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Abstract: The respiratory microbiome may influence the development and progression of COPD by
modulating local immune and inflammatory events. We aimed to investigate whether relative changes
in respiratory bacterial abundance are also associated with systemic inflammation, and explore their
relationship with the main clinical COPD phenotypes. Multiplex analysis of inflammatory markers
and transcript eosinophil-related markers were analyzed on peripheral blood in a cohort of stable
COPD patients (n = 72). Respiratory microbiome composition was analyzed by 16S rRNA microbial
sequencing on spontaneous sputum. Spearman correlations were applied to test the relationship
between the microbiome composition and systemic inflammation. The concentration of the plasma
IL-8 showed an inverted correlation with the relative abundance of 17 bacterial genera in the whole
COPD cohort. COPD patients categorized as eosinophilic showed positive relationships with blood
eosinophil markers and inversely correlated with the degree of airway obstruction and the number
of exacerbations during the previous year. COPD patients categorized as frequent exacerbators were
enriched with the bacterial genera Pseudomonas which, in turn, was positively associated with the
severity of airflow limitation and the prior year’s exacerbation history. The associative relationships
of the sputum microbiome with the severity of the disease emphasize the relevance of the interaction
between the respiratory microbiota and systemic inflammation.
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1. Introduction

Chronic obstructive pulmonary disease (COPD), a syndrome characterized by airflow
obstruction and chronic inflammation, is considered to be a heterogeneous condition
encompassing various phenotypes and endotypes [1]. Widely accepted COPD clinical
phenotypes include chronic bronchitis, emphysema, asthma-COPD overlap (ACO), and
frequent exacerbators [2]; «-1 antitrypsin deficiency and eosinophilic COPD are among
the best-described endotypes [3]. This wide variety of conditions is influenced by both
the genotype and environmental factors, which contribute to the complex and diverse
pathophysiological mechanisms underlying COPD.

Bacteria are thought to play an important role in COPD pathogenesis, and increasing
evidence has shed some light on the understanding of the complex microbial communities
present in the lung [4]. The microbiome of the respiratory tract of COPD patients differs
from that of healthy subjects [5]. In addition, recent data have shown that the airway
microbiome is associated with different COPD inflammatory phenotypes, having the po-
tential to influence the pathogenetic processes underlying chronic inflammation [6-10].
Moreover, perturbations to the airway microbiota have been previously associated with
disease severity [11,12], frequency of exacerbations [6,11,13], and medication status [14],
and therefore may be used to establish prognosis [15]. However, despite some recent
advances regarding associations between the respiratory microbiome and airway inflam-
matory events occurring in COPD [16], the link between the former and chronic systemic
inflammation remains incompletely understood.

In this context, the present study addresses this relationship in two of the most widely
accepted phenotypes and treatable traits in COPD, patients with peripheral eosinophilia
and those considered as frequent exacerbators. We sought to (1) explore the circulating
levels of pro-inflammatory markers and selected eosinophilic-related gene transcripts in
stable COPD patients with different clinical and biological conditions and (2), examine
their association with the relative abundance of respiratory bacterial genera observed in
their spontaneous sputum.

2. Results
2.1. Demographic and Clinical Features of Participants

Seventy-two stable COPD patients, including 64 males and 8 females, were finally
recruited. The average age at inclusion was 67.9 years and all degrees of disease severity

were covered. The main demographic and clinical characteristics of these patients are
summarized in Table 1.

Table 1. Clinical characteristics of patients.

All IE COPD FE COPD Non-EOS COPD EOS COPD

(N=72) (N =52) (N =20) (N =57) (N =15)
Age, years
median (IQR) 70 (62-73) 69 (62-73) 70 (66-74) 70 (62-73) 69 (62-74)
Sex (male), n (%) 64 (89) 46 (89) 18 (90) 50 (88) 14 (93)
BMI, kg/m? 274 274 275 _ g}
median (IQR) (242-30.1)  (251-299)  (235-307)  2/8(41-305)  27.3(247-284)
FEVy, (% pred.) "
median (IQR) 44 (33-60) 48 (35-67) 34 (26-47) 43 (32-60) 48 (35-67)
FEV;/FVC, (%) y 3 o B 3
median (IQR) 44 (35-55) 46 (37-57) 35 (30—45) 45 (34-54.3) 43 (37-56)
DLco, (% pred.) N
median (IQR) 51 (40-68) 51 (45-71) 40 (32-60) 49 (40-66) 65 (40-82)
N° of Exacerbations
in the previous year, 1(0-2) 0(0-1) 3 (2-6) *** 1(0-2) 0(0-1)
median (IQR)
Blood leucocytes
(cells/nL), median 8(67-93)  7.6(6.7-87)  8.4(7-10.6) 8 (6.7-10) 7.1 (6.5-8.5)

(IQR)




Int. ]. Mol. Sci. 2024, 25, 8467 30f13
Table 1. Cont.
All IE COPD FECOPD  Non-EOS COPD EOS COPD
(N =72) (N =52) (N =20) (N =57) (N =15)

Blood eosinophils
(cells/nL), median 0.2(0.1-0.3)  0.2(0.1-0.3)  0.2(0.1-0.3) 0.2 (0.1-0.2) 0.3 (0.2-0.3) ¥
(IQR)
Blood neutrophils
(cells/nL), median 46(39-6.1) 4.5(3.8-5.3) 5.7 (4-4.8) 4.8 (4.1-6.3) 3.8 (3.4-4.6)
(IQR)
GOLD stages, n (%)

1 6 (8) 6 (12) 0 (0) 4(7) 2 (13)

2 20 (28) 17 (32) 3 (15) 15 (26) 5 (33)

3 35 (49) 26 (50) 9 (45) 28 (49) 7 (47)

4 11 (15) 3(6) 8 (40) =+ 10 (18) 1)

Notes: Data are presented as median (IQR) for continuous variables and n (percentage) for categorical variables.
*,p < 0.05; **, p < 0.01; ***, p < 0.001 for IE vs. FE COPD patients. ¥, p < 0.001 for Non-EOS vs. EOS COPD
patients. Abbreviations: COPD, Chronic Obstructive Pulmonary Disease; IE, infrequent exacerbators; FE, frequent
exacerbators; Non-EOS, non-eosinophilic; EOS, eosinophilic; BMI, body mass index; FEV;, forced expiratory
volume in 1 s; FVC, forced vital capacity; DLco, diffusing capacity of the lungs for carbon monoxide; GOLD,
Global initiative for obstructive lung disease.

To explore the potential relationship between microbiome composition and circulating
inflammatory marker levels with different clinical conditions, COPD patients were divided
into the previously mentioned subgroups, resulting in 52 IE and 20 FE, as well as 57 Non-
EOS and 15 EOS. No significant differences in age and BMI were detected between the
different subgroup pairs. However, and as presumably expected, FE patients showed a
significant impairment in their lung function compared to IE (Table 1), as reflected in their
GOLD stages. The severity classification also displayed some differences between Non-EOS
and EOS patients, with a higher percentage of GOLD 4 in the former.

2.2. All Patients: Blood Inflammatory Mediators and Microbiome Interactions

To investigate how the respiratory microbiome was related to systemic inflammation,
an ‘all-against-all’ correlation analysis between the relative abundance of bacterial gen-
era and a panel of 58 selected blood inflammatory mediators was employed. The most
remarkable finding was the negative association exhibited by IL-8 with 17 bacterial genera
(Figure 1). Notably, the relative abundance of four of the bacterial genera (Aggregatibacter,
Butyrivibrio, Treponema, and Parvimonas) associated with the levels of this cytokine appears
also to be positively but mildly related to lung function and inversely to the number of
exacerbations during the previous year, and both expressing better lung health (Table 2).
Other inflammatory mediators showed mixed relationships with bacterial genera (Figure 1).

Table 2. Bacterial genera and clinical variables with significant correlations.

FEV, DLco N° EXACERBATIONS
(% Pred) (% Pred) 1 (Previous Year)
Aggregatibacter 0.252 % 0.282 * —0.364 **
Butyrivibrio 0.248* 0.320 * —0.311 **
Treponema 0.436 *** 0.384 ** —0.305 **
Parvimonas 0.250 * 0.335 * -

Notes: Spearman’s correlation coefficients. *, p < 0.05; **, p < 0.01; and ***, p < 0.001. ¥ Data missing for 20 patients.
Abbreviations: FEVy, forced expiratory volume in 1 s; DLco, diffusing capacity of the lungs for carbon monoxide.
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Figure 1. Most representative significant negative (blue) correlations between blood inflammatory
markers and the relative abundance of bacterial genera. Bubble size represents the Spearman’s Rank
correlation coefficient and the intensity of bubble color represents the p value.

2.3. Blood Inflammatory Mediators and Host—Microbiome Interactions in the FE Phenotype

Relative abundances of microbial genera were also analyzed according to exacerbation
phenotypes. FE patients presented a significant reduction in Haemophilus, whereas Pseu-
domonas were more abundant in this group (Figure 2), also showing an inverse relationship
between these two microorganisms (Rho = 0.292, p < 0.05). None of these potentially
pathogenic genera, however, showed any significant associations with the circulating
inflammatory mediators nor with any of the eosinophilic-related gene transcripts. Nonethe-
less, it is worth noting that the acute phase protein CRP showed a clear tendency to be
higher in FE patients as compared to IE (9.76 & 11.6 vs. 9.42 & 25.58 pug/mL, respectively,
p = 0.058). Interestingly, the relative abundance of Pseudomonas was negatively correlated
with some lung function variables (i.e., FEV; and FEV; /FVC) and was positively associated
with the number of exacerbations during the previous year (Figure 3).

Haemophilus Pseudomonas

*

Relative abundance
Relative abundance

IE FE IE FE

Figure 2. Relative abundance of bacterial genera with significant differences between IE and FE
COPD patients. Data are presented as individual data points with median as a red line and IQR as
black lines where *is p < 0.05.
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Figure 3. Relationships between the relative abundance of Pseudomonas with lung function and the

number of exacerbations during the previous year.

2.4. Blood Inflammatory Mediators and Host—Microbiome Interactions in the EOS Pheno/Endotype

Even though most of the measured blood inflammatory markers did not discriminate
EOS from Non-EOS patients, four of them showed significantly lower levels in the former:
CRP, IL-4, IL-7, and MPIF-1 (Figure 4). Blood eosinophil counts and the expression levels of
10 eosinophil-related genes [17] were used in turn to analyze the association of eosinophilic
inflammation with the respiratory microbiome composition. Expression levels of most of
the selected eosinophil marker genes were significantly higher in EOS than in Non-EOS
patients (Figure 5a) and showed strong positive correlations with blood eosinophil counts
(Table 3). Both, eosinophil counts and most eosinophil-related gene transcripts analyzed
showed positive correlations with the relative abundance of several bacterial genera, with
particular note for Porphyromonas and Mogibacterium (Figure 5b). Moreover, the relative
abundance of Porphyromonas was significantly higher in this subgroup of COPD patients
(Figure 5¢). Mogibacterium, on the other hand, showed an inverse association with the prior
year’s exacerbation history (Figure 5d).

=
10 *k 50 o E 1000 * 100
o
=38 = =4 . & ogo{ " = 8
E . E = E
D) 6{ masdhe S 30 - o~ 600 e g’. 60
2 - 2 a " 2
< 4 - ~ 20{ ® - - 400{ "efageie" - o 40
3 -"=_::'.' - & -...:.... % b E0) . o
0 0 E . T 0

Non-EOS EOS

Non-EOS EOS Non-EOS  EOS

Figure 4. Protein levels of circulating inflammatory markers with significant differences between
Non-EOS and EOS patients. Data are presented as individual data points with median as a red line
and IQR as black lines. *, p < 0.05: **, p < 0.01.

Table 3. Relationship between Eosinophilic-related gene transcripts and blood eosinophil counts.

EOSINOPHIL COUNTS

ADORA3 0.517 ***
ALOX15 0.572 ***
CLC 0.710 ***
HRH4 0.547 ***
IDO1 0.508 ***
IL5RA 0.513 ***
PRSS33 0.703 ***
SIGLECS 0.712 ***
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Table 3. Cont.

EOSINOPHIL COUNTS
SLC29A1 0.632 ***
SMPD3 0.618 ***

Notes: Spearman’s correlation coefficient. ***, p < 0.001. Abbreviations: ADORA3: Adenosine A3 receptor;
ALOX15: Arachidonate 15-Lipoxygenase; CLC: Charcot-Leyden crystal galectin; HRH4: Histamine Receptor
H4; IDO1: Indoleamine 2,3-Dioxygenase 1; IL5RA: Interleukin 5 receptor subunit Alpha; PRSS33: Protease,
Serine 33; SIGLECS: Sialic acid-binding Ig-like Lectin 8; SLC29A1: Solute carrier family 29 member 1; SMPD3:
Sphingomyelin Phosphodiesterase 3.
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Figure 5. (a) Relative expression of eight eosinophil-related gene transcripts with significant differ-
ences between Non-EOS and EOS patients. Data are presented as individual data points with median
(red line) and IQR (black lines). (b) Most representative direct (red) correlations between the level
of eosinophilic-related gene transcripts and blood eosinophil counts with the relative abundance
of bacterial genera. Bubble size represents the correlation coefficient and the intensity of bubble
color represents the p value. (c) Relative abundance of Porphyromonas in EOS and Non-EOS COPD
patients. (d) Spearman’s Rank correlation of relative abundance of Mogibacterium with the number of
exacerbations during the previous year. Significances: ¥, p < 0.05; **, p < 0.01; ***, p < 0.001.
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3. Discussion

The main findings of the present study are the direct relationships observed between
the respiratory microbiome with the systemic inflammatory pattern and the clinical severity
of the disease. Indeed, on the one hand, the relative abundance of several bacterial genera
correlated with the plasma level of several proinflammatory markers, with special note for
IL-8. On the other, the categorization of patients based on exacerbation frequency showed
a predominance of Pseudomonas in the sputum of FE. Moreover, the relative abundance
of this microorganism was positively associated with a decline in lung function and the
number of exacerbations over the previous year. Finally, when patients were categorized by
the blood eosinophilic inflammatory pattern, several bacterial genera, mainly Porhyromonas
and Mogibacterium, showed broad associations with eosinophilic markers. Importantly, part
of those bacterial genera associated with either circulating IL-8 levels or some eosinophilic
markers also showed a positive association with lung function and a negative one with
previous exacerbations (i.e., with a more preserved clinical status).

3.1. Microbiome and Inflammation in COPD

IL-8 has previously been identified as an inflammatory biomarker related to systemic
inflammation in COPD patients [18], and although their levels are higher at COPD stability
compared with controls, the magnitude of the IL-8 increase was even more remarkable
during acute exacerbations, mainly in those patients with the FE phenotype [19,20]. The
results of the current study showed an inverse association between IL-8 levels and the
relative abundance of several bacterial genera in the sputum of stable COPD patients.
Furthermore, a subgroup of these genera (including Aggregatibacter, Butyrivibrio, Parvimonas,
and Treponema) also showed a positive correlation with lung function parameters and a
negative correlation with the number of exacerbations during the previous year, which
together can be considered as an expression of a better lung health status. Altogether,
these results may suggest that the relative abundance of these bacterial genera at stability
may play a protective role against disease impairment through the modulation of the
systemic inflammatory status. An alternative explanation would be that lower circulating
levels of IL-8 may favor a shift in the microbial composition present in the respiratory
system, favoring the proliferation of a relatively beneficial microbiota that may contribute
to attenuating lung disease progression. However, although the present results highlight
multiple associations between the respiratory microbiome and the profile of the immune
response, they do not allow us to establish causality.

3.2. The FE Phenotype

COPD is characterized by a progressive impairment of lung function in most patients,
a deterioration that becomes worsened by repeated episodes of acute exacerbations [21].
Moreover, the FE phenotype has been associated with an even more rapid disease progres-
sion and higher rates of hospitalization and mortality [21]. Exacerbations, typically caused
by respiratory tract infections [21], are accompanied by increased airway and systemic
inflammation [21], as well as changes in the respiratory microbiome [6,7]. Variability in
microbiome composition, however, has also been described as clinical stability and may
probably differ across different COPD phenotypes [6,11-13,22]. In the present investigation,
the association of bacterial microbiota with blood inflammatory markers was analyzed
in FE and IE patients during clinical stability. In this regard, the former group showed a
significantly higher relative abundance of Pseudomonas but lower abundance of Haemophilus
as compared to the latter. Furthermore, a significant inverse relationship was seen between
these two potentially pathogenic microorganisms, suggesting a competitive behavior be-
tween them. The Pseudomonas level, in addition, was directly related to a more severe
disease since it was associated with the impairment of lung function and a higher number
of previous exacerbations. Several microbe studies have shown that Haemophilus and
Pseudomonas play a significant role in the pathogenesis and progression of COPD [23], and
weaker evidence suggests that Haemophilus may also be associated with more severe
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airway inflammation [24]. The present results, however, support an anti-inflammatory
protecting role for the Haemophilus genus, although additional research will be needed to
corroborate this observation.

In line with the present findings, a longitudinal study carried out by Jacobs and cols.
Ref. [25] identified negative associations between Pseudomonas and Haemophilus either at
stability or during exacerbations in COPD patients. Moreover, interspecific competition
between Haemophilus and Pseudomonas has also been described in chronic bacterial lung
infections present in non-cystic fibrosis bronchiectasis. Moreover, patients with a predomi-
nance of Pseudomonas infections showed an accelerated decline in their lung function and
more frequent respiratory exacerbations [26].

3.3. The EOS Phenotype/Endotype

Recent studies have revealed that COPD patients with higher eosinophilic airway
inflammation show a distinct structure of bacterial microbiota as compared with either those
patients with lower levels of this inflammatory profile or healthy controls [9,11,27]. Moreover,
microbiome diversity has been associated with low eosinophil count in peripheral blood [9],
and although evidence on the relationship between bronchial and systemic eosinophilia
remains controversial, a mounting body of evidence has demonstrated a positive correlation
between blood and sputum eosinophil counts [28-30]. Subsequently, blood eosinophil counts
have emerged as a simple, sensitive, and easily obtained biomarker that can be used in
clinical practice. In this study, we sought to explore the associations of respiratory bacterial
microbiota with blood eosinophilic inflammation. For this purpose, eosinophilic patients
were categorized based on blood percentages of eosinophils and neutrophils. In addition
to blood eosinophil proportion, a group of eosinophil-related gene transcripts was used
as eosinophilic markers [17]. On the other hand, patients with a low percentage of blood
neutrophils were used to reduce biases due to the inflammatory influence of these cells (as it
has been previously used to categorize airway inflammatory patterns) [31].

Upregulation of eosinophilic-related gene transcripts in EOS patients and their high
correlation with blood eosinophil counts render these genes as reliable surrogate markers
to assess differences between EOS and Non-EOS COPD patients. The present study shows
multiple positive interactions between eosinophil-related markers and some bacterial gen-
era (with special note for Porphyromonas and Mogibacterium), suggesting an interplay of
airway bacterial microbiota with systemic eosinophilic inflammation. Moreover, the relative
abundance of Mogibacterium was inversely related to the number of exacerbations over the
previous year. These findings partially differ from most published research, which shows
a greater risk of exacerbation in patients with high blood eosinophil levels [32-34]. How-
ever, a deep analysis of two well-phenotyped COPD cohorts (COPDGene and ECLIPSE),
revealed that the association of an increased exacerbation risk associated with elevated
eosinophil counts was driven by the history of frequent exacerbations [17]. Moreover, a
recent report by Miravitlles et al. [35] does not support the use of blood eosinophil count
as a reliable marker of the risk of exacerbation in stable COPD patients. These authors
reported that patients with the lowest blood eosinophil levels presented the highest fre-
quency of acute episodes during the previous year. Some of these discrepancies may be
due to variability in oscillations in eosinophil counts over time and the relative lack of an
optimal cut-off for it (either absolute or percentage), which do not allow a reliable and
uniform stratification of patients. Larger studies with extended follow-up periods will be
needed to provide more insight into this topic.

As for the rest of the biomarkers studied, we found no significant differences between
groups except for a reduction in four inflammatory factors, including the acute phase
protein CRP, in EOS patients. Lower CRP levels in patients with high eosinophil counts
have also been described by previous work [36]. Elevated CRP levels, on the other hand,
have been associated with the severity of airway obstruction [37], an elevated risk of
having exacerbations [38], a poor short-term outcome in patients admitted for these acute
episodes [39], and higher mortality [40].
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The present study has several potential limitations. First of all, its cross-sectional
nature does not allow us to make causal inferences about the impact of the microbiome on
systemic inflammation and clinical outcomes. Another limitation is that we only analyzed
the respiratory microbiome of stable COPD patients, and therefore, we could not extend it
to the analysis of the potential associations between respiratory microbiota and biological
markers in healthy individuals. Additionally, stratification by clinical phenotypes implies a
substantial reduction in the number of patients per group limiting the statistical power of
the analyses and the conclusiveness of the results. Moreover, the predominance of male
subjects in our cohort may introduce some bias due to sex physiological differences. Finally,
some of the bacterial genera were barely detected in a significant number of patients, so
we were unable to assess their association with inflammation and clinical outcomes in the
present cohort.

In conclusion, the present investigation shows that some changes in the bacterial
composition of the pulmonary microbiota relate to the systemic inflammatory response and
are associated with clinical outcomes. These relationships may be complex and bidirectional.
Thus, further studies involving larger cohorts of patients, longitudinal designs, and control
for potential confounding factors are necessary to examine the interplay between microbiota
and systemic inflammation in more depth.

4. Materials and Methods
4.1. Study Design and Population

This investigation is embedded within the BIOMEPOC project, a prospective con-
trolled multicenter study whose details have been published elsewhere [11,41]. For the
current study, stable COPD patients were sequentially recruited from five teaching hos-
pitals, and ethics approval was granted locally at each site by Institutional ethics com-
mittees. The investigation was conducted in accordance with the Declaration of Helsinki
and informed written consent was obtained from all patients. They were subsequently
subdivided by their history of exacerbations [Infrequent exacerbators (IE) vs. Frequent
exacerbators (FE)] and by their distinct inflammatory profiles [Non-Eosinophilic (Non-EOS)
vs. Eosinophilic (EOS)]. The FE condition was defined as the presence of >2 exacerbations
over the year preceding the patient’s recruitment [42]. EOS patients were defined as those
presenting >3% blood eosinophils with <60% circulating neutrophils. This stratification
was adapted from previous classifications based on the pattern of airway inflammation in
sputum samples [31].

4.2. Samples Processing

Samples from each participant included spontaneous sputum, plasma, and whole
blood. Spontaneous sputum was collected and processed within 60 min on the day of the
visit. Subsequently, sputum quality was assessed as previously described [11] and samples
were frozen until processing. Blood samples in turn were collected by venipuncture and
placed into K3-EDTA tubes for plasma obtention and in Tempus tubes (Thermo Fisher
Scientific, Waltham, MA, USA) for RNA isolation. K3-EDTA tubes were centrifuged at
1500 % g for 15 min at 4 °C, and plasma supernatants were stored at —80 °C until further
analyses. Total RNA was purified using the Tempus™ Spin RNA Isolation Kit following
the provider’s recommendations (Thermo Fisher Scientific).

4.3. 16S rRNA Gene Sequencing Analysis

16S rRNA gene was amplified following the 165 Metagenomic Sequencing Library
Preparation Illumina protocol (Part # 15044223 Rev. A, Illumina, CA, USA). The Quan-
titative Insights Into Microbial Ecology (QIIME) pipeline 1.9.0 was used for sequence
processing to obtain taxonomic information. Detailed procedures of DNA extraction, PCR,
and library preparation as well as analysis of the microbiome profile of the present cohort
have been previously published by our group [11].
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4.4. Measurement of Systemic Inflammatory Mediators

Inflammatory protein profiles were measured in plasma using three magnetic bead-
based multiplex immunoassays, namely, Bio-Plex Pro Human Chemokine Panel (40-Plex
#171AK99MR?2), Bio-Plex Pro Human Cytokine Panel (27-Plex #M500KCAF0Y) and Bio-
Plex Pro Human Acute Phase Panel (4-Plex #171A4C09M) following the manufacturer’s
specifications (Bio-Rad, Hercules, CA, USA). Briefly, magnetic beads coated with specific
antibodies were incubated with the samples for 30 min. After this incubation, the beads
were washed using a magnetic plate washer (Bio-Plex Pro Wash Station, Bio-Rad), and
then reincubated with biotinylated detection antibodies for 60 min. Then, the beads were
washed and incubated with streptavidin-PE for 10 more minutes. The beads were then
washed, resuspended in the assay buffer, and run on the BioPlex-200 instrument (Bio-Rad)
to measure the analytes. All samples were performed in only one setting. It is worth noting
that due to some redundancy between the kits, only 58 immune-soluble constituents were
analyzed for each sample. The list of names, acronyms, and official gene symbols for all
factors measured are described in Table S1.

4.5. RT-gPCR Assays

First-strand cDNA was generated using oligo (dT)q,.13 and Superscript III reverse
transcriptase as per the manufacturer’s protocol (Thermo Fisher Scientific). Quantitative
PCR of selected genes was carried out using TagMan Gene Expression Assays products
(Table S2) in an ABI PRISM 7900 HT Sequence Detection System (Applied Biosystems,
Waltham, MA, USA). Standard TagMan cycling conditions were used, and all reactions
were performed in triplicate. Gene expression levels were normalized to the housekeeping
genes GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and ACTB (Beta-actin), and
the relative gene expression analysis was done using the comparative method (Delta-Delta
C(T)) [43] by ExpressionSuite Software v1.3.

4.6. Statistical Analyses

Descriptive statistics: Continuous variables are expressed as mean and standard
deviations (SD) values if normally distributed or as medians and interquartile ranges if not
normally distributed. Categorical variables are presented as frequencies and percentages.
Comparisons between study groups were done using independent samples T-tests or
Mann-Whitney U tests for normally and not normally distributed variables, respectively.
Spearman Rank correlation coefficients were computed to assess associations between the
relative abundance of bacterial genera with the plasma concentration of inflammatory and
eosinophilic markers, as well as with the clinical variables. Statistical tests used in the study
were two-sided, and a p value of <0.05 was considered as statistically significant. Statistical
analyses were performed using the SPSS statistical software package version 23 (SPSS Inc.,
Chicago, IL, USA), and GraphPad Prismé6 (Dotmatics, Boston, MA, USA) and Cytoscape
software (version 3.8.0, Seattle, WA, USA) were used for chart production.
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Appendix A

Members of the BBOMEPOC group (alphabetical order): Mireia Admetll6 12, Alvar
Agusti >3, Carlos Alvarez-Martinez 4, Esther Barreiro 12, Oswaldo Antonio Caguana
1 Carme Casadevall 12, Ferran Casals °, Robert Castelo 2, Ady Castro-Acosta 4 Rocio
Cérdova ©, Borja G Cosio 26 Rosa Faner 23, Laura | Furlong 57 Marian Garcia 8, José G.
Gonzalez-Garcia !, Carmen Hernandez-Carcereny 23, José Luis Lépez-Campos 27, Eduardo
Marquez 29 Eduard Mons6 8, Concepcion Monton 8 Miren Josune Ormaza 8, Alexandre
Palou ©, Sergi Pascual !, German Peces-Barba %!Y, Pau Puigdevall °, Diego A. Rodriguez-
Chiaradia 12, Ferran Sanz >7, Luis Seijo 11 Montserrat Tora >!2, Yolanda Torralba 3, Carles
Vilaplana 13,

1. Hospital del Mar Research Institute. Respiratory Medicine Department, Hospital del

Mar. MELIS Dept., Universitat Pompeu Fabra (UPF). BRN. Barcelona. Spain.

Centro de Investigacion Biomédica en Red, Area de Enfermedades Respiratorias (CIBERES),
Instituto de Salud Carlos I1I. Madrid. Spain.

Servei de Pneumologia (Institut Clinic de Respiratori), Hospital Clinic-Fundacié Clinic per la
Recerca Biomedica, Universitat de Barcelona. Barcelona. Spain.

Servicio de Neumologia, Hospital 12 de Octubre. Madrid. Spain.

Dept. MELIS, Universitat Pompeu Fabra. Barcelona. Spain.

Servicio de Neumologia, Hospital Son Espases-Instituto de Investigacion Sanitaria de Palma
(IdISBa), Universitat de les llles Balears. Palma de Mallorca. Spain.

Hospital del Mar Research Institute. Barcelona. Spain.

Servicio de Neumologia, Consorci Sanitari Parc Tauli, Universitat Autonoma de Barcelona.
Sabadell. Spain.

Unidad Médico-Quiriirgica de Enfermedades Respiratorias, Hospital Universitario Virgen del
Rocio, Universidad de Sevilla. Sevilla. Spain.

Servicio de Neumologia, Fundacion Jiménez Diaz, Universidad Autonoma de Madrid. Madrid.
Spain

Servicio de Neumologia, Fundacion Jiménez Diaz, Universidad Auténoma de Madrid. Clinica
Universidad de Navarra. Madrid. Spain.

Universitat Autonoma de Barcelona. Barcelona. Spain.

Laboratori de Referéncia de Catalunya. EI Prat de Llobregat. Spain.
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