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Abstract: Chronic granulomatous disease (CGD) is a group of rare primary inborn errors of immunity
characterised by a defect in the phagocyte respiratory burst, which leads to severe and life-threatening
infective and inflammatory complications. Despite recent advances in our understanding of the
genetic and molecular pathophysiology of X-linked and autosomal recessive CGD, and growth in the
availability of functional and genetic testing, there remain significant barriers to early and accurate
diagnosis. In the current review, we provide an up-to-date summary of CGD pathophysiology,
underpinning current methods of diagnostic testing for CGD and closely related disorders. We
present an overview of the benefits of early diagnosis and when to suspect and test for CGD. We
discuss current and historical methods for functional testing of NADPH oxidase activity, as well as
assays for measuring protein expression of NADPH oxidase subunits. Lastly, we focus on genetic
and genomic methods employed to diagnose CGD, including gene-targeted panels, comprehensive
genomic testing and ancillary methods. Throughout, we highlight general limitations of testing, and
caveats specific to interpretation of results in the context of CGD and related disorders, and provide
an outlook for newborn screening and the future.

Keywords: inborn errors of immunity (IEI); chronic granulomatous disease (CGD); NADPH oxidase;
nitroblue tetrazolium (NBT); dihydrorhodamine (DHR); genetic testing; genomic testing; screening

1. Introduction

Chronic granulomatous disease (CGD) represents a group of rare and complex pri-
mary inborn errors of immunity, whose common pathology is a significant deficit in the
respiratory burst pathway in phagocytes, recently reviewed in [1–5]. Our understanding
of CGD pathogenesis, diagnosis and management has improved significantly since early
studies, which identified CGD as a functional disorder of phagocytes [6–11]. Despite these
advances, it remains challenging to achieve a timely and accurate clinical diagnosis of
CGD. The current review, informed by our modern understanding of CGD in its molecular
pathophysiology, aims to provide a comprehensive overview of the diagnosis of CGD
and associated challenges, with an up-to-date focus on functional assays, molecular and
genetic testing.

2. Clinical Features and Inheritance

CGD is felt overall to be a rare disease, with varied reported estimates of preva-
lence, which differ geographically and by population rate of consanguinity [11–14]. In
Western Europe and the US, prevalence is reported as 1 in 200,000–250,000 [15,16]. The
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clinical spectrum of CGD varies in terms of disease manifestations, severity and age at
presentation, which presents a challenge to recognition and diagnosis. Severe cases (pre-
dominantly X-linked recessive in inheritance), tend to present early at 9–14 months of
age, and are diagnosed early at 2.1–4.9 years [13,15,17,18]. Milder cases (predominantly
autosomal recessive) tend to present later at 2.5–3.4 years, and are also diagnosed later at
5.8–8.8 years [13,15,17,18]. Diagnoses in early infancy, adolescence and adulthood are un-
usual, but occur increasingly due to increased awareness and uptake of testing [11,19–23].

CGD is characterised by four major clinical features, reviewed in [1,2,11,24–29]: (1) pre-
disposition to infection by a classically described subset of catalase-positive bacteria and
fungi; (2) development of tissue granulomas in respiratory, gastrointestinal and genitouri-
nary tracts, which may lead to local complications; (3) predisposition to inflammatory
bowel disease (IBD), which may be very early in onset and severe; and (4) other autoin-
flammatory or autoimmune complications. The overall incidence and severity of infective
complications is highest in the first decade of life, and lower thereafter [30]. Most pathogens
that cause infection in CGD patients also cause sporadic infection in immunocompetent
hosts (e.g., Staphylococcus aureus, Serratia marcescens, and Burkholderia cepacia complex), but
infections in CGD patients are more likely to be severe and frequent [30,31]. Virulence
determinants other than catalase are also likely to be essential to virulence in CGD, as
reviewed in [32], and evidenced by mouse models and clinical data [33–36]. Children with
CGD are more likely to experience failure to thrive, organ dysfunction, poor quality of life,
and increased risk of secondary inflammatory complications, such as haemophagocytic
lymphohistiocytosis (HLH) [37–40]. Prior to the advent of modern therapies, most children
with CGD died before 10 years of age [8], and infection, particularly invasive fungal infec-
tion, remains the leading cause of death [17,30,41,42]. Mortality risk is influenced by organ
dysfunction [43], and the degree of detectable residual respiratory burst activity [44].

CGD can occur sporadically, but also demonstrates inheritance in X-linked recessive
(XR) and autosomal recessive (AR) patterns. XR disease is most common worldwide, pre-
dominantly affecting males, and rarely females with very skewed X-chromosome inactivation
(XCI) [12,17,40,45,46]. AR CGD has equal sex distribution, and is more common in consan-
guineous populations, surpassing XR CGD in prevalence in some countries [47–49]. There is
also a well-described carrier phenotype for haploinsufficient female carriers of the XR mu-
tation, characterised by predisposition to autoinflammatory and autoimmune phenomena,
and milder infective and IBD-like symptoms [50,51]. Indeed, some argue that a subset of
haploinsufficient carriers should be managed akin to bona fide CGD cases [45,50,52].

3. Molecular and Cellular Pathophysiology

All forms of CGD share a common pathology: failure of phagocytes (primarily neu-
trophils, monocytes and tissue macrophages), to produce reactive oxygen species (ROS) in
the respiratory burst, reviewed in [53]. Central to this pathway is the 5-subunit enzyme
complex nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Figure 1). Defi-
ciency of any one subunit of NADPH oxidase (gp91phox, p22phox, p47phox, p67phox, p40phox;
Table 1), or of other factors that contribute to the respiratory burst pathway (CYBC1/Eros,
Rac2-GTPase, G6PD, MPO, GSS; Table 2) may culminate in CGD or a CGD-like phagocyte
disorder, reviewed in [54].

Table 1. Genetic causes of chronic granulomatous disease (CGD): NADPH oxidase components.

Gene symbol CYBB CYBA NCF1 NCF2 NCF4

NCBI gene ID 1536 1535 653361 4688 4689

Gene name Cytochrome b558
beta

Cytochrome b558
alpha

Neutrophil
cytosolic factor 1

Neutrophil
cytosolic factor 2

Neutrophil
cytosolic factor 4

Gene location Xp21.1-p11.4 16q24.2 7q11.23 1q25.3 22q12.3



J. Clin. Med. 2024, 13, 4435 3 of 25

Table 1. Cont.

Gene symbol CYBB CYBA NCF1 NCF2 NCF4

Exon count 14 6 11 20 12

Protein gp91phox/NOX2 p22phox p47phox p67phox p40phox

Protein location
Specific granule

membrane, plasma
membrane

Specific granule
membrane, plasma

membrane

Cytosol,
cytoskeleton

Cytosol,
cytoskeleton

Cytosol,
cytoskeleton

Frequency 65–70% 5% 20% 5% Rare

Inheritance XR AR AR AR AR

Clinical severity Severe
Early onset

Severe
Early onset

Mild
Late onset

Severe
Early onset

Mild
Atypical

Mutations

Missense
Nonsense

Missplicing
Large or small

deletions
Insertions

Duplications
Transposable

elements

Insertions
Deletions
Missense
Nonsense

Missplicing

Unequal meiotic
crossover events

with neighbouring
pseudogenes

Missense
Nonsense
Insertions
Deletions

Missplicing

Insertions
Deletions
Missense
Nonsense

Missplicing

Insertions
Deletions
Missense
Nonsense

Missplicing

Pickup on
sequence analysis 85% 85% 75% 85% 90%

Pickup on dele-
tion/duplication

analysis
15% 15% 25% 15% 10%

Abbreviations: X-linked recessive, XR; autosomal recessive, AR. Reviewed in [55,56].

Table 2. Rare genetic causes of chronic granulomatous disease (CGD) or related disorders: non-
NADPH oxidase causes.

Gene symbol CYBC1 RAC2 G6PD MPO GSS

NCBI gene ID 79415 5880 2539 4353 2937

Gene name Cytochrome b558
chaperone 1

Rac family small
GTPase 2

Glucose-6-
phosphate

dehydrogenase
Myeloperoxidase Glutathione synthetase

Gene location 17q25.3 22q13.1 Xq28 17q22 20q11.22

Exon count 8 8 14 12 15

Protein CYBC1/Eros Rac2-GTPase G6PD MPO GSS

Protein location Endoplasmic
reticulum Cytosol Cytosol Granule lumen Cytosol, nucleus,

mitochondria

Frequency Rare Rare Severe deficiency
is rare

Common but
unlikely to cause
CGD-like features

Rare

Inheritance AR AD XR AR AR

Clinical severity Few cases
described

Few cases
described

Spectrum from
mild to severe

Asymptomatic or
susceptible to

Candida

Spectrum from mild to
severe
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Table 2. Cont.

Gene symbol CYBC1 RAC2 G6PD MPO GSS

Mutations
Nonsense
Missense

Missplicing

Nonsense
Missense

Deletion
Missense

Nonsense
Missense

Missplicing
Deletions

Indels
Nonsense
Missense

Missplicing

Notes

Also regulates
expression of
proteins other
than gp91phox-
p22phox, e.g.,

P2X7

Also associated
with

abnormalities of
neutrophil

chemotaxis and
lymphocyte

function

Mild cases:
relatively common
but lack CGD-like

features
Severe cases:

generally mild
CGD features

Rarely solely
responsible for

immunodeficiency

Mild cases: haemolytic
anaemia only

Moderate: metabolic
acidosis

Severe: progressive
neurological

dysfunction and
infection susceptibility

Abbreviations: X-linked recessive, XR; autosomal recessive, AR; autosomal dominant, AD. Reviewed in [55–58].
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phate, gp91phox/p22phox/p67phox/p40phox/p47phox NADPH oxidase core enzyme components, GTP gua-
nosine triphosphate, H+ hydrogen ion, H2O2 hydrogen peroxide, HOCl hypochlorous acid, K+ po-
tassium ion, MPO myeloperoxidase, NADPH/NADP nicotinamide adenine dinucleotide diphos-
phate, O2 molecular oxygen, ·O2 superoxide radical, ·OH hydroxyl radical, RAC2 Rac family small 
GTPase 2, SOD superoxide dismutase. Figure made with BioRender®. 
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Figure 1. Factors required for expression, activation and function of NADPH oxidase. CYBC1/EROS
cytochrome b558 chaperone 1, G6PD glucose 6-phosphate dehydrogenase, GDP guanosine diphos-
phate, gp91phox/p22phox/p67phox/p40phox/p47phox NADPH oxidase core enzyme components, GTP
guanosine triphosphate, H+ hydrogen ion, H2O2 hydrogen peroxide, HOCl hypochlorous acid, K+

potassium ion, MPO myeloperoxidase, NADPH/NADP nicotinamide adenine dinucleotide diphos-
phate, O2 molecular oxygen, ·O2 superoxide radical, ·OH hydroxyl radical, RAC2 Rac family small
GTPase 2, SOD superoxide dismutase. Figure made with BioRender®.
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CYBB (cytochrome b558 beta component) encodes the gp91phox component of NADPH
oxidase on the X chromosome, and mutation of this gene accounts for XR disease and
65–70% of all CGD [56]. Most cases of CYBB-related CGD are hemizygous males, al-
though haploinsufficient females with very skewed XCI are also well-recognised, and show
predominantly autoimmune phenotypes [45,59,60]. gp91phox is a glycosylated integral
membrane protein and the central enzymatic subunit of the NADPH oxidase complex.
CYBA (cytochrome b558 alpha component) encodes the p22phox subunit, and mutation
of this gene is responsible for about 5% of CGD, heritable in an AR manner and equal
in severity to XR disease [55,61]. p22phox forms a heterodimer with gp91phox, and stable
expression of gp91phox-p22phox depends on the chaperone protein CYBC1/Eros. More
recently described rare mutations of this gene are responsible for a small subset of AR
CGD [62–66].

The p47phox, p67phox and p40phox subunits form a distinct heterotrimeric complex
in the cytosol in resting phagocytes, and together activate NADPH oxidase when the
respiratory burst pathway is triggered, e.g., by microorganisms engaged via membrane
receptors. NCF1 (neutrophil cytosolic factor 1) encodes p47phox, and mutation of this
gene accounts for about 20% of all CGD [67–69]. NCF1-related CGD is generally mild in
severity [55]. NCF2 encodes p67phox, and mutation of this gene causes AR disease that is as
severe as XR CGD [67,69]. NCF4 encodes p40phox, and mutation of this gene causes a rare,
mild and atypical form of CGD with more inflammatory clinical manifestations [19,70,71].
Upon encountering phagocytic or inflammatory stimuli, signalling pathways converge on
NADPH oxidase to activate the respiratory burst [70,72–74]. The complex is also engaged
by activated Rac2-GTPase, which enhances its enzymatic activity [72,74]. Mutation of
RAC2, therefore, disrupts signalling to the NADPH oxidase complex [75], resulting in
defects in ROS production and other neutrophil and lymphocyte functions, which manifest
as an autosomal dominant (AD) CGD-like syndrome [4,76,77].

Severe G6PD deficiency can compromise supply of NADPH to the respiratory burst,
and manifest clinically as mild CGD [4,73,78]. Because of its relatively high prevalence and
XR inheritance, G6PD deficiency is an important differential diagnosis for CGD, especially
where other clinical features are suggestive (e.g., haemolytic anaemia) [54,56]. Deficiencies
of glutathione synthetase, glutathione peroxidase and glutathione reductase are also associ-
ated with inflammatory complications akin to CGD, through the roles of these enzymes in
oxidative balance within phagocytes [79]. Of note, deficiencies of other ROS-producing sys-
tems, such as the mitochondrial respiratory chain, xanthine oxidases, lipoxygenases, nitric
oxide synthases or cyclooxygenases do not typically confer susceptibility to infection [2].

NADPH oxidase transfers electrons to apical molecular oxygen to form superoxide
radical, which is then converted to other ROS (hydrogen peroxide [H2O2] and hydroxyl
radicals) at the apical membrane, reviewed in [73]. These ROS serve as substrates for per-
oxidase enzymes (e.g., myeloperoxidase [MPO]), to produce other reactive molecules, e.g.,
hypochlorous acid and secondary amines. NADPH oxidase activation furthermore leads to
potassium ion influx into the phagosome lumen, which activates microbicidal proteases
from the granule matrix [72,74,80]. Within phagocytes, these activities are both directly
microbicidal and stimulate inflammatory signalling [81]. MPO deficiency is more common
than CGD, with estimated prevalence of 1 in 2000–4000, but is usually asymptomatic or
causes a limited immunodeficiency with susceptibility to Candida infections [54,82], though
not true CGD.

Overall, neutrophils deficient in the respiratory burst show defective killing of microor-
ganisms by phagocytosis, neutrophil extracellular traps, and other forms of regulated cell
death [83–86]. However, defects of ROS-related inflammatory regulation and other innate
immune pathways are thought to be responsible for the hyperinflammatory manifestations
of CGD [81,87–90]. Furthermore, granulomas are believed to arise where microbes fail
to be eliminated, or there is persistent dysregulated local cytokine production following
microbial sterilisation. The resulting chronic inflammatory infiltrate may organise into a
structured granuloma containing lymphocytes and histiocytes [28,91].
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4. Benefits of Early Diagnosis of CGD

Like many inborn errors of immunity (IEI), early diagnosis of CGD is important for
several reasons, which together support optimal clinical outcomes (Figure 2): (1) early
instigation of effective preventative care, (2) appropriate and tailored management of
acute infections and complications, (3) early definitive treatment, and (4) early identifica-
tion of affected family members. Preventative care includes prophylactic antimicrobials
(e.g., co-trimoxazole and azole antifungals), active surveillance, immunomodulation
(some centres advocate use of interferon-gamma), immunisation advice, and avoidance
of risks (e.g., decaying organic matter and high-risk water exposures) [19,24]. Definitive
treatment in the form of allogeneic haematopoietic stem cell transplantation (HSCT) is
indicated for severe CGD, and is ideally performed early in life, prior to episodes of
severe infection, inflammatory complications, alloimmunisation, or organ scarring and
dysfunction, which increase the risk of complications associated with HSCT [3,92]. The
psychosocial and economic burden of unexplained significant ill-health and its impli-
cations for quality of life are also likely to be substantial for patients with undiagnosed
severe CGD [22,93–95]. Furthermore, survey data highlighting the impact of CGD on
psychosocial and functional outcomes for patients and carriers further emphasise the
potential benefits of early diagnosis and definitive treatment [96–99]. For these reasons,
prompt recognition and testing are essential.
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Achieving a genetic diagnosis of CGD confers several specific additional benefits.
Genetic diagnosis can guide prognosis for affected individuals, genetic testing and coun-
selling for family members, and family planning, which may take into account prenatal
or preimplantation testing [19]. Genetic diagnosis can also guide appropriate selection
of noncarrier HSCT donors among HLA-matched family members, and is essential for
directing efforts towards effective gene therapies, which at present remain aspirational and
a very active field of research [100–102]. Indeed, the potential benefits of genetic diagnosis
warrant consideration of DNA banking for affected deceased probands who lack a defined
genetic cause for their CGD, as testing methods continue to improve [103]. Prenatal and
preimplantation detection of CGD for at-risk pregnancies is now common practice, and
methods are reliable for both XR and AR forms of the disorder, particularly where a pre-
cise familial mutation is known [19,104,105]. Of note, family and prenatal testing are still
possible where a genetic diagnosis is lacking, as conventional functional assays can still be
performed on peripheral blood or umbilical vein samples [19,106].

5. When to Suspect and Test for CGD

CGD testing is indicated where there is history of repeated invasive bacterial or fungal
infections typical for this disorder, tissue granulomas, inflammatory manifestations or
complications, especially in the context of a suggestive family history or characteristic
histologic or radiologic findings (although the latter are not essential) [107,108] (Box 1). The
European Society for Immunodeficiencies (ESID) registry provides working definitions for
definite and probable cases of CGD, which reflect the clinical features described above, and
require laboratory testing of both the respiratory burst pathway and genetics [109].

Box 1. Histologic and radiologic findings in CGD.

Histologic features of CGD in the lung are nonspecific, but may include: neutrophil-
predominant abscesses or micro-abscesses surrounded by histiocytes; granulomas, which may be
suppurative, necrotising or non-necrotising; and chronic diffuse inflammation associated with
areas of fibrosis [110,111]. Gastrointestinal tract histology findings in CGD involving the gut
are also nonspecific, and may be indistinguishable from IBD [112–115]. These include mucosal
granulomas or microgranulomas and focal inflammation in the form of acute cryptitis, crypt
abscess and ulceration, as well as chronic lymphoplasmacytic inflammation and disruption of
normal mucosal architecture [113,116]. Eosinophils and pigmented macrophages may be present
in inflammatory infiltrates, and the latter are reported to be more suggestive of CGD [112,116].
These findings may occur throughout the gastrointestinal tract, but predominantly affect the lower
colorectum and perianal area, with sparing of the upper tract and oesophagus [113,116]. Biopsy
findings of CGD-related lesions in skin, lymphoreticular system, liver and bladder may share
elements of these nonspecific histologic characteristics of acute and chronic inflammation, with
granulomas and occasional visualisation of microorganisms [117].

Radiologic appearances of lung infection in CGD can be varied, and include pulmonary nodules,
ground-glass opacities, focal consolidation and masses, with or without cavities, abscesses, effusion
or chest wall involvement where infection is invasive [118,119]. Post-infectious and inflammatory
complications can also be varied on chest imaging, and may demonstrate fibrosis, septal thickening,
bronchiectasis, and emphysema [118,119]. In the gut, patients may again demonstrate nonspecific
radiologic findings of wall thickening, dilatation, or mucosal enhancement with a predominance of
lower tract and perianal disease (fistulae, fat stranding and abscesses), and endoscopy may or may
not show active inflammatory changes [120]. Imaging of CGD lymphadenitis shows nonspecific
tomographic appearances of enlarged and contrast-enhanced lymph nodes with or without central
necrosis, which sonographically may have thick septations and internal debris; calcification may
be seen in chronically inflamed nodes [121]. In the genitourinary tract, wall thickening may be
demonstrated in the bladder and ureteric tracts, sometimes with evidence of obstruction (e.g.,
hydronephrosis) or scarring and calcification [121,122]. Furthermore, complications of CGD in
liver, spleen, skin or soft tissue, muscle, bone and central nervous system may demonstrate
nonspecific radiologic changes [121].

Typically, an immunological workup in CGD reflects the central deficit in NADPH
oxidase [107]. The differential white cell count and immunoglobulin levels are likely to be
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normal, or nonspecifically altered in the context of intercurrent infection or complication.
Complement studies, lymphocyte subsets, vaccine responses and phagocyte morphology
are typically normal. Expression of neutrophil cell surface adhesion molecules and tests of
chemotaxis are expected to be normal, whereas direct tests of NADPH oxidase function
and phagocytic killing are abnormal, as below. Genetic testing is informed by the clinical
details and family history, particularly if the familial mutation is already known [108].
Functional and genetic carriership testing should also be offered to adult female relatives
of confirmed XR cases, particularly if there are infective or inflammatory manifestations of
CGD [45,50,108].

The main differential diagnoses for CGD are disorders of recurrent severe or atypi-
cal infection, granulomas and hyperinflammation [107], including cystic fibrosis, severe
G6PD deficiency [54], glutathione synthetase deficiency [58], protein kinase C delta defi-
ciency [123,124], leukocyte adhesion deficiency [54], combined or common variable im-
munodeficiency [91], MyD88/IRAK4 deficiency, hyper-IgE syndrome [125], allergic bron-
chopulmonary aspergillosis, sarcoidosis, IBD, MPO deficiency [54] and SAPHO syndrome
(synovitis, acne, pustulosis, hyperostosis, osteitis). Distinctive phenotypic features may
point clinical suspicion in these directions, and prompt alternative methods of diagnos-
tic testing.

6. Testing of NADPH Oxidase Function

Defective ROS production mediates the effect of genotype on phenotype in CGD, and
diagnosis requires demonstration of a significantly impaired respiratory burst [126]. Most
CGD cases exhibit a total lack of NADPH oxidase activity [127]. However, functional assays,
which provide quantitative information on residual enzymatic activity, are important for
guiding prognosis, because of the well-recognised survival benefit conferred by residual
oxidase function [44].

Tests of NADPH oxidase activity can be performed on anticoagulated whole blood
or purified leukocytes or neutrophils, reviewed in [108,126–128]. Misleading assay results
may occur due to pyrogen contamination, sample mishandling and delay in processing,
due in part to the short ex vivo lifespan of functional neutrophils and, therefore, strict
quality controls are required (e.g., a healthy comparator specimen) [108,126,129,130]. Of
note, in certain circumstances, the polymorphonuclear fraction of circulating leukocytes
may contain significant numbers of non-neutrophils (e.g., eosinophilia due to atopy or
parasitic infection) [126].

Because NADPH oxidase is inactive in resting neutrophils, exogenous stimulation of
the pathway is required for functional testing. Serum-opsonised particulate stimuli, such as
zymosan (a yeast membrane derivative), E. coli, or S. aureus provoke the respiratory burst
by engagement of Fc-gamma receptor (FCγR) and complement receptor 3 (CR3) on the
phagocyte cell surface [108]. Fluid-phase stimuli such as phorbol myristate acetate (PMA)
or formyl-methionyl-leucyl-phenylalanine (fMLP) require priming by platelet-activating
factor (PAF), and also provoke the respiratory burst [108]. Comprehensive testing of
neutrophil function thus requires assays that test multiple different stimuli.

Tests of NADPH function include measurement of oxygen consumption, plate-based
assays (ferricytochrome c reduction, lucigenin/isoluminol, Amplex® Red), nitroblue tetra-
zolium, dihydrorhodamine and dichlorofluorescein assays. Tests of phagocytosis and
neutrophil microbicidal function may be carried out in addition as part of a wider workup
of a suspected disorder of neutrophil function, but are outside the scope of the current
review [127].

6.1. Measurement of Oxygen Consumption

Measurement of oxygen consumption using oxygen electrodes can provide a quantita-
tive readout of the respiratory burst pathway [131], but is rarely used in clinical practice
because it is time-consuming, technically difficult to set up, and relatively insensitive for
diagnosis of CGD [102,108].
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6.2. Plate-Based Assays

Ferricytochrome c reduction is a colorimetric assay of superoxide production. Ferricy-
tochrome c is added extracellularly and does not permeate cell membranes [126]. Superoxide
produced by phagocytes and released to the extracellular space converts ferricytochrome
c to the reduced product ferrocytochrome c, which can be measured by spectrophotome-
try [108,126,132]. The result gives a pooled reading for the whole population of cells tested,
and cannot distinguish mixed populations [126]. Having been superseded by other tests, the
ferricytochrome c assay is no longer widely used for CGD diagnosis.

Reagents that release energy in the form of light upon reaction with ROS can also
be used to measure NADPH oxidase activity by chemiluminescence, e.g., lucigenin or
isoluminol [133]. These assays are sensitive and can be carried out relatively quickly on
few available cells [126,132,134]. They detect both intra- and extracellular H2O2, and rely
on cellular peroxidases, so may misdiagnose MPO deficiency as CGD [132,134].

Amplex® Red is an alternative chemical probe for H2O2. The colourless, nonfluores-
cent dihydroresorufin derivative Amplex® Red is oxidised by H2O2 to resorufin, which
is detectable as red fluorescence, and can be measured using a plate reader [135]. The
Amplex® Red assay is also sensitive to small numbers of cells, reliable, and relatively easy
to perform, but is not truly quantitative, and again is not routinely used in practice for
diagnosis of CGD [124].

6.3. Nitroblue Tetrazolium (NBT)

The nitroblue tetrazolium (NBT) assay measures superoxide production, and has been
in clinical use for decades for diagnosis of CGD [136]. In this assay, superoxide produced
by activated NADPH oxidase converts the pale yellow dye NBT to its dark blue insoluble
formazan product, which precipitates within activated phagocytes [126,137] (Figure 3). Quan-
tification can be performed by counting formazan-positive and -negative neutrophils by light
microscopy of peripheral blood in a chamber slide, or by spectrophotometric measurement
of the solubilised formazan product in neutrophil lysate [108,132]. The assay is theoretically
semi-quantitative when carried out by an experienced technician, but is most sensitive for
severe CGD, where there is very little to no formazan deposition in any cell [138]. It also has
low sensitivity for detecting mixed populations of cells in female carriers haploinsufficient for
pathogenic CYBB mutations, and for detecting hypomorphic variants with residual NADPH
oxidase function (both milder AR and protein-positive XR CGD) [126]. High-confidence
current estimates of sensitivity and specificity of the NBT assay for diagnosing CGD are
lacking in published literature. However, because it is quick to perform using nonspecialist
materials and equipment, it is particularly useful in low-resource settings, or where a rapid
result is required, and local expertise is available [139–141].
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6.4. Dihydrorhodamine (DHR)

The dihydrorhodamine-1,2,3 (DHR) assay is considered the current gold standard test
of NADPH oxidase activity [126]. In the presence of a peroxidase enzyme (e.g., MPO or
eosinophil peroxidase) and stimulated conditions, it allows quantitative measurement of
H2O2 production [142]. DHR freely diffuses into cells and reacts with H2O2, becoming re-
duced to rhodamine, which is trapped intracellularly and fluoresces green [142]. The fluores-
cent signal can be measured in individual cells by flow cytometry [142]
(Figure 4). Extracellular addition of catalase minimises background rhodamine signal [126].
Three classic patterns of abnormal DHR result are seen: (1) complete or severe deficiency
(rhodamine-positive cells comprise <5% of total neutrophils or <5% of control), (2) hy-
pomorphic or partial deficiency (where the rhodamine signal is uniformly intermediate
between unstimulated and stimulated control neutrophils), and (3) mosaic patterns, where
a proportion of neutrophils show reduced NADPH oxidase function and the remainder are
normal [126,143] (Figure 4).
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The DHR assay is highly sensitive, quantitative and relatively easy to perform in facil-
ities with standard flow cytometry capability [126], though this has obvious implications
for test availability in low-resource settings [139–141]. The DHR assay is especially useful
because of its ability to quantify residual NADPH oxidase function, and to discriminate
carrier status and quantify donor chimerism post-HSCT [44,50,144,145]. Notably, within
XR CGD carriers, the proportion of DHR-positive neutrophils is reported to vary over
time [143,146].

False positive DHR results can arise in severe MPO deficiency, which mimics CGD,
although superoxide production, and hence ferricytochrome c reduction and the NBT assay,
are normal [147,148]. Other false positives can occur in severe G6PD deficiency [78] and
SAPHO syndrome [149], where superoxide production is abnormal, and in conditions of
acquired neutrophil dysfunction, such as granulocytic ehrlichiosis [150,151], and reportedly
after exposure to anti-inflammatory drugs [152–154]. The DHR assay cannot detect carriers
of AR CGD, because a single functional allele of an autosomal gene is usually sufficient
for cellular function. Some residual H2O2 (but not superoxide) production is reported to
persist in NCF1-deficient neutrophils [127,155]. Routine DHR testing is also reportedly not
sensitive for the rare cases of CGD caused by mutation in NCF4 [19]. In the latter case, the
PMA/fMLP-stimulated DHR response is normal or only mildly reduced, but oxidative
responses to particulate stimuli are defective, and killing of certain microorganisms is also
impaired [71,127]. In Rac2-GTPase deficiency, PMA-stimulated superoxide production
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is normal or increased compared to control, whereas fMLP-stimulated chemotaxis and
superoxide production are impaired [75,76], along with other non-phagocyte immune
defects [2,156]. In CYBC1/Eros deficiency, as expected, there is demonstrable loss of PMA-
stimulated respiratory burst measured by the DHR assay due to the lack of expressed
gp91phox-p22phox [62].

6.5. Dichlorofluorescein (DCF)

2′7′-dichlorofluorescein (DCF) and 5,6-carboxy-2′7′-dichlorofluorescein diacetate
(CDCF) are alternative fluorescent probes, which can be used in flow cytometric assays of
NADPH oxidase function, but are used less commonly in practice than DHR [157].

7. Molecular Diagnostics: Protein Assays

Where NADPH oxidase activity is confirmed to be absent by functional assays, protein
expression of NADPH oxidase components can be measured to narrow the differential
diagnosis of genetic causes of CGD [127]. These assays largely rely on antibodies specific for
protein components of NADPH oxidase, and can be carried out alongside other protein assays
for suspected disorders of neutrophil function, using anticoagulated blood [108,126]. Protein
assays include western blot of neutrophil lysates [108] and flow cytometry-based assays
that use surface- or intracellular antibody stains [108,158–161]. Additionally, antibody-based
immunofluorescence and immunohistochemistry for NADPH oxidase subunits have been
reported in formalin-fixed, paraffin-embedded tissues, but are not routinely used for CGD
diagnosis [162]. It is also possible to detect NADPH oxidase proteins by mass spectrometry,
but this is not widely used outside the research space of high-throughput screening for
IEI [163,164].

Although western blot is sensitive to detect even small traces of protein, which can be
relatively quantified by densitometry, certain caveats complicate the use of this method
for diagnostic testing, and require strict quality control and validation [108,126]. Antibody
binding and specificity may be sensitive to degradation of blood or tissue samples following
collection [162]. Antibodies may be nonspecific to individual NADPH oxidase subunits, but
rather recognise the complex as a whole or individual hemi-complexes (gp91phox-p22phox

or p47phox-p67phox-p40phox) [126,165,166]. As described, gp91phox-p22phox expresses as a
stable complex integral to the membrane, so isolated deficiency of either subunit alone will
not be distinguished from the other solely by protein-based assays [102]. Another caveat
is that positive antibody staining does not guarantee that functional protein is present,
as intact expression of enzymatically inactive protein will still result in respiratory burst
deficiency and CGD [167]. Protein assays may not, therefore, reliably discriminate between
genetic diagnoses, although the result can be suggestive when considered in the context of
the inheritance pattern and clinical features [165]. Of note, flow cytometry-based assays
using antibody probes may distinguish mixed populations in XR carrier or mosaic states,
and be useful in these cases [127].

Cell-free NADPH oxidase assays have also been developed to distinguish biochemical
deficits in cytosolic and membrane-bound NADPH oxidase components [168]. Purified
proband neutrophil membranes are mixed with healthy neutrophil cytosol (or vice-versa),
and incubated with NADPH oxidase substrates and activators. Oxidase activity is then
measured by superoxide production or oxygen consumption [168]. Furthermore, the
nonfunctioning CGD gene may be identified by restoration of the biochemical deficit in
EBV-transformed B cells from the proband, by transducing a retroviral vector to express
wild-type cDNA for each of the NADPH oxidase components in turn [169]. Again, however,
these assays are not routinely used in practice for diagnosis of CGD.

8. Molecular Diagnostics: Genetic Testing

Confirmation of a CGD diagnosis following positive functional testing is established
by identifying a pathogenic variant in one of the CGD-related genes that encode or permit
assembly or function of NADPH oxidase [19]. Algorithms that incorporate different
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genetic and genomic techniques into a standardised workflow for the investigation of CGD
have been proposed [170], and reporting of genetic results generally involves classifying
identified variants according to the likelihood that they are responsible for the clinical
phenotype (Box 2). Genetic testing methods, reviewed in [19], generally include: (1) gene-
targeted testing in single- or multi-gene panels performed by Sanger or next-generation
sequencing (NGS) techniques; (2) comprehensive genomic testing, including whole exome
(WES) and whole genome sequencing (WGS); (3) copy number variant (CNV) analysis,
e.g., by multiplex ligation-dependent probe amplification (MLPA) or comparative genomic
hybridisation (CGH) arrays; and (4) ancillary methods, e.g., single nucleotide variant
(SNV) arrays, mRNA size and sequence analysis, deep amplicon sequencing, and optical
gene mapping [171] (Box 3). The choice of genetic techniques applied depends on the
phenotype and clinical suspicion (clinical details, family history, and functional assay
results), and confirmatory testing should be applied as standard within genetic testing
pipelines. Family history is essential to guide analysis and interpretation of sequencing
data (e.g., by application of bioinformatic filters based on inferred modes of inheritance),
and testing is far easier where the familial mutation is already known [172]. For genetic
testing, EDTA blood is preferred, and genomic DNA or total RNA can be extracted from
peripheral blood mononuclear cells (PBMCs) [108].

Box 2. Interpretation of genetic variants.

Genetic variants, regardless of the method used for their detection, are categorised broadly
by the likelihood that they are responsible for an individual’s clinical phenotype. These are
summarily termed categories 1 to 5 on the joint recommendation of the American College of
Medical Genetics and Genomics and the Association for Molecular Pathology [173]. In brief,
variants that have previously been confirmed as benign in published literature, curated databases
of genetic variants, or unpublished in-house laboratory data are termed category 1 “benign”
variants. Those that are predicted by computational (in silico) or other means to be benign
are termed category 2 “likely benign” variants. “Variants of uncertain significance” (VUS),
which differ from the reference genome but cannot be confirmed or ruled out as responsi-
ble for the phenotype in question are classified as category 3 variants. Category 4 “likely
pathogenic” variants are predicted computationally or otherwise to be pathogenic, but have
not been conclusively proven as such in existing data sources, as listed above. Lastly, category 5
“pathogenic” variants are confirmed to be disease-causing in published literature or databases.
For the purposes of clinical practice, category 4 and 5 variants are generally considered diagnostic
positive, and category 1 and 2 variants are considered negative. By consensus, category 3 VUS
should not be used to guide clinical decision-making for affected individuals [173]. Interpretation
of VUS can be aided by trio and segregation studies in individual cases, and functional testing of
suspected variants expressed in in vitro systems within experienced research settings [174]. Dif-
ferent labs and genomic testing pipelines may manage VUS differently, e.g., in reporting pre-test
probability of finding VUS in their panel, or may not report VUS at all [172]. Of note, reference
databases for variant classification are gradually refined over time, and most VUS are eventually
reclassified into other categories, prompting many genomic laboratories to periodically re-analyse
historic clinical sequencing data, and issue supplementary reports where reclassification impacts
the interpretation of genetic findings in individual cases [175]. In the context of CGD, clinical
symptoms alone are insufficient to confirm pathogenicity of a novel CGD gene variant without
first demonstrating an oxidative burst defect [108].
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Box 3. Genetic and genomic testing methods: uses and limitations.

1. Gene-targeted testing

Gene-targeted testing requires clinicians to determine a priori which are the likely genes
involved in an individual’s presentation, and include “off the shelf” gene panels (includ-
ing those commonly associated with broad phenotypes or recognisable clinical syndromes
with heterogeneous genetic aetiologies) and custom-designed panels (the clinician selects
genes for analysis) [172]. Multigene panels vary by laboratory in terms of gene cover-
age and technique, and assays may include sequence and CNV analysis, as well as ancil-
lary tests to cover regions that are problematic for conventional NGS (e.g., highly homolo-
gous pseudogenes, deep intronic pathogenic variants, and expanded nucleotide repeats) [172].
Gene panels have certain advantages over comprehensive testing. Included genes have usually
been specifically targeted and validated by the laboratory, allowing greater confidence in complete
sequencing of the genes of interest, and often include relevant targeted noncoding regions, which
may be missed by exome sequencing [172]. Choosing a narrow phenotype-focussed panel also
has the advantages of streamlined analysis, reduced costs, quicker turnaround time, and limited
identification of VUS and incidental variants in genes unrelated to the disease phenotype, which
may cause further clinical uncertainty or be clinically unactionable [172].

2. Comprehensive genomic testing

Comprehensive genomic testing does not require the clinician to determine which are the
likely genes involved in the individual’s presentation. Comprehensive testing is most likely
to be useful where the clinical features are not suggestive of a known genetic condition de-
cipherable from the phenotype alone, or are suggestive of several genetic conditions at once,
which are not included within one multigene panel [172]. Comprehensive testing may also be
appropriate where the phenotype is poorly defined (e.g., at earlier stages in the diagnostic eval-
uation of an acutely and severely unwell child), or where a rare disorder is suspected, which
would not routinely be tested for within available multigene panels [172]. Mitochondrial DNA
sequencing can also be requested as a separate test where mitochondrial disorder is suspected.
Whole exome sequencing (WES) and whole genome sequencing (WGS) can reliably detect missense
or nonsense variants, and small indels (<50 bp) within nonrepetitive coding DNA that are rare
in the population and previously reported as pathogenic [172]. WES examines the approximate
180,000 protein-coding segments of the genome (exons), which comprise 1–2% of the genome and
account for the majority of recognised pathogenic variants [172]. About 95% of the exome can be
sequenced with current NGS methodologies [176,177]. WGS examines the entirety of the approxi-
mate 20,000 genes, noncoding RNAs, intronic and intergenic regions of DNA [172]. WGS has the
advantages of (1) being able to detect intronic or intergenic variants not covered by WES, (2) simpler
sample preparation methods (e.g., no need for sequence enrichment for coding regions), and (3)
being able to identify structural variants and chromosomal breakpoints in noncoding regions [172].
Certain regions still remain elusive to standard NGS technologies, and the specific methodology
used to target these will vary by laboratory. WGS is slower and more expensive than WES, and
yet the majority of pathogenic variants identified by WGS are located within exons [172]. Rapid
evolution of WES/WGS sequencing and analysis methods in recent years precludes precise esti-
mation of their diagnostic accuracy for inborn errors of immunity (IEI), but reported estimates of
sensitivity range from 83 to 100%, and of specificity range from 45 to 88% [178]. Of note, where
more genes are tested at once, there is greater likelihood of finding VUS and incidental pathogenic
variants, which may pose difficulties for clinical interpretation and management [179].

3. Copy number variant analysis and ancillary methods

Chromosomal microarrays (CMAs) detect copy number variants (CNVs), which may range in
size from 1 kilobase to multiple megabases or even whole chromosomes, and therefore contain
0, 1 or many genes or parts thereof [179]. Microarrays include oligonucleotide comparative
genomic hybridisation (CGH) arrays, single nucleotide variant (SNV) arrays, or combinations
of these technologies, and can be designed to test at genome-wide scale or in targeted regions
with appropriate resolution [172]. CMAs are more sensitive than traditional karyotyping for
CNV detection, and can even be designed at exon-level resolution for specific genes [180,181].
Ancillary methods may be used to supplement genetic or genomic results obtained by conventional
means. For example, the impact of predicted pathogenic intronic variants (especially those outside
of the core or essential splice site) may be confirmed by RNA analysis, as missplicing may lead
to complete or partial exon skipping or inclusion of intronic sequence in mature mRNA, with
deleterious consequences [170].
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9. Mutations in CGD

The heterogeneity of clinical phenotypes observed in CGD is reflected in the variety
of mutations identified in responsible genes. Multigene panels for suspected IEI routinely
include the core genes responsible for CGD (CYBB, CYBA, NCF1, NCF2, NCF4 and CYBC1),
and should also include other genes of interest responsible for important differential
diagnoses (e.g., CFTR, G6PD, RAC2 and GSS). These genes should all be captured by
WES/WGS methods, but it is important to confirm that they are included within the
analysis when CGD is suspected.

CYBB mutations range from single nucleotide variants (missense, nonsense) and small
insertions and deletions (indels), to deletions of several megabases, and may involve exons
or splice sites [56]. Large insertions are relatively less common, and are usually caused
by duplications or transposable elements [56,127,182]. Some CYBB mutations result in
complete absence of gp91phox protein expression, and complete deficiency of NADPH
oxidase function, termed the “Xb0 phenotype” [127]. Some CYBB mutations result in a
degree of residual functional protein expression (e.g., amino acid substitutions or small
in-frame indels, and splice site mutations that leave some residual normal mRNA), termed
the “Xb− phenotype” [127]. These comprise mostly pathogenic missense variants in the
region encoding the N-terminal 309 amino acids, and tend to confer relatively better prog-
nosis [44]. Variants affecting the C-terminal portion affect cofactor and substrate binding
domains, and render the expressed protein largely nonfunctional with relatively poorer
prognosis [44]. Yet, other CYBB mutations result in expression of normal levels of enzy-
matically inactive protein, termed the “Xb+ phenotype” [127]. Of note, a distinct spectrum
of hypomorphic missense mutations in CYBB, which specifically impair NADPH oxidase
function in macrophages and B cells (rather than granulocytes), leads to XR Mendelian
susceptibility to mycobacterial disease (MSMD) [183,184].

About 15% of CYBB mutations arise de novo, where maternal leukocyte DNA does
not contain the mutant allele, but this does not exclude the possibility of maternal somatic
mosaicism, where some or all of the maternal gonadal or germ cells harbour the mutation.
As such, if maternal testing is negative for the mutation, there may still be a risk that further
offspring will be affected [13]. As described earlier, skewed XCI is also responsible for clinical
features of overt CGD in a subset of female carriers of pathogenic CYBB variants [11,59].
Where this is suspected, the standard HUMARA assay for XCI may be used, which assesses
epigenetic silencing of X-chromosome genes [185,186]. Novel methods, which use NGS to
directly assess differential transcription of X-chromosome genes have also been developed
more recently to assess for skewed XCI [170]. Individuals with suspected XR CGD and
clinical manifestations of McLeod syndrome (neuromuscular abnormalities and haemolytic
anaemia) should undergo CMA to detect larger deletions within the X chromosome [187,188].
CMA with adequate resolution to identify the deletion boundary can define whether there is
loss of implicated genes contiguous to CYBB in these cases, e.g., XK (Kx blood group antigen),
RPGR (retinitis pigmentosa), DMD (Duchenne muscular dystrophy) and OTC (ornithine
transcarbamoylase) [187,188].

NCF1 has two neighbouring paralogous pseudogenes >99% identical in sequence to
NCF1, which pose a particular challenge to genetic diagnosis by conventional sequenc-
ing [189]. Both pseudogenes harbour a two-nucleotide GT deletion at the beginning of exon
2, which leads to frameshift and a premature stop codon, resulting in absent expression
of active p47phox protein [127,190]. Loss of the functional NCF1 gene may occur due to
unequal crossover between the intact gene and either pseudogene during meiosis [189,191].
NCF1-∆GT accounts for about 90% of all p47phox-deficient CGD, and compound heterozy-
gotes with other NCF1 mutations have also been reported [55]. To detect these variants,
PCR and sequencing may rely on primers that discriminate between NCF1 and its pseu-
dogenes [108], or on methods that can demonstrate a 2 bp length discrepancy between
amplified fragments of the NCF1 gene or pseudogene [192,193]. mRNA and protein assays
may also have a role in confirming pathogenicity of detected NCF1 variants [194]. Of note,
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another distinct group of NCF1 variants is reported to be associated with autoimmune and
autoinflammatory disorders without the other features of CGD [195].

Mutations in CYBA and NCF2 include indels, missense, nonsense and splice site
variants [55]. Most lead to complete absence of protein expression, but a few reported
mutations lead to decreased expression of functional protein, and thus reduced NADPH
oxidase activity [196,197]. There are few reported cases of NCF4 deficiency, but described
variants include missense and nonsense mutations affecting exons, introns or essential
splice sites, as well as in-frame deletions [70,71,167]. Mutations of CYBC1 result in loss of
expression of the gp91phox-p22phox protein complex, but levels of CYBB and CYBA mRNA
are preserved [63,64]. Reported mutations of RAC2 include missense variants, which
encode an inactive protein unable to bind GTP [4,75,76,156]. Only severe forms of G6PD
deficiency result in such scarcity of NADPH as to phenocopy the infection susceptibility
of milder forms of CGD [54]. As such, these mutations (mostly missense) comprise only
a small subset of all recognised G6PD mutations [56]. Although a theoretical possibility,
very skewed XCI in haploinsufficient carriers of G6PD deficiency may also result in CGD
features in females.

10. Limitations of Genetic Testing for CGD

Broadly, challenges in genetic diagnosis of CGD reflect both technical and biological
factors common to other genetic disorders. Where sequence variants are not detected by
genetic or genomic methods, there are several potential explanations.

Specimen type and handling can impact the yield and quality of nucleic acid, and
thus sequencing performance, e.g., NGS read depth and accuracy of base calling, although
standard quality controls should identify these issues early [108]. NGS technologies are
subject to technical variables that affect diagnostic sensitivity, including the sequence
enrichment method used for exome sequencing, use of paired- versus single-end read
methods, and use of short- versus long-read technologies [172]. It is worth noting that
standard NGS techniques cannot detect variants that influence gene expression without
changing DNA sequence (e.g., epigenetic or imprinting errors, and uniparental disomy),
and do not reliably detect variants in highly repetitive regions of DNA that are difficult
to sequence (e.g., nucleotide repeat expansions or contractions), variants involving a gene
that is highly homologous to other gene family members or pseudogenes (e.g., NCF1), and
variants that are somatically acquired or mosaic (i.e., only present in a small percentage of
cells, such that base calls do not pass quality thresholds).

Gene panels or WES may not detect pathogenic variants in regions (e.g., introns or
regulatory regions) not covered by the sequencing method used. Conventional sequence
analysis alone is also poorly sensitive for structural variants and large whole-exon or
whole-gene deletions or duplications (e.g., McLeod syndrome), and these types of mutation
require alternative methods of CNV analysis or high-resolution karyotyping [19]. However,
creative new methods based on NGS and Sanger sequencing have the potential to address
some of these historic challenges in diagnosing CGD and investigating skewed XCI and
mosaicism [170].

It is worth emphasising that genetic and genomic testing workflows depend upon the
quality of the clinical information and family history provided by the requesting clinician,
and diagnostic sensitivity may be affected if these are inadequate. Interpretation of the
significance of detected variants is also subject to the limitations of existing literature,
databases and bioinformatic prediction tools [173] (Box 2). Notwithstanding technical
factors, the proband may also truly not have a pathogenic variant in the tested genes, and
an alternative explanation for their clinical syndrome should be sought. Where clinical sus-
picion for CGD remains high, this warrants close inspection of the methods employed, and
periodic re-analysis of existing data to take account of updated bioinformatic methods and
reference databases. In some cases, following discussion with genomic service providers,
repeat testing may be warranted in due course to account for technical improvements,
which might improve diagnostic yield.
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Because CGD is currently understood to be a rare diagnosis, clinical awareness and
suspicion may not be sufficient to prompt testing for CGD in the first place, and awareness
of the need to test presents a significant challenge to the timely diagnosis of this disorder.
The availability of genetic and genomic testing is also restricted in resource-limited settings,
which remains one of the ongoing challenges to identifying and helping those CGD cases
whose need is greatest [198–200]. Even in high-resource settings such as the UK, significant
reporting backlogs in centralised genomic testing services have the potential to contribute
to significant delays in diagnosis and treatment [201].

11. Screening

Routine newborn population screening for CGD is not commonplace, despite the
potential benefits of early diagnosis [163]. This is due at least in part to the infeasibility of
a CGD-relevant screening assay, which can be run in parallel with other tests, although
potential assays have been proposed using mass spectrometry for protein detection in
newborn dried blood spot samples [164]. Screening of asymptomatic individuals is thus
usually restricted to family members of known CGD probands. However, there is growing
interest in the use of genomic tests for newborn screening [202,203], and it is timely that five
CGD-related genes are included in those to be tested in the Generation Study of newborn
genomic screening currently being piloted in sites across the UK [204]. This furthermore
emphasises the need for reliable and accurate confirmatory diagnostic testing for screen-
positive individuals identified prior to onset of any infective or other complications.

12. Outlook

Within the realm of testing for CGD and other genetic disorders, gene panels, sequenc-
ing technologies, bioinformatic tools, reference databases and diagnostic sensitivity are
likely to vary between laboratories and over time. As services evolve to keep pace with
novel developments, we are heartened that functional and genetic testing for CGD contin-
ues to improve. We hope that these improvements will help to overcome the diagnostic
challenges in CGD discussed here, and facilitate wider access and uptake of testing. Partic-
ularly with the expansion of screening into younger age groups using genomic testing in
infancy, the future for early diagnosis and definitive treatment of CGD looks much brighter
than it did before.
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