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Abstract: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia associated with
significant morbidity and mortality. Managing risk of stroke and AF burden are pillars of AF man-
agement. Atrial geometry has long been recognized as a useful measure in achieving these goals.
However, traditional diagnostic approaches often overlook the complex spatial dynamics of the atria.
This review explores the emerging role of three-dimensional (3D) atrial geometry in the evaluation
and management of AF. Advancements in imaging technologies and computational modeling have
enabled detailed reconstructions of atrial anatomy, providing insights into the pathophysiology of
AF that were previously unattainable. We examine current methodologies for interpreting 3D atrial
data, including qualitative, basic quantitative, global quantitative, and statistical shape modeling
approaches. We discuss their integration into clinical practice, highlighting potential benefits such as
personalized treatment strategies, improved outcome prediction, and informed treatment approaches.
Additionally, we discuss the challenges and limitations associated with current approaches, including
technical constraints and variable interpretations, and propose future directions for research and clin-
ical applications. This comprehensive review underscores the transformative potential of leveraging
3D atrial geometry in the evaluation and management of AF, advocating for its broader adoption in
clinical practice.

Keywords: atrial fibrillation; atrial cardiomyopathy; atrial geometry; three-dimensional imaging;
statistical shape modeling; asymmetry index; left atrial sphericity; catheter ablation; stroke risk;
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1. Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in adults,
with a one in three lifetime risk of developing AF for individuals of European ancestry
at age 55 years [1–3]. Global prevalence increased from approximately 33 million in 2010,
to 50 million in 2020, with this rise expected to continue; this increase is multifactorial in
nature, being associated with improved AF detection, life expectancy, and prevalence of
comorbidities associated with AF (hypertension, diabetes mellitus, obesity, and obstruc-
tive sleep apnea) [1,2,4]. AF causes significant morbidity and mortality, representing a
burden to both patients and health care economies, with more than 50% of AF patients
having an impaired quality of life and a 10–40% annual hospitalization rate [1,2]. It is
associated with a 1.5- to 3.5-fold increased risk of death and multiple adverse outcomes,
including stroke, heart failure, cognitive impairment, myocardial infarction, sudden cardiac
death, chronic kidney disease, and peripheral artery disease [1,2]. Both European and
American guidelines describe three key elements in the management of AF: (1) manag-
ing risk of stroke; (2) symptom control, including managing AF burden through rhythm
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and rate control strategies; and (3) optimization of modifiable risk factors and addressing
comorbidities [1,2].

The initial diagnostic evaluation of AF includes a comprehensive medical history,
considering the aforementioned risk factors and concomitant conditions, in addition to
those not previously mentioned, such as valvular heart disease, endocrine disorders, and
infiltrative cardiomyopathies [1,2,5]. Subsequently, standard investigations include a 12-
lead ECG to confirm the presence of both AF and ventricular rate, alongside assessing for
the existence of conduction defects, ischemia, and structural heart disease; laboratory tests
including full blood count, electrolytes, kidney, and thyroid function; and a transthoracic
echocardiogram (TTE) to assess chamber size and function, valvular function, right ven-
tricular pressure, and strain to detect underlying infiltrative cardiomyopathy [1,2]. Whilst
not routine, depending on a patient’s signs or symptoms, additional imaging may be con-
sidered in the form of transesophageal echocardiography to assess valvular heart disease
and for the presence of left atrial appendage (LAA) thrombus, computed tomography
(CT) angiography for ischemia, and late gadolinium enhanced cardiac magnetic resonance
imaging (MRI) to further guide AF treatment decisions [1,2].

All of these imaging modalities provide information on left atrial (LA) geometry, and
the clinical utility of this has long been recognized. Two-dimensional (2D) approaches
have utilized TTE in risk stratification of cardioembolic stroke [6] and predicting success
of electrical cardioversion [7] or catheter ablation therapy with pulmonary vein isolation
(PVI) [8]. However, 2D approaches have limitations due to their reliance on geometric
assumptions; for example, echocardiographic measurement of LA diameter can under-
estimate the true LA size as it assumes a spherical shape [9,10]. Atrial remodeling is
asymmetrical in nature, as highlighted by Cozma et al. [11] in 2007, who observed that
with larger atria, there was a relatively greater increase in the LA basal than apical dimen-
sions; this was termed trapezoidal remodeling. Whilst this can in part be accounted for
by utilizing 2D measures of atrial area, true appreciation of changes in atrial geometry
due to AF requires three-dimensional (3D) imaging modalities. High-resolution CT, MRI,
and 3D echocardiography have paved the way for more accurate assessment of the atria’s
asymmetrical 3D structure [9,10,12].

By leveraging 3D atrial geometry, we can improve the evaluation and management
of AF, addressing existing knowledge gaps and enhancing patient outcomes. Given the
significant advancements in this field and their impact on understanding the complex
geometry of atria, there is need for a comprehensive review article that synthesizes current
knowledge and identifies future research directions. This review aims to consolidate
findings from recent studies, examining the advancements and challenges in LA geometry
assessment to provide valuable insights for clinicians and researchers.

In this comprehensive review,

1. We discuss the interplay between 3D atrial geometry, atrial cardiomyopathy, and
susceptibility to AF.

2. We explore the use of 3D atrial geometry in the assessment and treatment of AF,
focusing on its use in stroke and rhythm management. We first discuss qualitative and
simple quantitative metrics, before covering global quantitative metrics, and finally
statistical shape modeling (SSM) approaches, covering measurement techniques and
their clinical applications.

3. We provide insights into the limitations of current technologies and latest research di-
rections, including deep learning-based SSM and spatiotemporal SSM, in this exciting
and evolving field.

2. Atrial Cardiomyopathy and Its Impact on Atrial Geometry

Atrial cardiomyopathy describes the negative remodeling which occurs due to AF. It
has long been appreciated that “AF begets AF” [13–15]; sustained AF causes structural and
functional changes within the atria that promote AF progression [16–18]. Experimental
evidence since the 1990s has demonstrated atrial dilatation to be one such structural
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change [19]. The multiple wavelet hypothesis proposed by Moe [20,21] explains why
dilated atria are more prone to AF. It considers fibrillation to be the result of the random
propagation of multiple, independent electrical wavelets throughout the atria. These
wavelets are generated by fractionation of the wavefront as it passes through tissue which
is inhomogeneous with respect to excitability, refractory period, and conduction velocity;
wavelets are self-sustaining and independent of the initial stimulus [17,18,22–25]. Dilated
atria are more susceptible to maintaining AF, as the larger tissue mass supports a greater
number of wavelets and the probability of them coalescing decreases [26].

In contrast, the hierarchical model of AF describes a degree of organization in AF,
with distinct driver sites and disorganized propagation away from these sites. Driver sites
may exhibit re-entrant, rotational, or focal activity, but they exist due to changes in the
local functional and/or structural properties within the atria [17,18,27–29]. This has led
to multiple studies investigating how these driver sites may be identified; these studies
have demonstrated atrial cardiomyopathy to be a non-uniform process, both in regard
to structural changes as identified by fibrosis formation using late gadolinium enhance-
ment (LGE) on MRI [30–33] as well as areas of low voltage on electroanatomic voltage
mapping (EAVM) [33–36] and functional changes as identified by areas of slow conduc-
tion velocity [16,33,37–39] as well as propagation patterns representing AF drivers [40–42].
Recognizing that atrial cardiomyopathy is not simply a global process gives us an appre-
ciation of why 3D atrial geometry is required to truly understand geometric remodeling,
considering not only atrial size, but also shape.

3. Qualitative and Basic Quantitative Approaches for Understanding Atrial Shape

Shape can be defined as the geometric information that describes an object irrespective
of its pose; pose refers to the location, scale, and rotation of an object [43]. Geometric
morphometrics combines descriptions of shape with statistical analyses describing patterns
of shape variation [44]. Qualitative methods represent the simplest approach to describing
elements of atrial shapes based on subjective morphological descriptions. These can be
expanded through the inclusion of basic qualitative measures, such as measuring length
and width of atrial sub-structures (Figure 1).

In practice, such approaches have been applied to predicting stroke risk based on LAA
morphology, which is considered a frequent source of thrombus formation and systemic
embolization [45,46]. Both CT [45–50]- and MRI [47]-based approaches have been utilized,
with the LAA categorized as either ‘chicken wing’, ‘windsock’, ‘cauliflower’, or ‘cactus’
in shape [45,47–49]. In addition, the anatomical relationship between the LAA and left
superior pulmonary vein has been described as either high-, mid-, or low-type [45], and
the LAA ostium as oval, foot, triangular, water drop, or round [45]. Basic quantitative
measurements include LAA volume, length, and LAA orifice area [46,50]. However, results
of these studies can be contradictory, with both ‘chicken wing’ [47] and ‘windsock’ [48]
morphologies being less frequently observed in patients with a history of stroke or transient
ischemic attack (TIA) and with LAA ostium area found both useful [46] and not [50] as
a predictive marker. A key issue of this approach is that LAA morphology is incredi-
bly diverse, making classification into pre-defined categories challenging and prone to
interobserver variation [45,51,52].

Regarding AF burden and rhythm control, the LA roof has been classified as either
deep, shallow, or flat in shape, depending on the angle of insertion of the superior pul-
monary veins to the LA body. A flat roof was associated with more significant atrial
cardiomyopathy in a study by Kurotobi et al. [53], which demonstrated more persistent
AF (perAF), larger LA volumes (LAV), larger LA diameters, and more burst inducible
atrial tachycardia after PVI in this cohort. Chen et al. [54] investigated the ratio of dis-
tance between the right and left superior pulmonary veins and LA diameter, showing
it to be an independent predictor of AF recurrence post PVI in a multivariable analysis.
Kim et al. [55] assessed the impact of a narrow or wide left lateral ridge, in a multivariate
analysis showing narrow ridges to be an independent predictor of recurrence. Interest-
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ingly, a follow-up experimental study using porcine atrial tissue demonstrated contact
force and radio-frequency lesion formation to be significantly lower on narrow vs. wide
ridges, implying recurrence in patients with this shape variation may not only be related to
cardiomyopathy but our ability to deliver successful ablation treatment. Sorgente et al. [56]
also investigated ablation technique, in this instance finding cryoballoon occlusion to be
worse in patients with shallower angles between the LA body and pulmonary veins.
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Figure 1. Overview of the different qualitative and basic quantitative metrics based on three-
dimensional atrial geometry, used for the assessment of atrial fibrillation. LA: left atrium; LAA: left
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statistical shape modeling.

4. Global Quantitative Approaches

Atrial asymmetry index (ASI) and left atrial sphericity (LASP) (Figure 2) are the
two most well-described global quantitative approaches for understanding atrial shapes.
ASI [57] is a ratio of the anterior LA to total LA volume. It is calculated from 3D reconstruc-
tions of the LA, by dividing it into anterior and posterior segments via a cutting plane that
runs parallel to the posterior wall, between the pulmonary vein ostia and LAA. Preferential
anterior dilatation in AF is hypothesized to be the result of the physical constraints imposed
by the spine. Pathophysiologically, the interplay of ASI and mechanical remodeling has
been explored in studies utilizing both CT and echocardiographic imaging; these stud-
ies have shown higher asymmetry index to be associated with diastolic dysfunction and
delayed anterior mechanical activation [58,59]. Furthermore, exploring the interplay of
LAV and ASI, Nedios et al. [57] demonstrated increases in LAV and ASI in AF patients
vs. healthy controls but, interestingly, only higher LAVs in paroxysmal (pAF) vs. perAF
patients and only higher ASI in persistent vs. longstanding perAF patients; both LAV and
ASI were shown to be independent predictors of AF recurrence post PVI. These results
highlight the multifactorial nature of geometric remodeling in AF and the potential benefits
of utilizing both in assessing patients. In contrast, Guo et al. [60] found ASI not to be an
independent predictor of AF recurrence following catheter ablation. This study did not
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distinguish between persistent and longstanding perAF, which may in part explain these
differing results.
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LASP [61] is calculated as the variation between LA shape and a best fit sphere. The
sphere’s radius is calculated as the mean distance between all points on the LA wall and its
center of mass. The coefficient of variation is calculated as the ratio of standard deviation
in this mean distance measurement and the mean radius. Volume overload is a key compo-
nent of atrial cardiomyopathy. A sphere has the smallest surface area to volume ratio of all
3D shapes, as such spherical remodeling is hypothesized to occur because it represents the
optimal geometrical adaptation for minimizing wall stress [61]. LASP has been applied
to predicting stroke risk, where it was shown to outperform CHA2DS2-VASc scoring in a
population of AF patients with a history of previous thromboembolic events, compared to
the age- and sex-matched controls [62]. Primarily, however, studies have applied LASP to
managing AF burden. Here, it has been shown to be an independent predictor of AF recur-
rence following external cardioversion [63] and catheter ablation [60,61,64,65]. Combining
LASP with other independent predictors from these studies, such as LA minimal volume
index [60] and clinical factors [65], may maximize its potential. Similarly, LASP has been
shown to improve after successful catheter ablation [66]; for this use, combining it with
LAV may serve as a better marker of response than LAV alone, as LAV may improve from
ablation scar-related LA retraction rather than beneficial remodeling. Notwithstanding
these encouraging results, a study by Mulder et al. [67] comparing AF and healthy control
patients demonstrated no difference in LASP, despite differences in LA diameter, LAV, and
LAV index. Likewise, Bossard et al. [68] did not find LASP to be an independent predictor
of recurrence following catheter ablation of AF.

In interpreting these discrepancies, we should remember that cardiac anatomy is highly
complex. Remodeled atria may have all the components of a flat LA roof, higher sphericity,
and anterior dilatation, but clinical utilization of these measures requires establishing
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threshold values to separate abnormal from normal. Global measures may not be able
to capture subtle changes [69]. Shape is complex and therefore requires a more complex
analysis [70].

5. Statistical Shape Modeling
5.1. An Overview of Statistical Shape Modeling

SSM is the computational extension of geometric morphometrics [71], providing quan-
titative descriptions of shape with excellent geometric detail and statistical power [72].
To produce statistical shape models, 3D anatomical information must first be converted
into a discrete representation [73]. In medical imaging, this is most commonly achieved
through the use of correspondence points (Figure 3); these are dense sets of points that
represent 3D geometry and, importantly, whose location corresponds between objects in
a population [74]. This type of SSM is called a point distribution model (PDM); it has the
advantage, over a deformation field approach, of being easier to visualize and therefore
interpret for clinicians as well as being less impacted by noise [73,75,76]. PDMs are the
evolution of morphometric landmark approaches, not relying on a limited number of man-
ually identified landmarks/correspondence points but instead consisting of dense sets of
hundreds to thousands of correspondence points that are produced automatically, meaning
geometry is modeled with greater fidelity [77,78]; as the position of the correspondence
points cannot be determined manually, their appropriate location is extrapolated from the
shapes themselves [79].
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shape and shape variability in a linear SSM. First PC captures the roundedness of edges and second
PC captures the ratio of width to length. LA: left atrium; PC: principal component; PCA: principal
component analysis; SSM: statistical shape modeling.

Subsequently, a sophisticated geometric model can be produced, which captures both
the population average and variability [71–75] (Figure 3). Average geometry across a
population is defined as the average of correspondence point positions [70]. A principal
component analysis (PCA) is frequently utilized to describe variability. PCA is a multivari-
ate statistical method which facilitates the interpretation of large datasets by reducing their
dimensionality whilst maintaining information content [80,81]. A principal component (PC)
is a linear function that combines information from multiple original variables to produce
a new, single variable. A combination of uncorrelated PCs is sought, which maximally
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explains variance within all the original variables. The maximum possible number of PCs
is the same as the number of original variables, and a combination of all possible PCs
would explain all variance within a dataset. However, the aim of PCA is to reduce the
dimensionality of a dataset by utilizing fewer PCs to aid interpretation and visualization of
the original dataset. This is achieved by maximizing variance within the first PC, followed
by maximizing remaining variance in the second PC and so forth, such that PCs with low
information content can be disregarded.

In PDMs, by selecting PCs which account for the majority of observed variance, each
object can be described as a vector of scalar values with a dimensionality equal to the
number of selected PCs; disregarding PCs accounting for the lower end of variance likely
equates to excluding variance which is the result of noise from the image sampling process
itself [43,77,80]. Each PC describes a mode of shape variation [70,71,73], and this facilitates
better appreciation of anatomical differences, both on individual and population levels [76].
Furthermore, this approach gives SSM generative power, as Gaussian variation in the PCs
can produce new and plausible objects, not contained in the original dataset [73,74]. SSM
has been widely utilized for modeling the human heart [82–84], including in the context
of AF.

5.2. Applications of Statistical Shape Models in Atrial Fibrillation

Cates et al. [77] utilized SSM of the LA and LAA from MRI, to compare cohorts of
patients with and without spontaneous echo contrast (SEC) in the LAA. SEC is a sign of
blood stasis and therefore considered a risk of thrombus formation and stroke. Of the
variation, 95% was captured by the first two PCs, with them finding longer LAA length
and anterior orientation relative to the LA to be associated with SEC. SSM of the LAA
has also been shown to be able to capture clinically relevant variation, with an ability to
divide patients into the traditional four morphological groups, mitigating its previously
subjective nature [71]. Whilst neither of these studies directly associated geometry with
stroke, subsequent studies have compared groups with a history of stroke or TIA with
a control group. These have shown relative alignment of the LA and LAA to be a key
component of stroke prediction [85], as well as the LAA being broader, shorter, and less
angulated [52]; combining such shape parameters with CHA2DS2-VASc score improved
prediction performance [52].

Using SSM to compare LA geometry in pAF, perAF, and control patients, Cates
et al. [77] demonstrated that the majority of variation (21%) was captured by a PC which
captured dilation in the antero-posterior direction; such variation could be considered
similar to increased ASI and LASP. Multiple studies have used LA SSM in predicting
recurrence following catheter ablation. By comparing local area changes in patients with
and without recurrence, Jia et al. [86] derived a shape score with predictive value that
outperformed traditional methods and, in combination with AF persistence and LAV,
showed a high predictive value. Bieging et al. [70] demonstrated that LA shape was
independent of even LA fibrosis as a predictor of AF recurrence, suggesting that both LA
shape and fibrosis are important factors in atrial cardiomyopathy; in this study, recurrence
was again associated with more spherical LA. Similarly, Varela et al. [87] found recurrent
LA to be more spherical, with flattening at the roof.

A comprehensive understanding of atrial remodeling involves combining multiple
different measures which assess its multiple elements, for example, LGE MRI for assessing
fibrosis and EAVM for assessing voltage and conduction velocity. Different technologies
produce variations in 3D geometry; as such, SSM has been used to produce average atrial
geometries which can then be used as a basis to combine multiple measures onto a single
geometry, minimizing variation due to spatial displacement. This has been applied in
clinical studies assessing correlation between these variables [33,88]. Similarly, SSM has
been a fundamental step in the creation of in silico digital twins used in catheter ablation
of AF; here, they facilitate the integration of the multiple variables which contribute to
arrhythmogenesis, combining individual patient data from LGE MRI and EAVM, with data
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on fiber orientation from existing atrial atlases [89–91]. By simulating different treatment
strategies based on patient-specific variables, the optimal approach can be chosen for a
patient [92,93]. A further use of SSM in the creation of digital twins is their potential to
enable 3D whole-heart reconstruction, including both atria and ventricles, from a limited
number of clinical cine MRI slices [94].

The generative power of SSM is of particular value in the development of machine
learning classifiers in silico. Training of machine learning models requires large and bal-
anced datasets with reliable labeling. SSM’s generative ability means an almost infinite
ability to generate realistic geometries and subsequently datasets with ground truth la-
bels [74]. This can significantly expand the size of training datasets compared to studies
utilizing clinical data [12,95]. For example, in the personalization of catheter ablation
therapy, running multiple simulations of the impact of different ablation strategies is
computationally expensive, with long simulation times, thus limiting clinical feasibility.
Zolotarev et al. [92] addressed this limitation by simulating responses to various treat-
ments in 1000 virtual patients. These simulations were then used to train a deep learning
model which can predict treatment response to different therapies based on anatomical
and physiological features from only the pre-ablation atrial fibrillation simulations.

6. Challenges and Future Directions

Traditional SSM exploring linear relationships such as PCA faces a key challenge in
that variability in human anatomy may be non-linear. Deep learning-based SSM (Figure 4)
may overcome this limitation, capturing population-wide anatomical variability [76]. An
advantage of deep learning-based approaches is the existence of a latent space aiming to
provide accurate low-dimensional and disentangled representation of the high-dimensional
input data, where each latent dimension encodes a different aspect of the inter-subject
variability. The non-linearities in the deep learning architecture enable the modeling
of richer and more condensed relationships between high-dimensional input data and
low-dimensional latent space representations [96–98].

A further advantage of this approach is the ability to include patient metadata such as
age, sex, comorbidities, and AF clinical history in the model, which may greatly improve
the ability of SSM to generate geometries relevant to specified sub-populations. Improved
understanding of the impact of specific clinical characteristics on geometry may facilitate
more targeted intervention [99]. Furthermore, such SSMs are generalizable to even under-
represented patient cohorts in the original dataset [100,101]; this is a key consideration as we
strive towards improved equality, diversity, and inclusion in research. An additional ethical
concern is the potentially prohibitive cost and limited availability of imaging modalities
such as MRI and CT, on which SSM is frequently reliant. To maximize the equitable
distribution of scientific advancement, future work should seek to translate findings to
alternative imaging modalities, for example, through deriving shape metrics which may
then be applied to TTE [69].

This review has primarily focused on the role of atrial geometry in managing risk of
stroke and AF burden; yet, the optimization of modifiable risk factors and addressing a
patient’s comorbidities are key considerations in holistic management and an area where
the role of atrial geometry is relatively unexplored.

Finally, we must consider that AF is not a static condition. There are temporal changes,
in terms of dynamic atrial motion through the cardiac cycle, and also progression of atrial
cardiomyopathy over time; spatiotemporal SSM [75,102–104] can capture this geometric
variation. It may provide invaluable insights into the impact of atrial cardiomyopathy
on mechanical function and improve the ability of computational fluid dynamics simu-
lations [105,106] to model stroke risk based on dynamic LAA morphology. By tracking
changes in atrial structure over time, these tools can help identify early signs of disease
and monitor the efficacy of interventions, thus allowing for a more comprehensive under-
standing of the disease trajectory and facilitating personalized treatment strategies that can
adapt to the patient’s evolving condition.



J. Clin. Med. 2024, 13, 4442 9 of 14J. Clin. Med. 2024, 13, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. Deep learning-based SSM capturing population-wide LA geometries and metadata to pro-
duce virtual populations relevant to specified sub-populations, personalized prediction of proce-
dural success, and identification of key risk factors. LA: left atrium; SSM: statistical shape modeling. 

A further advantage of this approach is the ability to include patient metadata such 
as age, sex, comorbidities, and AF clinical history in the model, which may greatly im-
prove the ability of SSM to generate geometries relevant to specified sub-populations. Im-
proved understanding of the impact of specific clinical characteristics on geometry may 
facilitate more targeted intervention [99]. Furthermore, such SSMs are generalizable to 
even under-represented patient cohorts in the original dataset [100,101]; this is a key con-
sideration as we strive towards improved equality, diversity, and inclusion in research. 
An additional ethical concern is the potentially prohibitive cost and limited availability of 
imaging modalities such as MRI and CT, on which SSM is frequently reliant. To maximize 
the equitable distribution of scientific advancement, future work should seek to translate 
findings to alternative imaging modalities, for example, through deriving shape metrics 
which may then be applied to TTE [69]. 

This review has primarily focused on the role of atrial geometry in managing risk of 
stroke and AF burden; yet, the optimization of modifiable risk factors and addressing a 
patient’s comorbidities are key considerations in holistic management and an area where 
the role of atrial geometry is relatively unexplored. 

Finally, we must consider that AF is not a static condition. There are temporal 
changes, in terms of dynamic atrial motion through the cardiac cycle, and also progression 
of atrial cardiomyopathy over time; spatiotemporal SSM [75,102–104] can capture this ge-
ometric variation. It may provide invaluable insights into the impact of atrial cardiomyo-
pathy on mechanical function and improve the ability of computational fluid dynamics 
simulations [105,106] to model stroke risk based on dynamic LAA morphology. By track-
ing changes in atrial structure over time, these tools can help identify early signs of disease 
and monitor the efficacy of interventions, thus allowing for a more comprehensive under-
standing of the disease trajectory and facilitating personalized treatment strategies that 
can adapt to the patient’s evolving condition. 

Figure 4. Deep learning-based SSM capturing population-wide LA geometries and metadata to pro-
duce virtual populations relevant to specified sub-populations, personalized prediction of procedural
success, and identification of key risk factors. LA: left atrium; SSM: statistical shape modeling.

7. Conclusions

AF represents a significant and growing public health challenge, characterized by
its complex interplay with various comorbidities and its substantial impact on morbidity
and mortality. Three-dimensional imaging modalities have significantly advanced our
understanding and management of AF, allowing for more accurate assessment of the atria’s
asymmetrical structure. Whereas global quantitative approaches such as ASI and LASP
benefit from their relative simplicity, SSM offers a more objective and powerful tool in
the study of atrial geometry, providing detailed quantitative descriptions of shape and
facilitating the integration of multiple variables affecting AF. By capturing both population
averages and variability, SSM has improved our understanding of atrial remodeling and its
clinical implications. Applications of SSM in assessing stroke risk, predicting AF recurrence,
and personalizing catheter ablation therapy highlight its potential in enhancing patient-
specific management strategies. Whilst traditional SSM may not fully capture the non-linear
variability of human anatomy, advances in deep learning-based SSM offers promising
solutions, which, in combination with spatiotemporal SSM’s ability to capture dynamic
changes in atrial geometry over time, could lead to more precise and personalized treatment
strategies for patients with AF. By continuing to refine these approaches and integrating
new technologies, we can better address the complexities of AF and ultimately improve
patient outcomes.
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