vaping in adult former-smokers as well as in youth
never-smokers who have taken up this controvertible habit [5,8].

Many toxic and carcinogenic compounds present in e-cig vapor and cigarette smoke
exert their biological effects through epigenetic changes that can cause dysregulation
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of disease-related genes [11–22]. The toxic and carcinogenic constituents of e-cig vapor
and cigarette smoke, such as carbonyl compounds, volatile organic compounds (VOC),
free radicals, and heavy metals, can induce a wide range of DNA lesions [1,10], many
of which may interfere with the epigenetic machinery, e.g., by inhibiting the binding of
epigenetic enzymes to their targets [15,23]. There may also exist a competitive demand for
the metabolism of the chemicals present in e-cig vapor and cigarette smoke [15] and the
cofactors/cosubstrates required for the epigenetic modifying enzymes [23]. Moreover, ox-
idative DNA damage induced by e-cig vapor and cigarette smoke can affect transcriptional
regulatory elements and other epigenetic modifications [15,24].

Long non-coding RNAs (lncRNAs) have emerged as prime regulators of gene expression
in health and disease states [25–28]. There is a mounting recognition of lncRNA-mediated
dysregulation of genes in human diseases, including tobacco-related diseases [29–36]. Also,
growing evidence shows the modulatory effects of lncRNAs on gene expression in response to
specific cues or external stimuli such as tobacco product use [37,38]. While extensive research
has shown that lncRNAs regulate genes involved in the pathogenesis of smoking-associated
diseases [39–42], the utility of lncRNAs for assessing the disease-causing potential of vaping
remains to be fully explored. Determining how lncRNAs regulate disease-related genes in
e-cig users can lead to the identification of novel biomarkers of exposure and early effects for
vaping. These biomarkers will have significant utility for assessing the health risks or potential
benefits of vaping relative to smoking. This information is urgently needed by the regulatory
agencies, including the United States Food and Drug Administration (FDA), which has the
authority to regulate the manufacturing, marketing, and distribution of tobacco products to
protect public health [6,9,43].

There is limited but growing research on lncRNA-mediated gene regulation in biospec-
imens from e-cig users and in cells treated in vitro with e-cig aerosol extract [13,44,45]. The
present review provides an overview of the evolution of e-cigs as a highly consequential
ENDS product, describes trends in e-cig use, and discusses the competing views on the
public health impact of vaping. While highlighting the importance of lncRNAs in cell
biology and disease, it summarizes the existing research on the modulatory effects of lncR-
NAs on disease-related molecular pathways and gene networks in e-cig users and in vitro
experimental settings. The gaps in knowledge are identified, priorities for future research
are highlighted, and the importance of empirical data for tobacco products regulation and
public health is underscored.

2. Search Strategy and Selection Criteria

PubMed search was conducted to identify references using the following terms: “vap-
ing”, “smoking”, “tobacco”, “cigarette”, “electronic cigarette”, “e-cigs”, “electronic nicotine
delivery systems”, “ENDS”, “youth vaping”, “long non-coding RNA”, “lncRNA”, and
“non-coding RNA”. The search terms were used both individually and in combination
with each other. All English-written references, published on or before 30 June 2024, were
considered. Where appropriate, publicly available databases and scientific reports from
regulatory agencies and/or academia as well as news publications were considered; in
all cases, cited sources were identified with a link to the published materials. To limit the
number of citations, updated reviews were used rather than individual research articles,
unless otherwise indicated.

3. E-Cig Technology

E-cigs have been promoted as a safe or less harmful alternative to tobacco cigarettes and
as an aid to smoking cessation [2,5,8]. E-cigs are handheld, battery-powered devices that heat
a liquid and convert it into a vapor, which users inhale into their lungs [1,3,46]. The liquid,
also known as “e-liquid/e-juice”, is a mixture of propylene glycol (PG), glycerin/vegetable
glycerin (VG), flavorings, and varying concentrations of nicotine, although nicotine-free e-
liquid is also available [1,10,46]. Since the introduction of e-cigs to the U.S. market in 2007,
these devices have evolved rapidly and substantially, from the first-generation “cig-a-like”,
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which was designed to look like a traditional tobacco cigarette, to the second-generation vape
pens, third-generation box mods, and the currently popular fourth-generation pod-based
devices [1,10]. The fast and significant changes in the design and features of e-cig devices have
been accompanied by massive diversification of e-liquids [47–49]. With hundreds of chemicals
being added to e-liquids to produce appealing flavors to every man, woman, and child, there
are numerous combinations of chemicals in the ~20,000 e-liquids currently available in the
market [49–51]. The combination of these chemicals, when vaporized altogether, can give rise
to many more chemicals with uncertain toxicity profiles [52–59].

4. Chemical Composition of E-Cig Liquid and Vapor

Chemical analyses of e-cig liquid and vapor have revealed the presence of some of the
same toxicants and carcinogens as those found in cigarette smoke, although mostly at sub-
stantially lower levels—these chemicals include carbonyl compounds, VOC, free radicals,
and heavy metals, among others [1,3,10,60,61]. E-cig vapor also contains chemicals that are
not present in cigarette smoke [51,62]. The latter compounds likely arise from mixing of the
e-liquid ingredients and/or vaporization of humectants (PG/VG), flavorings, or chemicals
leached from the device components [53,63]. At least seven categories of harmful and
potentially harmful substances have been identified in e-cig liquid and vapor, including
carbonyls, VOC, nicotine, nanoparticles, trace metal elements, bacterial endotoxins, and
β-glucans [10]. The reduced levels of toxicants and carcinogens in e-cig vapor are consistent
with the fact that e-cigs, unlike conventional cigarettes, do not “burn” tobacco to produce
aerosol for inhalation [3,4]. This has led, in part, to the perception that e-cig use is safe or
less-harmful than tobacco smoking [2]. While the lower levels of toxicants and carcinogens
in e-cig vapor may imply reduced health risks, they cannot, however, equate to no risk [64].
In fact, exposure to many of the same constituents of e-cig vapor, at varying concentrations,
has been associated with a variety of diseases, including cardiovascular-, immune-related
(inflammatory), and respiratory diseases and cancer, among others [1,3,10,15,23,65].

5. Safety, Efficacy, and Health Risks or Benefits of E-Cig Use

There are competing views on e-cigs safety, efficacy, and health risks/benefits [6,66–69]. On
the one hand, advocates for e-cigs claim that vaping, especially when combined with counseling
and behavioral therapy, helps smokers quit; meta-analyses of dozens of randomized clinical
trials mostly support this claim [7,9]. An important caveat is that e-cigs as a medical intervention
but not a consumer product may help adult smokers quit [2,9,70–73]. Opponents of e-cigs argue
that numerous population-based studies [74–76] confirm that e-cigs as a consumer product are
not effective for smoking cessation [7,9,77]. As it stands, e-cigs are not approved as a medical
intervention anywhere in the world; instead, e-cigs are consumer products that can be bought if
one is of a certain age—e-cigs can be used however one wishes, as much as one likes, and as
frequently as one wants [76,78]. Proponents of e-cigs also claim that the use of e-cigs has led
to a decline in youth smoking [2,79]. Opponents, however, counter that e-cigs are addicting a
new generation of teens and youth who would have never experimented with smoking in the
first place [68,78]. It is also argued that vaping may lead to smoking and “renormalization” of
this unhealthy habit [72,80,81]. While advocates of e-cigs claim that e-cigs cause less harm than
tobacco cigarettes, opponents disagree [6,66,68,78,82].

6. Disentangling the Biological Effects of E-Cig Use in Adult Vapers

Adult e-cig users are likely to have a prior history of smoking (i.e., ex-smokers/current
vapers) or co-use e-cigs and combustible cigarettes (i.e., dual users) [2,6,9,64]. The existing
literature on the “potential” health risks of vaping is often criticized by the fact that the
study participants in many reports include adult e-cig users with “past” or “current”
smoking habits (ex-smokers/current vapers or dual users, respectively) [4,67]. This has
complicated the interpretation of the results, as it is less than certain whether the observed
effects in e-cig users are due to (i) persistent effects of past smoking (in former smokers)
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or current smoking (in dual users), (ii) current vaping only, or (iii) a combination of the
two [2,4,6].

7. LncRNAs: Mechanisms and Functions

Although the vast majority of the human genome is transcribed into RNA, only ~2%
of this RNA is protein-coding [83–86]. The most abundant and diverse class of non-coding
RNAs is lncRNAs [85,87]. LncRNAs (≥200 nucleotides in length) are increasingly recog-
nized as versatile regulators of gene expression at the transcriptional, post-transcriptional,
translational, or post-translational levels [28,88–90]. LncRNA are often classified into differ-
ent sub-types, including intergenic (long intergenic noncoding RNAs (lincRNAs)), intronic,
and sense and antisense lncRNAs, with each sub-type having different genomic position in
relation to genes and exons [91,92]. The majority of lncRNAs are overlapping sense and
antisense transcripts, which mostly include protein-coding genes [83], thus resulting in a
complex hierarchy of overlapping isoforms [93]. Genomic sequences within these transcrip-
tional foci are frequently shared within a number of coding and non-coding transcripts
in the sense and antisense directions relative to annotated genes [94]. LncRNAs are also
derived from “pseudogenes” that are abundantly present in the human genome. Some
of the ~15,000 pseudogenes identified in the human genome [95] have been shown to be
functional [96,97]. In mammals, lncRNAs are dynamically expressed at various stages of
development [98] and during differentiation of stem, muscle, mammary gland, immune,
and neural cells, among others [99,100]. There is a transition in lncRNA expression during
development, with broadly expressed and conserved lncRNAs evolving into an increasing
number of lineage-specific and organ-specific lncRNAs [101,102]. The regulatory function
of lncRNAs is primarily attributed to their roles as (1) “signals” in response to different
stimuli or combinatorial actions of transcription factors (TFs); (2) “guides” to recruit histone-
modifying enzymes or chromatin modifiers to the positions of target genes either in cis or
in trans action; (3) “decoys” or “sponges” to titrate TFs or other intermediary regulatory
entities such as RNA/DNA molecules (e.g., microRNAs (miRNA)) and sequester them
away from their respective target site; and (4) “scaffolds” to recruit protein partners to-
gether by forming functional ribonucleoprotein complexes [103–108]. Various sub-types
of lncRNAs exert their regulatory effects through participation in competing endogenous
RNAs (ceRNAs) regulation, transcription regulation, and epigenetic regulation [106–108].
There is a growing appreciation of lncRNA-mediated dysregulation of genes in human
diseases, such as cardiovascular, respiratory, and immune diseases and cancer, among
others [29–36]. Emerging data show the modulatory effects of lncRNAs on gene expression
in response to specific cues or external stimuli such as tobacco product use [37,38].

LncRNAs Classification, Modes of Action, and Regulation in Health and Disease

Although consensus on how to classify lncRNAs is yet to be reached [102], one widely
employed method of classification is based on the genomic position of lncRNAs relative to
other genes, e.g., protein-coding genes [91]. Accordingly, lncRNAs are classified into three
categories. (I) Intronic lncRNAs are transcribed from the intron of a sense or antisense gene;
(II) intergenic lncRNA genes do not overlap with other genes; and (III) antisense or divergent
lncRNA genes either overlap or are in close proximity to a sense gene and are localized
on the opposite DNA strand [91,92,102]. Another method of classification relies on the
mode of action and regulation of lncRNAs; these include but are not limited to target gene
regulation through either cis or trans action [91]; molecular role, e.g., enhancer RNAs [109],
competitive endogenous RNAs [110], and architectural RNAs [111]; transcriptional reg-
ulation, e.g., damage-induced lncRNAs [112] and stress-induced promoter-associated
antisense lncRNAs [113]; or physiological relevance, e.g., angio-LncRs (MALAT1, MANTIS,
PUNISHER, MEG3, MIAT, SENCR, and GATA6-AS) [114]. The process of transcription
per se has also been suggested to give an additional dimension to the original function
of lncRNAs [28]. For example, some lncRNAs may not be exclusively non-coding, and
while retaining their original function, they may also give rise to small functional pep-
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tides otherwise known as micropeptides [115]. Alternatively, some lncRNA loci may
be part of a 3D nuclear construct permissive to the chromatin environment and gene
regulation at the neighboring loci [116]. LncRNAs can be found anywhere in the cell,
although the majority of lncRNAs are localized to the nucleus, which may stem from
inefficient splicing events [27]. Unlike mRNAs, most lncRNAs have low expression lev-
els, are evolutionarily less well conserved, and exhibit high cell-type specificity or tissue
specificity [28]. Promoter regions of lncRNAs contain fewer TF binding motifs [115]. LncR-
NAs can form secondary and tertiary structures and contain functional RNA elements
and nuclear localization sequences, which are key components of gene regulation [27,117].
Together, these features enable lncRNAs to serve a wide range of regulatory functions in
physiologic and pathologic conditions [115]. For example, in mammals, lncRNAs have
been demonstrated to be instrumental in processes such as the p53-mediated response
to DNA damage [118], V(D)J recombination and class-switch recombination in immune
cells [119], cytokine expression [120], endotoxic shock [121], inflammation and neuropathic
pain [122–124], cholesterol biosynthesis and homeostasis [125,126], growth hormone and
prolactin production [127], glucose metabolism [128,129], cellular signal transduction and
transport pathways [130–132], synapse function [133,134], and learning [135]. A growing
body of research shows the importance of lncRNAs in the regulation of genes involved in
disease pathogenesis [102]. Altered expression of lncRNAs has been demonstrated in a
wide variety of diseases ranging from cancer to cardiovascular, respiratory, and immune
diseases, among others [29–36].

8. LncRNAs in Vaping Research

Aberrant expression of lncRNAs has been demonstrated in biospecimens from e-cig
users [13,44] and cells treated in vitro with e-cig aerosol extract [45]. Le et al. [45] performed
microarray expression analysis on human induced pluripotent stem cell-derived endothelial
cells (iPSC-ECs) treated in vitro with menthol-flavored e-cig aerosol extract. The iPSC-ECs
were generated from four healthy donors. There were 183 upregulated and 297 downregu-
lated lncRNAs together with 132 upregulated and 413 downregulated mRNAs in the treated
iPSC-ECs. Co-expression network analysis of the top five upregulated and downregulated
lncRNAs and the associated 412 differentially expressed mRNAs revealed that the down-
regulated lncRNAs were associated with genes participating in fatty acid metabolism, cell
cycle, cell division, and cell adhesion, while the upregulated lncRNAs were associated with
genes involved in iron ion binding, protein binding, and proton-transporting ATPase activity.
Small interfering RNA (siRNA) knock down of lncRNA LUCAT1, which was significantly
upregulated in the treated cells, led to attenuation of the enhanced cell permeability and
reactive oxygen species (ROS) production while partially restoring cell migration ability [45].

Kaur et al. [44] compared the expression profiles of lncRNA in plasma-derived exo-
somes obtained from e-cig users, cigarette smokers, waterpipe smokers, dual smokers (both
cigarettes and waterpipe), and non-users. Six to eight subjects were studied per group.
The GeneChipTM WT Pico kit was used for expression profiling. Differentially expressed
lncRNAs were detectable in various groups as compared to non-users as follows: e-cig
users (13 lncRNAs: 8 upregulated and 5 downregulated), cigarette smokers (7 lncRNAs:
2 upregulated and 5 downregulated), waterpipe smokers (18 lncRNAs: 9 upregulated and
9 downregulated), and dual smokers (9 lncRNAs: 4 upregulated and 5 downregulated).
The differentially expressed lncRNAs in e-cig users vs. non-users were unique and did not
overlap with those identified in other groups when compared to non-users. There were few
overlapping lncRNAs that were commonly dysregulated across other comparison groups.
Functional annotation of the differentially expressed lncRNAs by FunRich gene enrichment
analysis showed significant enrichment for genes involved in steroid metabolism and
steroid binding in e-cig users vs. non-users. The differentially expressed lncRNAs in other
comparison groups were significantly enriched for genes involved in important biological
processes, including cell differentiation and proliferation [44].
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We performed RNA-seq analysis on total RNA isolated from oral epithelial cells of
healthy adult “exclusive” vapers, “exclusive” cigarette smokers, and non-users (N = 42, 24,
and 27, respectively) [13]. Our choice of oral epithelial cells for gene expression analysis
was based on the following: (i) oral epithelium is the first site of “direct” exposure to
known toxicants and carcinogens present in e-cig vapor and cigarette smoke [136–140];
(ii) oral epithelial cells are a major target for tumor development and other anomalies
associated with tobacco use [141,142]; (iii) over 90% of all human cancers are of epithelial
origin [143,144]; (iv) oral epithelial cells and lung epithelial cells show striking similarities
in response to respiratory toxicants and carcinogens, as evidenced by the comparable
patterns of genotoxic [145–158], epigenetic [159–162], and transcriptomic effects [163–169]
in smokers’ oral cells and lung cells, respectively; and (v) oral epithelial cells are readily
available for sampling by non-invasive techniques [136,166,170].

As shown in Figure 1A, there were large numbers of aberrantly expressed gene transcripts
in both vapers and smokers as compared to non-users; however, smokers had nearly 50%
more dysregulated genes than vapers (1726 vs. 1152). The aberrantly expressed genes in
vapers and smokers can be divided into three categories: (I) vape-specific (853 transcripts);
(II) smoke-specific (1427 transcripts); and (III) common to vape and smoke (299 transcripts)
(Figure 1B). Gene ontology analysis revealed that cancer was the top disease associated
with the dysregulated genes in both vapers (62%) and smokers (79%). The cancer-related
dysregulated genes consisted of 361 genes specific to vapers, 1040 genes specific to smokers,
and 182 genes common to vapers and smokers (total: 1583) (Figure 1C). The dysregulated
genes in both vapers and smokers were also associated with other diseases and conditions,
including inflammation. Of significance, some of the dysregulated genes in vapers and
smokers are known to be frequently targeted in the early stages of diseases such as oral
epithelial dysplasia, which can progress to malignancy [43].

Importantly, 47% of the aberrantly expressed genes in vapers were non-coding (vs.
21% in smokers). Of these, 23% were lncRNAs in vapers (vs. 8% in smokers) (Figure 2A).
More specifically, there were 261 and 142 differentially expressed lncRNA genes in vapers
and smokers, respectively (p < 0.0001) (Figure 2B). The differentially expressed lncRNAs in
vapers consisted of 241 upregulated and 20 downregulated lncRNAs, whereas in smokers,
the respective numbers were 128 and 14 (Figure 2B). Figure 2C shows sub-types of the
differentially expressed lncRNAs detected in vapers and smokers. There was no statistically
significant difference in number of differentially expressed lncRNA of any sub-types
between vapers and smokers.

Molecular pathway and functional network analysis of the dysregulated genes identi-
fied the “Wnt/Ca+ pathway” as the most affected pathway in vapers, while the “integrin
signaling pathway” was most impacted in smokers. The Wnt/Ca2+ signaling pathway,
which is activated by the tumor suppressor WNT5A in the presence of a “frizzled” class
receptor, is downregulated in several types of human cancer [171]. Of significance, the
WNT5A gene and the frizzled receptor FDZ7 gene were both downregulated in vapers,
likely inhibiting the downstream effectors of the cascade. The integrin signaling pathway
is shown to control cell proliferation, survival, and migration. When dysregulated, the
integrin signaling pathway can promote tumor invasion and metastasis [172]. The “Rho
family GTPases signaling pathway” was the most common dysregulated pathway in vapers
and smokers, although the number of affected targets was three times higher in smokers
than vapers (27 vs. 9). The GTPase family of small GTP-binding proteins comprises a group
of signaling molecules that are activated by growth factors, hormones, integrins, cytokines,
and adhesion molecules [173]. They regulate reorganization of the actin cytoskeleton,
transcriptional regulation, vesicle trafficking, morphogenesis, neutrophil activation, phago-
cytosis, mitogenesis, apoptosis, and tumorigenesis. Rho GTPases are also implicated in the
DNA-damage response following genotoxin treatment [173]. More in-depth examination
of the dysregulated genes and integrative analysis of the lncRNA and mRNA data are
currently underway in our laboratory.
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Fig. 1
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Figure 1. Aberrantly expressed genes in the oral epithelial cells of vapers and smokers as compared to
non-users. (A) Numbers of upregulated and downregulated gene transcripts in vapers and smokers
are indicated. Venn diagrams of all dysregulated genes (B) and cancer-related dysregulated genes (C)
in vapers and smokers are shown. DEGs = differentially expressed genes. Data are from our previous
publication (Ref. [13]). Detailed descriptions of data pre-processing, alignment, quantification, and
differential expression analysis are provided in Ref. [13].
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and smokers as compared to non-users. (A) Percentages of protein coding genes (PC), lncRNAs,
and others (including (un)processed pseudogene, transcribed (un)processed pseudogene, to be
experimentally confirmed (TEC), Ig V gene, rRNA, scaRNA, snoRNA, scaRNA/snoRNA, snRNA,
and unitary pseudogene) are shown. (B) Numbers of upregulated and downregulated lncRNAs in
vapers and smokers are indicated. (C) Sub-types of dysregulated lncRNAs in vapers and smokers.
Total number of each sub-type of dysregulated lncRNAs is indicated. Data are from our previous
publication (Ref. [13]). Detailed descriptions of data pre-processing, alignment, quantification, and
differential expression analysis are provided in Ref. [13].
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9. Concluding Remarks and Future Directions

A growing body of research shows the importance of lncRNAs in regulation of genes
involved in the development of human diseases [29–36]. LncRNAs are emerging as promis-
ing biomarkers for assessing exposure to disease-causing agents [40,42,174] as well as
elucidating the underlying mechanisms of disease development [33,37,38,175]. A lim-
ited but burgeoning number of studies has shown the potential of lncRNAs for assessing
the biological consequences of vaping [13,44,45]. The existing data show that lncRNAs
mediate dysregulation of key disease-related genes in cells and tissues of vapers [13,44]
and in cell treated in vitro with e-cig aerosol extract [45]. The dysregulated lncRNAs and
associated molecular pathways and gene networks in e-cig users have been shown to be
partly similar to and partly distinct from those found in smokers [13,44]. The aberrantly
expressed lncRNAs common to vapers and smokers can be attributed to shared exposure
of both groups to chemicals present in e-cig vapers and tobacco smoke [13,55,176]. On
the other hand, the unique dysregulated lncRNAs specific to vapers or smokers are likely
due to distinct exposure of each group to chemicals present only in e-cig vapor or tobacco
smoke [13,46,176]. Dual users of e-cigs and combustible tobacco products exhibited dys-
regulation of some of the same lncRNAs that are aberrantly expressed in exclusive vapers
and smokers [45]. Nonetheless, dual users have also shown unique dysregulated lncRNAs,
which may be ascribed to the interactive effects of combined use of e-cigs and combustible
tobacco products [45,67].

Thus far, the (relatively) small size of the studied populations has precluded examina-
tion of the contribution of product characteristics, e.g., e-cig device type or features and
e-liquid content (i.e., flavor type, nicotine concentration, and humectants), to the observed
effects in vapers [13,44]. Follow-up studies with large sample size and improved statisti-
cal power should determine the role of product characteristics in the lncRNA-mediated
dysregulation of disease-related genes observed in vapers. Future investigations should
consider the dynamic changes as well as uniformities in epigenetic marks across different
cell types [11,12,159,177,178] when comparing the expression profiles of lncRNA in various
biospecimens from e-cig users. In addition, the effect of local vs. systemic exposure to
chemicals present in e-cig vapor should be taken into account when analyzing different
cells and tissues from e-cig users, e.g., oral or nasal epithelia vs. peripheral blood.

Because many transcriptomic changes occur in the early stages of disease—often prior
to clinical manifestation of the disease [179–181]—it is all but certain that one should detect
dysregulated disease-related coding and non-coding genes, e.g., lncRNAs, in apparently
healthy vapers, smokers, and dual users, as shown by us [13,23,176] and others [44]. The
target lncRNAs/mRNAs in healthy vapers and/or conventional tobacco product users are
likely to be dysregulated to a lower extent than those in patients diagnosed with diseases.
Substantial and long-term exposure of chronic vapers and smokers to toxicants and car-
cinogens present in e-cig vapor and tobacco smoke should lead to transcriptomic changes
including differentially expressed lncRNAs similar to those found in the patient population,
although patients are likely to have more pronounced changes. The dysregulated lncR-
NAs in vapers and/or smokers have been associated with diseases like cancer, respiratory
diseases, cardiovascular disease, and/or immune diseases [13,44,45]. This is consistent
with fact that these diseases are most commonly caused by or linked to tobacco product
use [1,3,5,8,10,15,23,65,176,182–184].

Since an individual lncRNA can have multiple mRNA targets [83–86], most dysregu-
lated lncRNAs in vapers and/or smokers may be associated with multiple diseases. Of
note, a biological pathway is rarely, if ever, affected in one disease only. To minimize
noise and facilitate data interpretation, future investigations should use statistical and
bioinformatic approaches to prioritize selection of lncRNA–disease pairs in vapers and/or
smokers with the highest association specificity and sensitivity. Lastly, while association
studies of molecular changes and disease are widely used for biomarker discovery in hu-
mans [179,185–189], follow-up functional studies involving RNA interference (RNAi) and



Int. J. Mol. Sci. 2024, 25, 8554 10 of 17

antisense oligonucleotides [190–193] should be conducted to verify whether the dysregulated
lncRNAs found in vapers and/or smokers can be causally linked to disease development.
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