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Abstract: The keratinocyte carcinomas, basal cell carcinoma (BCC), and cutaneous squamous cell
carcinoma (cSCC), are the most common cancers in humans. Recently, an increasing body of literature
has investigated the role of miRNAs in keratinocyte carcinoma pathogenesis, progression and their
use as therapeutic agents and targets, or biomarkers. However, there is very little consistency in
the literature regarding the identity of and/or role of individual miRNAs in cSCC (and to a lesser
extent BCC) biology. miRNA analyses that combine clinical evidence with experimental elucidation
of targets and functional impact provide far more compelling evidence than studies purely based on
clinical findings or bioinformatic analyses. In this study, we review the clinical evidence associated
with miRNA dysregulation in KCs, assessing the quality of validation evidence provided, identify
gaps, and provide recommendations for future studies based on relevant studies that investigated
miRNA levels in human cSCC and BCC. Furthermore, we demonstrate how miRNAs contribute to the
regulation of a diverse network of cellular functions, and that large-scale changes in tumor cell biology
can be attributed to miRNA dysregulation. We highlight the need for further studies investigating
the role of miRNAs as communicators between different cell types in the tumor microenvironment.
Finally, we explore the clinical benefits of miRNAs as biomarkers of keratinocyte carcinoma prognosis
and treatment.

Keywords: cutaneous squamous cell carcinoma; basal cell carcinoma; non-melanoma skin cancer;
keratinocyte carcinoma; miRNA; micro RNA

1. Introduction

Non-melanoma skin cancers are the most common human cancer and the majority
(>90%) of NMSC is comprised of the keratinocyte carcinomas (KCs), cutaneous squamous
cell carcinoma (cSCC), and basal cell carcinoma (BCC). While BCC is more common (>70%
of NMSC) [1], cSCC accounts for 75% of NMSC-related mortality [2]. Due to their common
ultraviolet radiation-driven etiology, BCC and SCC share many risk factors including fair
skin, age, chronic sun exposure, and hereditary conditions [3,4]. However, the molecular
biology of BCC and cSCC differs significantly. Briefly, BCC is driven by aberrant activation
of Sonic hedgehog and Smoothened with concurrent loss of PATCHED [5,6]. Conversely,
cSCC is typically driven by a mutational inactivation of the tumor suppressors TP53,
CDKN2A, and/or NOTCH1/2 [3,7]. Subsequent activation of receptor tyrosine kinase
signaling (e.g., epidermal growth factor receptor (EGFR)) and/or activation of downstream
signaling pathways such as phosphoinositide-3-kinase (PI3K) drives proliferation and
tumor growth [3,8,9]. For a more detailed account of the molecular differences between
cSCC and BCC, see Refs. [2,10,11].
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Micro RNAs (miRNAs) have gained traction as a crucial part of the cellular gene
expression regulatory network in development, organogenesis, and pathogenesis since their
discovery in 1993 [12]. miRNAs are 19–25 base pairs in length and there are approximately
2600 mature miRNAs [13,14]. The biogenesis of miRNAs has been prominently reviewed by
O’Brien et al. [15]. Briefly, the immature pre-miRNA transcript is recognized by the nuclear
microprocessor complex (comprising of DGCR8 and DROSHA) and its characteristic
cleaved hairpin structure. Upon nuclear export, the terminal loop is removed by the
endonuclease Dicer to form the mature miRNA duplex. In the canonical miRNA pathway,
miRNAs function as the targeting entity within the RNA-induced silencing complex (RISC).
RISC, with assistance of Argonaute proteins, binds to the 3′-untranslated region (UTR) of
target mRNAs (in some cases to the 5′UTR region) and causes degradation or translational
inhibition based on the level of sequence complementarity to regulate gene expression [12].
In cancer, the miRNA-mediated degradation of tumor suppressor gene transcripts can
facilitate cancer growth, invasion, and metastasis. Conversely, oncogene-targeting miRNAs
can have tumor suppressive functions [16,17].

Due to their oncogenic and tumor-suppressive functions, miRNAs have been explored
as therapeutic targets in cancer with potential for use against KCs. Recent reviews by
Menon et al. [18] and Seyhan [19] provide an excellent overview on the strategies for
miRNA-targeting therapeutics and its associated challenges. Briefly, strategies target-
ing oncogenic miRNAs focus on counteracting its regulatory effect on tumor suppressor
genes. For this purpose, antagonistic miRNAs, modified nucleic acids, miRNA sponges,
masking miRNAs, and small molecule inhibitors targeting miRNA biogenesis are under
investigation. Conversely, strategies involving tumor-suppressive miRNAs focus on re-
plenishing miRNA levels by delivering a mimetic or gene therapy. However, there are
major challenges associated with the use of miRNA therapeutics (i.e., delivery, stability,
and toxicity concerns).

More recent studies also support the use of plasma miRNA levels as therapeutic,
diagnostic, and predictive biomarkers [20,21]. Additionally, the use of therapeutic miRNA
mimetics and antagonists is being explored to restore tumor-suppressive miRNAs and
inhibit oncogenic miRNAs, respectively [22]. The exploration of miRNAs for cancers other
than KCs has contributed to a significantly improved understanding of their pathogenesis
and progression, and has opened novel therapeutic avenues [18].

Several reviews have summarized the state of miRNA research in KCs in the past [23–28].
However, due to the dynamic nature of the field, many have become outdated since their
publication over 5 years ago [25–27]. More recent reviews have tackled the matter with a
broader scope (i.e., epigenetic dysregulation in NMSC or long non-coding RNA dysreg-
ulation across all skin cancers) and without critical appraisal of quality of the evidence
presented [23,24]. Consequently, there is some overlap between the research presented
in this study and these reviews. However, this review reflects a more comprehensive,
stringent, and current overview of the field through a clinical lens.

2. Methods

The literature was independently searched by two authors (BG and JC) to identify
relevant studies for this review using the search terms microRNA, cSCC, and BCC. The
search was conducted on PubMed and Google Scholar with no further constraints applied
to the search results. Studies researching the role of at least one miRNA in human cSCC or
BCC clinical specimens, cell lines, and xenograft models were included. Of the 64 identified
studies, 55 covered cSCC, seven covered BCC, and two covered both BCC and cSCC
(NMSC). Of note, there were four studies that have been retracted and were consequently
excluded from analyses due to credibility concerns. The factors used for assessing quality
and reliability are outlined throughout the review (where applicable). No studies were
excluded based on quality.
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3. MicroRNA Dysregulation in cSCC
3.1. Consensus of Dysregulated miRNAs in cSCC

A study by Bruegger, Kempf, Spoerri, Arnold, Itin, and Burger [28] published in 2013
investigated the comparative expression of 12 miRNAs in cSCC compared to healthy skin
and reported a significant discordance between their findings and those of other related
studies. To investigate if the reproducibility issue persists to date, we compiled a list of
140 reportedly differentially regulated miRNAs in cSCC compared to healthy skin (Table S1)
and determined the consensus across studies (Figure 1). Studies with alternate comparisons
relating to the progression of cSCC (e.g., metastatic vs. non-metastatic cSCC) are discussed
separately in Section 3.3.
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Figure 1. Consensus of dysregulated miRNAs in cSCC. (A) Conflicting evidence leaves the dereg-
ulation status of several miRNAs unclear. The intersections of Venn diagram represent miRNAs
whose differential expression trend has been conflictingly reported in two or more studies. (B) The
table presents dysregulated/non-differentially expressed miRNAs based on the consensus of two or
more studies regarding their dysregulation status. Only comparisons of cSCC to healthy skin were
included in these analyses.

We identified several miRNAs that have been reported to be differentially expressed
in at least two studies (Figure 1B). The top most consistently reported miRNAs to be
upregulated in cSCC were miR-31(-5p) and miR-21-5p. The miR-31 duplex is the imma-
ture precursor for miR-31-5p and miR-31-3p. In cell line models of cSCC, miR-31(-5p)
mediated increased migration, invasion, and colony formation potentially via reducing
RhoBTB1 levels (Table 1) [29,30]. Clinical evidence supports a role of miR-31 in aggres-
sive cSCC and its expression correlates with increased MMP-1 expression, EMT, and
micro-vascularization [31]. Future studies should continue to investigate this potentially
important role of miR-31(-5p) in cSCC, as it may have as yet undetermined functionality
in this disease. For example, miR-31 has well-established tumorigenic roles in other can-
cers and is linked to multiple additional targets, therapeutic resistance, metastasis, and
decreased survival [32–35]. Furthermore, plasma levels of miR-31 might be an interesting
biomarker for aggressive cSCC as it has shown promise in other cancers [34,36,37].

While several studies support the overexpression of miR-21 in cSCC and suggest a
link to an invasive phenotype in cSCC, there has been no experimental exploration into a
mechanistic understanding for this association [28,38–40]. However, the matter warrants
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closer investigation given the established role of miR-21 in other cancers [41]. A review
by Bautista-Sánchez [41] summarizes the utility of miR-21 as a diagnostic and therapeutic
biomarker as well as the functional impact of this miRNA in other malignancies.

The top two miRNAs that are most consistently reported to be downregulated in
cSCC are miR-125b and miR-203 (Figure 1B) [38,42,43]. Both miRNAs target genes with
known roles in tumor progression. miR-125b has two experimentally confirmed targets
in cSCC, MMP13, and STAT3, and miR-203 targets the proto-oncogene MYC (Table 2).
Consistent with the canonical functions of its targets, miR-125b reduced invasiveness in
cSCC models via MMP13 [38]. Interestingly, the authors report effects on cSCC growth,
colony formation, and migration [38]. However, it is more likely that these effects are
mediated via an alternate target of miR-125b (i.e., STAT3). Additionally, miR-125b reduced
viability and cell cycle progression while increasing Bcl2-induced apoptosis via STAT3 [42].
These findings are consistent with changes reported in other cancers. However, evidence
collected in other cancers also suggests that the effects of miR-125b on cSCC could be far
greater than reported to date [44].

The target of miR-203, MYC, has well established roles in tumor growth, keratinocyte
differentiation, and metastasis [45–48]. Accordingly, Lohcharoenkal et al. [43] observed
that miR-203 expression correlates with the differentiation status of clinical samples. Trans-
fection of in vitro models of cSCC with miR-203 decreased cell cycle progression, colony
formation, migration, and invasion (Table 2). Furthermore, miR-203 inhibited angiogenesis
and tumor growth in xenograft models. It is noted, however, that two separate studies
reported no differences in expression of this miRNA in cSCC (Figure 1B), calling into
question the role of miR-203 in cSCC pathogenesis [28,38].

Thus, while there is some consensus across studies, the many conflicting studies make
an unequivocal interpretation of the current literature difficult. We propose three main
factors that may explain this inconsistency between studies. Firstly, the experimental design
(including the miRNA extraction method) might introduce a bias by preselecting for highly
expressed miRNAs, investigating levels of only one selected miRNA or a predetermined
panel of miRNAs (microarrays) in the clinical specimens [49,50]. Secondly, the quality of
bioinformatics methodology and the stringency of statistical analysis varies, confounded
by methodology changes and improvements over time [49,50]. Lastly, miRNA levels are
subject to normal biological differences. For example, factors such as photo age, immuno-
suppression status, or sex can influence the expression levels of miRNAs [51–55]. Utilizing
matched samples can aid in reducing these differences by accounting for the patient-specific
background but this approach has not always been used in the literature reviewed here.

3.2. Experimentally Validated miRNAs in cSCC

The previous section focused on the consensus, or lack thereof, between all studies that
report on the differential expression of miRNAs in clinical specimens. However, miRNA
analyses that combine clinical evidence with experimental elucidation of targets and func-
tional impact provide far more compelling evidence than studies purely based on clinical
findings or bioinformatic analyses. The following provides a comprehensive overview of
studies integrating analysis of miRNA levels in cSCC patient samples, functional inves-
tigation of miRNA targets, and integration into larger scale cSCC biology. Tables 1 and 2
include up- and downregulated miRNAs in cSCC, respectively. The functional effect of
the miRNA included in Tables 1 and 2 represents the changes observed if the miRNA is
introduced into the model systems included in the table. The validated target for each
miRNA is downregulated in response to the expression of respective miRNA.
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Table 1. Experimental validation of upregulated miRNA in cSCC compared to healthy skin.

miRNA Tissue
Comparison Cell or Animal Model Validated

Target Functional Effect of the miRNA Ref.

miR-10a cSCC vs. HS A431 SDC1 Proliferation ↑
Migration, invasion ↑ [56]

miR-10b cSCC (RDEB and
non-RDEB) vs. HS

RDEB-SCC1/2/62
SCC13
A431

WT18SCC

DIAPH2
Spheroid formation ↑

Migration ↓
CSC phenotype ↑

[57]

miR-22 cSCC vs. HS
A431

COLO-16
Xenograft

FOSB
PAD2

Migration ↑
EMT, stemness ↑

Spheroid formation ↑
Tumor formation, growth, and

metastasis ↑
Wnt/ β-catenin signaling ↑

[58]

miR-31 cSCC vs.
HS/ AK UT-SCC-7 nd

Motility ↑
Migration, invasion ↑
Colony formation ↑

[29]

miR-31-3p cSCC/IEC/AK vs.
HS

COLO-16
SCC9

SCC-25
nd Viability ↑

Colony formation ↑ [59]

miR-135b cSCC vs. HS
PM1

MET1
MET4

LZTS1 Migration, invasion ↑ [60]

miR-186

cSCC vs. HS A431
SCL-1 RETREG1 Proliferation ↑

Apoptosis ↓ [61]

cSCC vs. HS A431 APAF1

Apoptosis ↓
Autophagy ↓

Migration, invasion ↑
Colony formation ↑

Cell cycle progression ↑
Proliferation ↑

[62]

miR-217 cSCC vs. HS SCC13 PTRF
Proliferation ↑

Cell cycle progression ↑
Invasion ↑

[63]

miR-221 cSCC vs. HS A431
SCC13 PTEN

Viability ↑
Colony formation ↑

Akt signaling ↑
[64]

miR-320a cSCC vs. HS
A431
SCL-1

Xenograft
ATG2B

Autophagy ↓
Apoptosis ↓

Tumor growth ↑
Proliferation ↑

[65]

miR-346 cSCC vs. HS A431 SRCIN1 Proliferation ↑
Migration ↑ [66]

miR-365

cSCC vs. HS
HaCaT
A431

Xenograft
nd

Tumorigenicity ↑
Tumor growth ↑

Colony formation ↑
Migration, invasion ↑

Apoptosis ↓

[67]

cSCC vs. HS
A431

HSC-1
Xenograft

NFIB Tumor formation and growth ↑ [68]
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Table 1. Cont.

miRNA Tissue
Comparison Cell or Animal Model Validated

Target Functional Effect of the miRNA Ref.

miR-486-3p cSCC vs. HS
HSC-5
HSC-1

Xenograft
FLOT2

Tumor growth ↑
Viability, proliferation ↑

Migration ↑
[69]

miR-664 cSCC vs. HS
HSC-5
HSC-1

Xenograft
IRF2

Tumorigenicity ↑
Migration, invasion ↑

Proliferation ↑
[70]

miR-675 cSCC vs. HS
HaCaT
SCL-1
A431

TP53
H19

Proliferation ↑
Migration, invasion ↑

Apoptosis ↓
EMT ↑

[71]

miR-766 cSCC vs. HS
A431
SCL-1

Xenograft
PDCD5

Apoptosis ↓
Migration, invasion ↑

Proliferation ↑
MMP2/9 expression ↑

Tumor growth ↑

[72]

miR-7150 cSCC/IEC/AK vs.
HS

COLO-16
SCC-9 nd Viability ↑

Colony formation ↑ [59]

AK—actinic keratosis, HS—healthy skin, EMT—epithelial-to-mesenchymal transition, nd—not determined,
IEC—intra-epidermal carcinoma, RDEB—recessive dystrophic epidermolysis bullosa, CSC—cancer stem cell,
↑—increase in phenotype, ↓—decrease in phenotype.

Table 2. Experimental validation of downregulated miRNA in cSCC compared to healthy skin.

miRNA Tissue
Comparison Cell or Animal Model Validated

Target
Functional Effect of the

miRNA Ref.

miR-23b cSCC vs. HS/ AK
UT-SCC7

UT-SCC12a
Xenograft

RRAS2

Angiogenesis ↓
Colony formation ↓

Spheroid formation ↓
Tumor growth and

proliferation ↓

[73]

miR-31-5p cSCC/IEC/AK vs.
HS

COLO-16
SCC-9 nd Colony formation ↓ [59]

miR-34a-5p cSCC vs. HS A431
SCL-1 SIRT6

Proliferation ↓
Colony formation ↓

Migration ↓
Apoptosis ↑

[74]

miR-124 cSCC vs. HS DJM-1 nd ERK signaling ↓
Proliferation ↓ [75]

miR-125b

cSCC vs.
HS/ AK

UT-SCC-7
A431 MMP13

Growth ↓
Colony formation ↓

Migration, invasion ↓
[38]

cSCC vs. HS
A431

SCC13
SCL-1

STAT3
Viability ↓

Cell cycle progression ↓
Apoptosis via Bcl2 ↑

[42]

miR-130a cSCC vs.
HS/ AK

UT-SCC-7
A431

Xenograft
ACVR1

HRAS/MAPK signaling ↓
Tumor growth ↓

Tumor sphere formation ↓
Migration, invasion ↓
SMAD1 signaling ↓

[76]
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Table 2. Cont.

miRNA Tissue
Comparison Cell or Animal Model Validated

Target
Functional Effect of the

miRNA Ref.

miR-138-5p cSCC vs. HS A431
Xenograft EZH2

Autophagy ↓
Apoptosis ↑
Viability ↓

STAT/VEGFR2 signaling ↓
Tumor growth ↓

[77]

miR-148a cSCC vs. HS
A431
SCL-1

Xenograft

MAP3K4
MAP3K9

Colony formation ↓
Proliferation ↓

Migration, invasion ↓
EMT ↓

MAPK signaling ↓
Tumor growth ↓

[78]

miR-181a cSCC vs. HS SCC13
Xenograft KRAS

Tumor growth ↓
Viability ↓

ERK signaling ↓
[79]

miR-199a cSCC vs. HS A431 CD44
Proliferation ↓

Invasion ↓
MMP2/9 expression ↓

[80]

miR-203 cSCC vs. HS
UT-SCC7

A431
Xenograft

MYC

Cell cycle progression ↓
Colony formation ↓

Migration, invasion ↓
Angiogenesis ↓

Tumor growth and
angiogenesis ↓

[43]

miR-203a-3p cSCC vs. HS SCL-1 APC
APC/ β-catenin signaling ↓

Proliferation ↓
Colony formation ↓

[81]

miR-204 cSCC vs. AK HaCaT PTPN11 FGF-STAT3 signaling ↑
EGF-MAPK signaling ↓ [82]

miR-211-5p cSCC vs. HS IC4
IC18 TP63

Differentiation ↑
EMT ↓

Proliferation ↓
[83]

miR-214
cSCC vs. HS A431

SCC13
BCL2

VEGFA

Viability ↓
Proliferation ↓

Migration, invasion ↓
Apoptosis ↑

Wnt/ β-catenin signaling ↓

[84]

cSCC vs. HS DJM-1 nd ERK signaling ↓
Proliferation ↓ [75]

miR-340 cSCC vs. HS A431
Sa3 RHOA Proliferation ↓

Migration, invasion ↓ [85]

miR-342-3p

cSCC vs. HS A431
SCC13 NEAT1

Proliferation ↓
Colony formation ↓

PI3K signaling ↓
[86]

cSCC vs. HS SCC13 SCARNA2
Proliferation ↓

Cell cycle progression ↓
Invasion ↓

[87]

miR-361-5p cSCC vs. HS HaCaT
A431 VEGFA VEGFA levels ↓ [88]

miR-497
cSCC vs.
HS/AK

SCLII
MET1 SERPINE1

Growth ↓
Migration ↓

EMT ↓
[89]
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Table 2. Cont.

miRNA Tissue
Comparison Cell or Animal Model Validated

Target
Functional Effect of the

miRNA Ref.

cSCC vs. HS A431
HSC-5 FAM114A2 Viability ↓

Cell cycle progression ↓ [90]

miR-1193 cSCC vs. HS
SCC13

COLO-16
Xenograft

MAP3K9

Viability ↓
Colony formation ↓

Migration, invasion ↓
Lactate production ↓

Glucose consumption ↓
Tumor growth ↓

[91]

miR-1238-3p cSCC vs. HS
A431
SCL-1

Xenograft
FOXG1

Migration, invasion ↓
Proliferation ↓

Cell cycle progression ↓
Viability ↓

Apoptosis ↑
Tumor growth ↓

[92]

AK—actinic keratosis, HS—healthy skin, EMT—epithelial-to-mesenchymal transition, nd—not determined, IEC—
intra-epidermal carcinoma, MMP—matrix metalloproteinase, ↑—increase in phenotype, ↓—decrease in phenotype.

Unsurprisingly, upregulated miRNAs support tumor growth and formation by tar-
geting tumor suppressor genes such as TP53 or NFIB (Table 1). A reduction in tumor
suppressor genes by this miRNA targeting enables tumor cell survival and proliferation
as well as the acquisition of traits required for metastatic dissemination such as stemness
properties, angiogenesis, and invasive capacity in cSCC. Several studies report increased
proliferation, viability, and/or decreased apoptosis in in vitro models of cSCC (Table 1).
These findings translated to increased tumor formation and growth in xenograft models.
Additionally, upregulation of EMT markers and MMPs points towards the capacity of
miRNAs to enable disease progression by conferring increased invasive capacity (Table 1).
Finally, properties such as increased stemness and angiogenesis might aid in metastatic
dissemination of cSCC and warrants investigation of miRNAs as putative biomarkers
(see Section 5). Conversely, downregulated miRNAs inhibit oncogenes (e.g., MYC, APC,
KRAS) and the aforementioned traits in cSCC such as proliferation, migration, and invasion
(Table 2).

While the studies presented in Tables 1 and 2 highlight the importance of miRNAs
in cSCC pathogenesis, it is worth noting that the quality of the evidence presented in
these studies varies significantly. We have identified three main variables contributing
to the divergent quality of the evidence presented. Firstly, it is crucial to ensure proper
validation of the target mRNA that conveys the observed functional changes as miRNAs
can have several targets. For this purpose, a luciferase reporter construct (incorporating
the 3′-UTR of the mRNA in question), the use of an antisense miRNA or a miRNA mimetic,
and knockdown of the protein in question to test for functional equivalence seems to
be adequate. Of note, most studies functionally investigate only one potential target,
despite compelling bioinformatic evidence of multiple likely targets [93]. Secondly, the
choice of the model cell line(s) is important to ensure appropriate representation of the
cSCC subtype of interest. For example, A431 is a cell line derived from the vulva and its
validity as a model for a UV-induced cancer is questionable [9]. Lastly, the exclusive use
of in vitro models inherently limits the translatability of the findings to a complex tumor.
Beyond the typical limitation of cell line models, determining the functional impact of
miRNAs can be especially challenging as they can be incorporated as cargo in extracellular
vesicles (EVs) [94]. Secreted miRNAs are not accounted for when studying tumor cells
in monoculture. In other cancers, some evidence suggests that EVs can cause drastic
changes in tumor-associated nerves, fibroblasts, and immune cells [95,96]. For example,
some evidence suggests that cSCC-derived EVs are taken up by fibroblasts leading to
the formation of activated cancer-associated fibroblasts [97,98]. The impact of tumor cell-
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derived exosomal miRNAs in the cSCC tumor microenvironment (TME) has not yet been
investigated and should be considered when assessing the functional impact of miRNAs
in cSCC. The use of advanced tissue culture models and xenograft models can help in
addressing those questions (Table 2) [99,100] and should be considered in the future.

In cSCC, miRNAs regulate a diverse network of cellular functions and large-scale
changes can be attributed to their dysregulation (from basic changes of transformed cells
to highly malignant traits of deadly tumors) (Section 3.2). However, the interpretation of
the functional impact of miRNAs should be done within a greater context of cSCC biology
(i.e., genetic and epigenetic drivers, other transcriptional changes) as well as under special
consideration of the interplay of the tumor cells with non-cancerous cell types and the TME.

3.3. Differential Expression of MicroRNAs during the Clinical Progression of cSCC

While most of the studies reported above compare miRNA expression between tumor
and healthy skin, cSCC exists on a disease progression continuum, which suggests that the
dysregulation of the genetic and epigenetic landscape may be an ongoing evolution rather
than a well-defined ‘switch’. The stepwise progression from healthy skin through to invasive
and metastatic cSCC has been long established and reviewed elsewhere [3,101]. Briefly, the
prolonged exposure of skin to UV radiation causes the accumulation of mutations over
time, which causes keratinocytes to progress to a precancerous lesion known as actinic
keratosis (AK). Acquisition of additional oncogenic mutations can drive AKs towards the
cancerous form of cSCC. While there have been significant efforts to define the molecular
changes that drive this progression [102,103], the role of miRNA dysregulation remains
relatively unclear. Here, we address the growing body of literature that explores miRNA
dysregulation in the clinical progression of cSCC.

In an effort to elucidate the role of miRNAs in early keratinocyte pathogenesis, Mizrahi
et al. [89] compared total miRNA profiles between five types of lesions—normal skin, solar
elastosis (SE), early- and late-stage AKs, and well-differentiated cSCC. While their findings
largely support the hypothesis for a gradual progression of disease, they also defined
several ‘stage-specific’ alterations. For example, dysregulation of miR-19b and miR-126
was detected early in disease progression, respectively down- and upregulated in SE
compared to healthy skin. Conversely, dysregulation of miR-424, miR-378, and miR-497
was detected later in progression, respectively up- and downregulated in cSCC compared
to all earlier lesions. Subsequent experimental validation via forced overexpression of
miR-497 in two cSCC cell lines demonstrated the role of this miRNA in targeting SERPINE1
to repress cell growth, migration and EMT phenotype (Table 2). This was, however, the
only experimentally validated miRNA of the many identified in this study, and future
efforts to characterize these miRNAs may further clarify their role in cSCC progression.
Hierarchical clustering of dysregulated miRNAs identified in this study separated the
lesions into two main groups—one comprised of normal skin, SE and early-stage AKs,
and the other comprised of late-stage AKs and cSCC. This suggests that while there are
indeed some changes in miRNA expression early in the disease progression, such as the
downregulation of miR-126-5p and let-7i in SE compared to normal skin, most changes
in the miRNA expression landscape occur late in the progression from pre-malignant to
malignant cSCC.

In another study by Hossain et al. [59], the comparator of intraepidermal carcinoma
(IEC) was included to distinguish later stage changes between AK and cSCC. miR-31-5p
was found to be upregulated in cSCC compared to IEC, which demonstrates diagnostic
potential for late-stage disease. Robust pairwise comparisons between normal skin, photo-
damaged skin, AK, IEC, and cSCC were also performed. Of note, miR-7150 was implicated
in cSCC for the first time, as it was demonstrated to be upregulated in AK compared to
photo-damaged skin, as a discriminative marker for early lesion identification.

Several studies also address the differences in miRNA expression between cSCC
lesions with varied differentiation status. miR-340 expression was found to be downreg-
ulated in poorly-differentiated compared to well-differentiated cSCC, which was linked
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to upregulation of its experimentally validated target RHOA to promote tumor cell pro-
liferation, migration, and invasion in vitro [85]. Another study found that miR-203 was
downregulated in poorly-differentiated tumors compared to both well-differentiated tu-
mors and healthy skin [43]. In this study, in vitro inhibition of miR-203 in keratinocytes
reduced calcium-induced differentiation. In addition, forced over-expression of miR-203 in
cSCC cell lines led to the downregulation of the oncogene MYC and subsequently induced
cell cycle arrest, and decreased proliferation, colony formation, migration, invasion, and
angiogenesis in vitro. A reduction in tumor growth and angiogenesis was also observed
in cSCC xenografts over-expressing miR-203 (Table 2). Conversely, Caneuto et al. [104]
demonstrated that miR-203 shows altered expression levels within the same tumor, with
significantly higher expression of the miRNA in well differentiated areas of cSCC.

Separately, attempts have been made to clarify the role of miRNAs in driving disease
progression in arsenic-induced, RDEB, and organ-transplant recipient etiologies [57,60,105],
but these mostly remain unclear. Geusau et al. [55] characterized the tumor, perilesional,
and normal skin miRNA profiles of organ transplant recipients. They too demonstrate a
stepwise progression pattern of miRNA dysregulation observed in other studies surround-
ing immunocompetent cSCC patients; however, a comparison between these etiologies is
yet to be drawn and further validation is required.

Since lymphovascular invasion (LVI) is associated with poor prognosis and progres-
sion of cSCC [106], Robinson et al. [107] investigated the differentially expressed miRNAs
between LVI-positive and LVI-negative cSCC tumors. While there were no downregulated
miRNAs between groups, miR-155-5p, miR-196a-5p, miR-375, and miR-221-5p were all sig-
nificantly upregulated in LVI-positive tumors. This may have utility in stratifying patients’
risk status and to identify tumors in need of early intervention.

Although LVI is linked to metastatic risk and this study may provide indirect insight
into miRNAs involved in metastasis, very few studies have explicitly investigated the
function of miRNAs in cSCC metastasis. Given our understanding of metastatic disease
is arguably more clinically informative—since metastases pose the greatest burden and
cannot be predicted ahead of time—this was surprising. A recent study by Gillespie
et al. [108] compared the expression of approximately 800 miRNAs between metastatic
tissue and primary lesions (including both primaries that went on to metastasize and those
that did not). There were no differentially expressed miRNAs observed between matched
metastatic tumors and the primaries from which they were derived. While this might
suggest discrimination of primary and metastatic disease by miRNA expression is not
feasible, it is important to note that this study used a pre-defined miRNA panel that might
exclude other potentially important miRNAs. It is also possible that these primary tumors
that went on to metastasize had already accumulated any pro-metastatic miRNA changes
that may exist and hence could not be distinguished between these matched lesions. There
were, however, multiple miRNAs differentially expressed between metastatic tumors and
all primary tumors (both metastatic and not). Specifically, miR-4286, miR-200a-3p, and
miR-148-3p were all upregulated, and miR-1915-3p, miR-205-5p, miR-4515, and miR-150-5p
were all downregulated in metastases.

The urokinase plasminogen activator system (uPAS) is a master regulator of MMPs
and has previously been implicated in cancer metastasis including in cSCC [9,109,110].
Minaei et al. demonstrated upregulation of the two main components (uPA and uPA recep-
tor). This sparked further investigations into miRNAs potentially targeting PLAUR (coding
for uPAR). Of the potential candidates, miR-340-5p and miR-377-3p were significantly
downregulated in metastatic cSCC compared to both metastasizing and non-metastasizing
primary cSCC tumors. Given there was a negative correlation between miR-340-5p expres-
sion and uPAR staining in cSCC lymph node metastases, this miRNA-mRNA interaction
is strongly implicated in the metastatic process of cSCC. This is further supported by the
literature, with downregulation of miR-340 also detected in poorly differentiated cSCC.
In addition, miR-497—which targets the gene encoding a uPA inhibitor, SERPINE1, or
PAI-1—is downregulated in primary cSCC compared to normal skin (Table 2).
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Given there are some promising results that elucidate the role of miRNA expression in
cSCC progression, further work will benefit from the integrated investigation of genomic,
epigenetic, transcriptomic and proteomic drivers of disease, given they are all tightly
interconnected and interdependent.

4. miRNA Dysregulation in BCC

Much like the state of the literature investigating cSCC, there are few studies describing
the patterns and roles of miRNA dysregulation in BCC. Several reviews have summarized
what little work has been published elsewhere, though they are now outdated or are
not comprehensive [23,24]. The clinical evidence for miRNA dysregulation in BCC is
reviewed below.

4.1. Consensus of Dysregulated miRNAs in BCC

Given that previous reviews reporting miRNAs dysregulated in BCC are not com-
prehensive, the concordance of results to date was unclear. To this end, we identified
253 miRNAs with reported dysregulation (Table S1) and evaluated the consensus between
studies (Figure 2). As no miRNAs demonstrating neutral expression across both BCC and
controls were explicitly reported, only up- and downregulated miRNAs were included.
Further, only comparisons between BCC tissue and healthy skin were assessed.
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The marked lack of consensus between studies is evident, with just four miRNAs
demonstrating similar trends of dysregulation across more than one study (Figure 2B).
Upregulated in BCC compared to healthy skin, miR-941 is a well-established oncogenic
miRNA that has been implicated as both a diagnostic biomarker in serum exosomes and as
a therapeutic target in other cancers [111]. Furthermore, inhibition of miR-941 has been
shown to enhance tumor sensitivity to the chemotherapeutic 5-fluorouracil, highlighting
the potential clinical significance of this finding [112]. The downregulated miRNAs—miR-
29c and miR-383-5p—are both well-established tumor suppressors in many cancer types.
However, though miR-452 was downregulated in BCC here, its upregulation and oncogenic
effect in other cancer types indicates its functionality is tumor specific which warrants
further investigation in the context of BCC [113].

Overall, there are notably more miRNAs dysregulated in BCC than we reported for
cSCC above. While it is possible that this is indeed a biological phenomenon, we speculate
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that it is a result of the methods employed in the literature. A greater proportion of studies
investigating BCC used next-generational sequencing of total small RNA populations,
rather than the tailored panels and microarrays that were frequent in investigations of
cSCC. Despite these non-biased approaches, which overcome many of the methodological
shortcomings observed in the literature surrounding cSCC, there is still discordance among
three miRNAs (Figure 2A). This highlights the challenges of comparing biologically diverse
specimens, and the complexity of miRNA regulation and indeed BCC pathogenesis.

4.2. Experimentally Validated miRNAs in BCC

As mentioned above, the functional effect of miRNA dysregulation is far more in-
formative than isolated reports of differential expression between diseased and healthy
samples, as it provides an imperative biological understanding of disease behavior. To
this end, we interrogated the literature for studies reporting miRNAs with both clinical
dysregulation and functional analysis in BCC (Table 3).

Table 3. Experimental validation of upregulated and downregulated miRNAs in BCC compared to
healthy skin.

miRNA Tissue
Comparison

Cell or Animal
Model

Validated
Target Functional Effect Ref.

up miR-18a BCC vs. HS A431 nd

Proliferation ↑
Migration ↑
Cell cycle

progression ↑
Apoptosis ↓

Autophagy ↓

[114]

down

miR-203 BCC vs. HS
Primary human

keratinocytes
K5tTA/TREGLI1 mice

JUN

Proliferation ↓
Cell cycle

progression ↓
Tumor growth ↓

[115]

miR-451a BCC vs. HS
TE 354.T

Primary epidermal
keratinocytes

TBX1
Proliferation ↓

Cell cycle
progression ↓

[116]

HS—healthy skin, nd—not determined, ↑—increase in phenotype, ↓—decrease in phenotype.

Evidently, the functional characterization of miRNAs in BCC is minimal. This was
surprising given that the differential expression analyses were generally of larger scale,
identifying more dysregulated miRNAs than most reported in cSCC. We suspect this lack
of experimental analysis reflects the clinical nature of BCC; given BCC rarely metastasizes
and is generally well managed, the search for therapeutic targets or biomarkers including
miRNAs is not of particular urgency [4]. As we observed in the literature regarding cSCC,
there was a range in the quality of these functional studies. While both the in vitro and
in vivo models for BCC were generally robust, the use of the A431 cell line as a model
for BCC is even more questionable than its utility for cSCC. Having been derived from a
vulval epidermoid carcinoma, it not only lacks the ultraviolet radiation signature that is
characteristic of most skin cancers, but it is also not derived from a basal cell carcinoma
at all [117,118]. A431 cells are derived from vulvar SCC and are HPV negative which
makes other etiologies such as lichen sclerosis or cellular atypia due to advanced age most
likely [119,120]. Interestingly, much of the literature focuses on the dysregulation of circu-
lating miRNAs between BCC and healthy patients, and for this reason were excluded from
Table 3, which only addressed miRNAs endogenous to BCC tissue. These are addressed in
Section 5.

Only one miRNA—miR-203—demonstrates downregulation with experimental vali-
dation across both cSCC and BCC. Though the validated targets differ, with MYC and JUN
targeted in cSCC and BCC, respectively, these are both recurrently altered oncogenes across
many cancers. Functionally, forced overexpression of miR-203 demonstrated similar effects
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in cSCC and BCC, reducing proliferation, cell cycle progression, and tumor growth in cell
and xenograft models [43,115]. Given that miR-203 dysregulation has been documented
across a range of tumor types [121–123], it is unlikely that this observation points to a
keratinocyte-specific pathogenesis. Indeed, the lack of consensus surrounding this miRNA
in cSCC (Figure 1) complicates the interpretation of this finding without further investi-
gation. The otherwise lack of consensus between miRNAs in cSCC and BCC points to
distinctive disease progressions and ultimately highlights the importance of tumor-specific
investigation to elucidate the role of miRNAs in KCs.

5. Clinical Applications of miRNAs in KCs

While the results summarized above enhance our understanding of the role of miR-
NAs in KC pathogenesis and progression, they have limited clinical utility in improving
diagnostics and treatment to alleviate disease burden. Compared to conventional mRNA-
based transcriptional analysis, the use of miRNA-based biomarkers offers several advan-
tages [124]. Firstly, miRNAs are more stable than mRNA and hence can be isolated from
challenging samples such as FFPE blocks more easily and enabling larger retrospective
studies [125]. Additionally, the increased stability enables minimally invasive detection of
miRNAs in bodily fluids such as blood and urine. Lastly, miRNAs offer high specificity for
cell/tissue provenance as well as for disease stage and therapeutic response [124]. Given
these advantages and the well-established therapeutic and diagnostic potential of miRNAs
in other cancers, the role of miRNAs in informing how we engage with KCs clinically is of
great importance.

Several studies have investigated the presence of miRNAs in circulation as a potential
prognostic biomarker for cSCC. miR-124 levels are significantly decreased in the serum
of cSCC patients compared to healthy controls [75], while miR-10a levels are increased in
cSCC patients [56]. Balci et al. [126] compared the miRNA content in the plasma of cSCC
and BCC patients, finding miR-30a-5p, miR-576-3p, miR-25-3p, and miR-19a-3p to be down-
regulated, and miR-186-5p, miR-875-5p, miR-30c-3p, and miR-145-5p to be upregulated
compared to healthy controls. One study compared the miRNA profiles of organ transplant
recipients’ cSCC lesions and serum, finding only miR-1290 and miR-1246 to be significantly
upregulated in both tumor and serum compared to control tissue/serum [55]. This valuably
indicates that some miRNA expression patterns can be shared in both tumor and in serum,
with potential utility as an accessible biomarker for disease progression and prognosis.
With the exception of miR-10a whose expression correlates with poorer prognosis [56],
none of these miRNAs have been used to understand diagnosis or prognosis to date. Given
circulating miRNAs are easily accessible and stable, without the need for invasive biopsies
of tumor tissue, their potential as biomarkers warrants sustained investigation.

Prognostic analyses have, however, been assessed using miRNAs sourced directly
from tumors. Rock et al. [39] demonstrated that miR-21-5p and miR-31-5p expression is
upregulated only in cSCC lesions on aggressive sites of the body, specifically on or near
the ears and lips, as opposed to the trunk and extremities where tumors tend to be less
aggressive. miR-21 was again implicated in cSCC prognosis, found to be highly expressed
in invasive cSCC but not cSCC in situ [40]. Separately, miR-205 and miR-221 expression
correlate with local recurrence and positive surgical margins, respectively [104,127].

It is important to note that these studies generally represent isolated reports of clinical
utility for miRNA dysregulation in KCs, and the current lack of consensus (Figures 1 and 2)
demands further investigation. Given the potential of biomarkers to affect treatment deci-
sions in the clinic, rigorous and larger scale studies are imperative before implementation
of these findings can be considered. Additionally, the field of miRNA therapeutics remains
unexplored in KCs and should be explored in the future.

Collectively, these findings may demonstrate some clinical utility in predicting how
individual tumors will behave based on their miRNA profile. However, further larger
scale investigations will be necessary to evaluate whether any such measures provide
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better predictive information than existing clinicopathological measures to have any real-
world benefit.

6. Conclusions and Future Directions

This review sought to comprehensively summarize the body of literature surrounding
miRNA dysregulation in keratinocyte carcinomas. We conclude that while several miRNAs
are indeed implicated in the progression and pathogenesis of both cSCC and BCC, the
clinical utility of this knowledge is, at present, minimal. By highlighting existing strengths
and shortcomings of the literature, we anticipate that this review will serve as a guide
to refine the focus of future studies in this area. Specifically, implementation of updated
methodology as suggested throughout this review can help unify standards and facilitate
translation of the results into clinical practice.

Future efforts to integrate these findings with existing genomic and transcriptomic
understanding of KCs, especially of metastatic disease, will be of significant benefit to
further unravel the molecular complexity of these diseases. Furthermore, we recommend
the exploration of miRNAs as prognostic and therapeutic biomarkers in KCs as well as
elucidation of the role of exosomal miRNAs as regulators of the TME in KCs. Additionally,
the use of miRNAs has not yet been explored in KCs but should be considered as a valid
therapeutic approach.
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