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Abstract: Insulin signaling is vital for regulating cellular metabolism, growth, and survival path-
ways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart,
however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery,
relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle
metabolism. This review investigates the insulin–heart axis, focusing on insulin’s multifaceted in-
fluence on cardiac function, from metabolic regulation to the development of physiological cardiac
hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its
profound implications for cardiac health. We discuss the intricate molecular mechanisms by which
insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its
pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes,
leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling
abnormalities, and activation of the renin–angiotensin–aldosterone system. These factors collectively
contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin
resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacer-
bating the risk of coronary artery disease and heart failure. Understanding the insulin–heart axis is
crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated
with insulin resistance and diabetes.

Keywords: insulin signaling; insulin resistance; insulin–cardiac axis; diabetic cardiomyopathy;
cardiac hypertrophy

1. Introduction

Insulin signaling is crucial for regulating cellular metabolism, growth, and survival
pathways. Insulin receptors are present in various tissues throughout the body. While
most research on insulin signaling has focused on tissues involved in systemic metabolic
regulation, such as adipose tissue, skeletal muscle, liver, and brain, it also plays a significant
role in other organs, including the heart [1].

The heart, as a muscular pump, requires a vast amount of ATP to power its contractile
machinery and ionic pumps. Consequently, myocardial metabolism is largely influenced by
the availability of substrates. Changes in circulating insulin levels due to daily rhythms and
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feeding patterns directly affect cardiac metabolism. This regulation occurs both through
insulin’s modulation of peripheral tissues, which influence myocardial substrate supply,
and through its direct effects on the heart muscle itself [1,2].

Although insulin signaling in cardiomyocytes is not essential for maintaining car-
diac metabolism under non-stressed conditions, various studies have shown that it has
roles beyond metabolic regulation [1,2]. This review aims to explore the insulin–heart
axis, highlighting the diverse functions of insulin in the heart, and its impact on health
and disease.

2. Insulin Signaling and Metabolic Regulation in Cardiac Function

The human heart demands a significant amount of energy, relying on a steady flow
of nutrients and oxygen to keep intracellular ATP levels stable, which is crucial for the
constant cycles of heart muscle contraction and relaxation. With mitochondria occupying
one-third of the cell volume in cardiac myocytes—the highest mitochondrial content of
any cell type—the heart boasts a robust metabolic system. This is evidenced by the heart’s
exceptional oxygen consumption rate per unit weight. Over the course of a day, the heart
generates and utilizes approximately 3.5 to 5 kg of ATP, an amount 15 to 20 times its own
weight [1,3,4].

The heart’s metabolic versatility allows it to utilize all classes of energy substrates—
including carbohydrates, lipids, amino acids, and ketone bodies—for ATP production
in the mitochondria. The primary source of this ATP is the mitochondrial oxidation
of long-chain fatty acids (LCFAs), which provide about 60–70% of the heart’s energy
needs. Additionally, glucose contributes around 20%, and lactate accounts for roughly
10% of the energy production under normal physiological conditions. In a healthy heart,
mitochondria are mainly fueled by fatty acyl-coenzyme A (CoA) and pyruvate, the primary
metabolites of fatty acids and carbohydrates, respectively. This metabolic flexibility is
crucial for meeting the heart’s energy demands, especially during increased workloads
or stress [1,5–7]. The cardiac myocytes’ reliance on oxidative phosphorylation within the
mitochondria underscores the importance of a constant oxygen supply, which is facilitated
by a dense network of coronary arteries and capillaries [1,8]. Additionally, the heart’s ability
to rapidly adjust to increased energy demands is supported by the dynamic regulation
of key enzymes involved in metabolic pathways, such as AMP-activated protein kinase
(AMPK) and peroxisome proliferator-activated receptor alpha (PPARα), which play critical
roles in maintaining energy homeostasis [9,10]. Furthermore, during prolonged fasting, the
metabolic environment shifts significantly, leading to increased reliance on ketone bodies
as an energy source for the heart. As glucose availability diminishes, the liver enhances
the production of ketone bodies, particularly β-hydroxybutyrate and acetoacetate, from
the oxidation of fatty acids. These ketone bodies become a crucial fuel for the heart due to
their efficiency and abundance. The heart adapts to this metabolic shift by upregulating
enzymes involved in ketone body utilization, such as 3-oxoacid CoA-transferase and
β-hydroxybutyrate dehydrogenase. This adaptation allows the heart to maintain ATP
production and function despite the low availability of glucose. Ketone bodies are more
oxygen-efficient compared to fatty acids, yielding more ATP per molecule of oxygen
consumed, which is advantageous during periods of limited nutrient intake. Thus, ketone
bodies support cardiac energy metabolism effectively during prolonged fasting when fatty
acid oxidation predominates and glucose is scarce [11].

Cardiomyocytes have high levels of insulin receptors (IRs) and similarly express the
insulin-like growth factor 1 receptor (IGF1R). These receptors activate overlapping signaling
pathways within the heart (Figure 1) [12]. Both the IR and IGF1R connect with insulin recep-
tor substrates (IRS1 and IRS2), which act as central nodes to relay insulin signals to down-
stream pathways. This signaling primarily involves phosphoinositide-3-kinase (PI3K) and
protein kinase B (PKB/Akt), along with components of the extracellular signal-regulated
kinase (ERK) pathway. When activated, Akt phosphorylates several downstream targets,
such as tuberous sclerosis complex 2 (TSC2) and proline-rich Akt substrate 40 kDa (Pras40),
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thereby promoting the activity of the mechanistic target of rapamycin (mTOR) [1,13]. Ad-
ditionally, Akt phosphorylates glycogen synthase kinase-3 (GSK3), thereby regulating
glycogen metabolism and promoting cell survival pathway [14]. The PI3K/Akt pathway
includes several classes of PI3Ks, each with distinct structures and activation modes. Class
I PI3Ks are further divided into IA and IB categories based on their binding subunits. Class
IA PI3K consists of catalytic subunits (p110α, p110β, p110δ) and a regulatory subunit
(p85α), while class IB PI3K comprises the catalytic subunit p110γ, regulated by the protein
p101. Class IB PI3K can be activated by G-protein-coupled receptors (GPCRs) via the β and
γ subunits [15]. This activation cascade leads to the synthesis of phosphatidylinositol-3,4,5-
trisphosphate (PIP3), which recruits phosphoinositide-dependent kinase-1 (PDK1) and Akt,
culminating in Akt phosphorylation and activation. The full activation of Akt requires
phosphorylation at Thr308 and Ser473, and Akt itself may autophosphorylate or be activated
independently of PI3K [15]. Moreover, Akt phosphorylation leads to the nitric oxide syn-
thase isoform 3 (NOS3) activation, which in turn generates nitric oxide (NO), which along
with cyclic guanosine monophosphate (cGMP) activation plays a crucial role in cardiac
physiology. Anti-apoptotic mediators such as the BCL2-associated agonist of cell death
(BAD) and members of the forkhead box O (FOXO) family of transcriptional regulators
are also integral to these pathways. These molecules work in concert to modulate diverse
cellular processes in cardiomyocytes, including metabolism, cell growth, survival, and the
suppression of apoptosis and autophagy [15,16]. Additionally, novel mechanisms include
the requirement for NOX2/4-generated reactive oxygen species (ROS) and the regulation
of ion channel function, highlighting the complexity and adaptability of these signaling
networks [17]. For instance, class I PI3Ks are pivotal in these processes, and mammalian
genomes encode three Akt isoforms—Akt1, Akt2, and Akt3—each with distinct roles in cel-
lular function. Akt is central to many cardiovascular functions, including cell proliferation
and growth via mTORC1, cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities, and
angiogenesis and vasorelaxation via VEGF secretion and eNOS phosphorylation [18].

The heart’s substrate preference is influenced by the cardiac environment, including
coronary flow, blood substrate supply, hormones, and nutritional status [19,20]. The Randle
cycle explains how LCFA oxidation inhibits glucose uptake and catabolism [5]. During
starvation or conditions such as chronic heart failure and poorly controlled diabetes, ketone
bodies rise and become major substrates for the heart, inhibiting the oxidation of other
substrates [21,22]. Conversely, when glucose and insulin concentrations rise, glucose
becomes the preferred substrate. Insulin signaling, which includes the translocation of
glucose transporter GLUT4 to the sarcolemmal membrane, enhances glucose uptake in
cardiomyocytes [7].

Activation of the IR involves the binding of insulin to its extracellular α-subunits,
leading to the activation of the intrinsic tyrosine kinase activity of the β-subunits and
subsequent auto transphosphorylation. The IR shares a similar structure with the IGF-1
receptor, facilitating cross-reaction and overlapping functions [23,24]. Once phosphory-
lated, IR binds and phosphorylates downstream elements, including the insulin receptors
family and SHC, leading to the activation of the PI3K and MAPK pathways [25–28]. PI3K,
especially class Ia, is a crucial player in the metabolic actions of insulin, while the MAPK
pathway is involved in cell growth and differentiation. The PI3K pathway culminates
in the activation of PKB/Akt, with PDK1 being essential for this process in the heart.
PKB/Akt is pivotal in regulating glucose uptake and other metabolic processes, including
the translocation of GLUT4 [29–32]. However, Akt isoforms exhibit differential roles in my-
ocardial metabolism. For instance, while Akt2 deletion reduces insulin-stimulated glucose
uptake and ischemia tolerance, Akt1 phosphorylation remains unaffected under certain
conditions [33,34]. Interestingly, in vitro studies using siRNA-mediated gene silencing
demonstrate a specific role for Akt2 in cardiomyocyte glucose uptake. In diabetic models,
impaired myocardial glucose utilization correlates with reduced Akt2 phosphorylation,
contrasting with unchanged Akt1 phosphorylation [34].
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Figure 1. Schematic representation of the signaling intermediates involved in the pathways activated
by the insulin receptor or insulin-like growth factor 1 (IGF-1) receptor in cardiomyocytes. This
figure illustrates the cascade of molecular events initiated by the binding of insulin or IGF-1 to
their respective receptors on the cardiomyocyte membrane. Upon ligand binding, the IR and IGF-
1R undergo autophosphorylation, creating docking sites for insulin receptor substrates (IRS). The
phosphorylated IRS proteins activate the ERK1/2, which translocate into the nucleus where they
regulate gene expression by phosphorylating transcription factors involved in cell proliferation
and differentiation, as well as activating the PI3K (phosphoinositide 3-kinase) pathway, leading to
the generation of PIP3 (phosphatidylinositol-3,4,5-trisphosphate) and subsequent activation of Akt
(protein kinase B). Activated Akt phosphorylates multiple downstream targets involved in glucose
metabolism, protein synthesis, and cell survival. This includes the phosphorylation and inhibition of
GSK-3β (glycogen synthase kinase-3 beta), promoting glycogen synthesis, the activation of mTOR
(mechanistic target of rapamycin), which facilitates protein synthesis and cell growth; the activation of
endothelial nitric oxide synthase (eNOS), leading to increased nitric oxide production, which is crucial
for vascular function; activation of transcription factors such as FoxO, promoting their translocation
into the nucleus, where they regulate gene expression involved in cell survival and metabolism; Akt
mitochondrial translocation, which enhances mitochondrial function; and biogenesis, contributing to
improved cellular energy homeostasis.

It is noteworthy that GLUT4 translocation is induced by cardiac muscle contraction,
leading to a less pronounced increase in glucose uptake during insulin-stimulated con-
traction compared to cultured cardiomyocytes or skeletal muscle and adipose tissue [2].
Additionally, genetic deletion of insulin receptors in the heart increases GLUT4 content
and basal glycolysis rates, similar to insulin-perfused wild-type hearts, suggesting a mi-
nor direct role of insulin in regulating myocardial glucose uptake in vivo [2]. However,
GLUT4-mediated glucose uptake in the heart plays a critical role in responding to ischemia
and acute hemodynamic stress, as evidenced by studies on mice lacking cardiomyocyte
GLUT4 [35–37].

Moreover, acute insulin stimulation provides cardioprotection during reperfusion
following myocardial ischemia through pathways involving PI3K, Akt, and PKC activa-
tion [38–40]. Interestingly, the interplay between insulin signaling and ischemic precon-
ditioning (IPC) is complex, as insulin’s protective effects against ischemia/reperfusion
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(I/R) injury can negate the benefits of IPC, which relies on Akt activation—a phenomenon
observed with transgenic Akt overexpression in cardiomyocytes [41].

Insulin also induces the translocation of the LCFA transporter FAT/CD36 to the plasma
membrane, promoting LCFA uptake [42–45]. Despite increased intracellular LCFA con-
centrations, insulin does not necessarily enhance LCFA oxidation but promotes storage in
the intracellular lipid pool. Alongside GLUT4, other proteins like PIKfive, synip, AS160,
and TBC1D1 are pivotal in insulin-mediated glucose uptake [46,47]. Furthermore, insulin
stimulates glycogen synthesis and glycolysis by activating glycogen synthase and PFK-2, re-
spectively, which amplifies glycolytic flux via fructose 2,6-bisphosphate production [48–51].

In vivo, the heart predominantly utilizes fatty acids (FAs) as its primary metabolic sub-
strate during fasting, reflecting heightened FA availability due to increased lipolysis under
low insulin conditions [52]. Conversely, under conditions of euglycemic hyperinsulinemia,
myocardial glucose uptake surpasses that of FAs, which are concurrently suppressed in
circulation [53,54]. Interestingly, despite increased insulin levels post-feeding, the heart
utilizes absorbed FAs, underscoring the dynamic substrate preference dictated by physio-
logical state [55,56]. Classic studies underscore insulin’s direct regulation of myocardial
glucose metabolism [57,58].

Insulin enhances GLUT4 translocation in isolated hearts, activating PFK2 and aug-
menting glucose oxidation more than glycolysis alone, owing to pre-existing elevated
levels of myocardial glycolysis independent of insulin [59,60]. Insulin also boosts glucose
oxidation by mitochondrial Akt targeting, concomitantly suppressing mitochondrial FA ox-
idation via Randle’s cycle reversal. Additionally, insulin likely inhibits FAO by suppressing
AMPK activity, thereby decreasing ACC phosphorylation and elevating malonyl CoA lev-
els [61,62]. Despite these suppressive effects on FAO, insulin signaling promotes FA uptake
by facilitating CD36 translocation to the sarcolemma through Akt2 and PKC-zeta isoform
pathways, concurrently regulating GLUT4 trafficking [63,64]. Ultimately, short-term insulin
stimulation directs FAs toward synthetic pathways like triglyceride production, crucial for
the heart’s energetic demands [65].

3. Insulin Signaling and the Regulation of Physiological Cardiac Hypertrophy

Insulin signaling plays a crucial role in the regulation of physiological cardiac hyper-
trophy through a series of intricate molecular mechanisms. As an anabolic hormone, insulin
promotes protein synthesis and cell growth primarily through the phosphorylation and
dephosphorylation of various translation factors and ribosomal proteins, with PKB/Akt
being a key regulator [66,67]. PKB/Akt phosphorylates and inactivates the TSC2, leading
to the activation of the G protein Rheb and subsequently the mammalian target of ra-
pamycin (mTOR) [68–71]. Activated mTOR then regulates protein translation by targeting
4E-BP1 and p70S6K, enhancing translational capacity and ribosomal biogenesis [72,73].
Additionally, PKB/Akt modulates glycogen synthase kinase-3 (GSK-3) and the forkhead
transcription factor FOXO family, which are involved in protein synthesis and atrophy
prevention, respectively [67]. The inhibition of GSK-3 by insulin stimulates the initiation
of protein synthesis, and the phosphorylation of FOXOs by PKB/Akt prevents muscle
atrophy by promoting their nuclear exclusion [29,74].

Furthermore, studies have shown that the absence of insulin signaling during heart
development reduces heart size, highlighting its role in cardiac growth [32,75]. Exercise-
induced physiological hypertrophy is mediated by PI3K and Akt signaling, which coor-
dinate hypertrophic responses and mitochondrial adaptations characterized by increased
oxidative capacity. However, persistent Akt activation can lead to pathological hyper-
trophy, indicating a delicate balance in insulin signaling pathways [76]. The cross-talk
between insulin and IGF1 signaling also contributes to physiological cardiac hypertrophy,
with defects in IGF1 signaling exacerbating exercise-induced hypertrophy, as evidenced
by studies on mice with cardiomyocyte-specific deletions of IGF1R and IRS. IRS1 and
IRS2 play nonredundant roles in the hypertrophic and bioenergetic responses to exercise,
emphasizing the multifaceted nature of insulin signaling in cardiac physiology [76].



Int. J. Mol. Sci. 2024, 25, 8369 6 of 26

4. Pathophysiology of Insulin Resistance

Insulin resistance (IR) is a pathophysiological condition characterized by the dimin-
ished ability of insulin to exert its normal biological effects, particularly facilitating glucose
entry into insulin-sensitive tissues to be used as the primary energy substrate. Diverse
defects in signal transduction contribute to IR [77,78].

4.1. Pathophysiological Mechanisms of Proximal Insulin Signaling Impairment

Proximal insulin signaling impairment is a critical factor contributing to metabolic
and cardiovascular disorders. This impairment often originates from disruptions in the
early steps of the insulin signaling pathway, including the interaction of insulin with its
receptor and the subsequent activation of downstream signaling molecules (Figure 2).

Figure 2. Schematic representation of the signaling intermediates involved in the pathways activated
in an insulin-resistant state. Hyperinsulinemia triggers the activation of the phosphoinositide 3-
kinase (PI3K), protein kinase B (Akt), and mechanistic target of rapamycin (mTOR) pathways within
cardiac tissue. This activation drives cardiac hypertrophy and remodeling. The stimulation of this
signaling cascade leads to the inhibition of insulin receptor substrate 1 (IRS1). Concurrently, the
activation of Akt facilitates the translocation of CD36, enhancing fatty acid uptake by the heart. This
process contributes to lipotoxicity and elevates mitochondrial fatty acid utilization. Additionally,
it induces transcriptional modifications in the nucleus, resulting in altered gene expression within
myocardial cells. Moreover, in insulin-resistant states, increased serine phosphorylation of IRS1
and other inhibitory modifications impair the ability of SHC and GRB2 to facilitate Ras-MAPK
pathway activation. Furthermore, despite the increased activation of Akt, the translocation of glucose
transporter member 4 (GLUT4) is hindered, likely due to a decrease in inositol hexakisphosphate (IP6).

The proximal insulin signaling pathway includes two primary branches: the metabolic
branch, which is triggered by IRS proteins and SH2B2/APS and the mitogenic branch,
which is initiated by GRB2 and SHC [79].
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Unlike many other receptor tyrosine kinases that directly phosphorylate cytoplasmic
substrates, the INSR recruits a variety of phosphotyrosine-binding proteins, allowing
early diversification of insulin signaling to activate multiple functional modules [80]. For
instance, SHC interacts through its phosphotyrosine-binding domain with INSR at pTyr972,
while SH2B1, SH2B2/APS, GRB10, and GRB14 engage through their Src homology 2
(SH2) domains with the activated INSR activation loop. These interactions are crucial for
regulating insulin signaling. For example, GRB10 phosphorylation and stabilization by
mTORC1, activated by insulin signaling, provides feedback inhibition of INSR activity [81].

In metabolic disorders such as obesity and diabetes, individuals often exhibit reduced
surface insulin receptor (INSR) content and diminished INSR kinase (IRK) activity, which
are essential for proper insulin signaling [82]. Defective IRK activity is closely linked to
decreased tyrosine phosphorylation of IRS1, a condition frequently observed in insulin-
resistant skeletal muscles [83]. Targeted knockout or ablation of INSR in the liver results
in the inability of insulin to suppress hepatic glucose production (HGP), highlighting the
critical role of INSR in hepatic insulin resistance [84,85]. Additionally, reduced expression
or increased serine phosphorylation of IRS proteins can impair their interaction with PI3K,
subsequently downregulating PI3K activation and contributing to insulin resistance [86,87].
Mice models with homozygous deletions of the IRS1 or IRS2 genes display peripheral
insulin resistance and diabetes, along with compromised insulin secretion due to disrupted
PI3K/AKT signaling [88]. Upon insulin binding to INSR, autophosphorylation of the
receptor occurs, which subsequently phosphorylates IRS proteins on tyrosine residues.
These phosphorylated IRS proteins serve as docking sites for the p85 regulatory subunit
of PI3K, leading to the activation of the p110 catalytic subunit of PI3K. This activation
converts PIP2 to PIP3, which in turn recruits and activates PDK1 and AKT. Activated AKT
then phosphorylates a variety of downstream targets involved in glucose uptake, glycogen
synthesis, and lipid metabolism [89,90]. Consequently, pharmacological inhibitors, blocking
antibodies, and PI3K knockdown abolish insulin stimulation of glucose transport, GLUT4
translocation, and DNA synthesis [91–93]. Deletion of Pik3r1 and Pik3r2, which encode
PI3K subunit isoforms in skeletal muscle, impairs insulin-stimulated glucose transport [94].
Interference with Akt mutants similarly suppresses insulin-stimulated GLUT4 translocation,
and reduced AKT expression or impaired AKT Ser473 phosphorylation is evident in
insulin-resistant muscle and liver tissues [95–99]. Of the three known Akt isoforms (Akt1,
Akt2, and Akt3) in insulin-sensitive tissues, defects in Akt2 and Akt3 particularly impair
insulin-stimulated glucose transport in insulin resistance [100]. Elevated levels of plasma
non-esterified fatty acids (NEFAs) can further impede the insulin-induced increase in
IRS-1-associated PI3K activity without affecting Akt phosphorylation [101].

4.2. Pathophysiological Mechanisms of Distal Insulin Signaling Impairment

Evidence suggests that the PI3K-Akt/PKB pathway is one of the primary distal critical
effectors in insulin signaling [102]. Akt/PKB activation induces a variety of downstream
responses, including the translocation of glucose transporters (GLUTs) to the cell mem-
brane, thereby increasing glucose uptake. More than one hundred Akt substrates have been
identified, such as GLUT4, FOXO1, GSK3, mTORC1, SREBP-1c, ABHD15, TSC1/2, PDE3B,
and PRAS40 [77,103]. Among these, GLUT4 is essential for glucose uptake in skeletal
muscle and adipose tissue following insulin stimulation [104,105]. Impaired translocation
of GLUT4 storage vesicles results in decreased insulin-stimulated glucose uptake, contribut-
ing to insulin resistance in both muscle and adipose tissues [106]. This impairment is seen
in various models of insulin resistance and in humans with type 2 diabetes mellitus (T2DM).
Heterozygous deletion of GLUT4 in mice reduces glucose uptake and leads to metabolic
dysfunction in adipocytes, while defective insulin-stimulated GLUT4 translocation is seen
in skeletal muscle in various IR mouse models and humans with T2DM [107–112]. The loss
of Tbc1d4, an Akt substrate that regulates Rab-GTPase proteins associated with GLUT4 vesi-
cles, significantly impairs insulin-stimulated glucose uptake in adipocytes [113]. Mice with
a knockin mutation in TBC1D4 exhibit defective insulin-stimulated GLUT4 translocation
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in myocytes, resulting in glucose intolerance [114]. Inositol pyrophosphates, synthesized
by inositol hexakisphosphate (IP6) kinase 1 (IP6K1), compete with PIP3 for binding to
the pleckstrin homology (PH) domain of Akt/PKB, thereby inhibiting Akt signaling [115].
IP6K1 knockout mice show increased insulin sensitivity and resistance to obesity, indicating
a novel therapeutic target for combating insulin resistance [116]. Recent studies have also
indicated that chronic inflammation and endoplasmic reticulum stress contribute to the
dysregulation of insulin signaling pathways, exacerbating insulin resistance [117–119].
Moreover, IP6 itself has been shown to exert beneficial effects on glucose metabolism and
insulin action. Research indicates that IP6 increases glucose uptake, enhances the expres-
sion GLUT4 and IRS-1 mRNA, and promotes phosphorylation of IRS-1 [120]. These effects
suggest that IP6 plays a role in enhancing insulin sensitivity in adipocytes, potentially
through mechanisms involving GLUT4 translocation and IRS-1 activation. Furthermore,
IP6 exhibits insulin-mimetic properties that affect metabolic pathways beyond glucose
uptake. In hepatocytes, IP6 decreases the expression and transcription rate of the phos-
phoenolpyruvate carboxykinase (PEPCK) gene, which is crucial for gluconeogenesis [121].
Additionally, IP6 influences cellular processes involved in vesicle trafficking, impacting
both exocytosis and endocytosis in eukaryotic cells [122].

Chronic inflammation induces the activation of stress kinases such as JNK and IKK,
which can serine phosphorylate IRS proteins, leading to impaired insulin signaling. Endo-
plasmic reticulum stress results in the activation of the unfolded protein response, which
can also interfere with insulin signaling through similar mechanisms [123–125]. Taken
together, these findings suggest that enhancing Akt activation may represent a promis-
ing strategy to ameliorate insulin resistance, offering an alternative approach to current
treatments. Further studies are needed to identify the molecular mediators involved in all
phases of insulin-stimulated glucose uptake.

5. Cardiovascular Manifestations of Insulin Resistance

The main disease associated with insulin resistance and alterations of the insulin
cardiac axis is diabetic cardiomyopathy, particularly pathological cardiac hypertrophy. The
primary manifestations of diabetic cardiomyopathy include hypertrophy, fibrosis, cardiac
diastolic dysfunction, and systolic heart failure [126]. Cardiac metabolic disturbances, auto-
nomic dysfunction, subcellular signaling abnormalities, activation of the renin–angiotensin–
aldosterone system, inflammation, maladaptive immune response, and oxidative stress are
the main pathophysiological disorders linked to insulin resistance and the development of
diabetic cardiomyopathy [127].

5.1. Cardiac Metabolic Disturbances

In conditions of insulin resistance, associated with an increase in carbohydrate and
fat intake, the reduction in cellular ATP production triggers a state of increased ROS
production, leading to intracellular oxidative damage within mitochondria [98,128,129].
The oxidative stress at the mitochondrial level induces alterations in the functionality of the
sarcoplasmic reticulum, resulting in increased proteasome degradation of incorrectly folded
proteins [130,131]. Alterations in mitochondrial function and the sarcoplasmic reticulum
therefore induce changes in the functionality of membrane proteins that manage calcium
handling. Impaired calcium handling is associated with reduced intracellular calcium
uptake and delayed diastolic relaxation. Along with ROS production and endoplasmic
reticulum stress, impaired calcium handling promotes subcellular component dysfunction,
ultimately causing apoptosis, necrosis, and autophagy [132–134].

Under normal conditions, insulin and myocardial insulin signaling stimulate the
translocation of GLUT4 and CD36 to the myocyte sarcolemma to supply myocardial
energy substrates. However, in a state of insulin resistance, GLUT4 is internalized into
cells, resulting in a reduction in energy intake from glucose and increased free fatty acid
oxidation, leading to reduced cardiac efficiency [135–138].
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5.2. Autonomic Dysfunction

Diabetes often leads to neurosensorial damage and neuropathy [139,140]. Specifically,
diabetic Cardiac Autonomic Neuropathy (CAN), even in the absence of cardiac disease,
appears linked to both left ventricular systolic and predominantly diastolic dysfunction,
although isolating its independent role among the numerous factors involved in diabetic
cardiomyopathy is challenging [141].

Initially marked by parasympathetic denervation, early stages of diabetic CAN may
promote left ventricular hypertrophy due to excessive sympathetic activation, thereby
affecting sympathovagal balance and baroreflexes [142]. Additionally, abnormal signal-
ing of norepinephrine may induce myocardial injury and left ventricular remodeling
through the cytotoxic effects of heightened catecholamine levels observed in diabetic rat
hearts [143]. These effects are potentially mediated by oxidative stress, inflammation, and
apoptosis [144–146].

Conversely, prolonged diabetic CAN-associated sympathetic denervation may im-
pair β-adrenergic signaling, reducing myocardial contractile strength, relaxation kinetics,
and diastolic distensibility [147–149]. Alterations in myocardial neurotransmitters due
to CAN can also impair myocardial blood flow and directly worsen left ventricular func-
tion [150]. In fact, hyperactivation of the sympathetic nervous system induces vessel wall
changes, promoting myocyte hypertrophy and apoptosis, interstitial fibrosis, and reduced
contractile function [151]. Additionally, hyperinsulinemia can contribute to hypertension
through mechanisms such as sodium retention, which increases blood volume and fur-
ther exacerbates cardiovascular stress. The combined effects of sympathetic denervation
and hyperinsulinemia-driven sodium retention not only exacerbate hypertension but also
worsen cardiac hypertrophy [152].

Early onset of diastolic dysfunction linked to abnormal cardiac sympathetic function
is observed in type 1 diabetes mellitus, as evidenced by cardiac sympathetic imaging [153].
Among individuals with type 2 diabetes mellitus or impaired glucose tolerance referred
for elective coronary angiography, those with CAN exhibit a higher prevalence and more
severe forms of left ventricular diastolic dysfunction [154]. In a large cohort study using
cardiac magnetic resonance imaging in patients with type 1 diabetes mellitus, CAN is
associated with increased left ventricular mass and concentric remodeling [155].

5.3. Subcellular Signalling Abnormalities

Peroxisome proliferator-activated receptor-α (PPARα) and peroxisome proliferator-
activated receptor gamma coactivator 1α (PGC-1α) are important signal transduction
molecules involved in regulating β-oxidation of fatty acids. This pathway modulates the
mitochondrial citric acid cycle and electron transport chain. Moreover, the PGC-1β/PPARα
pathway is involved in regulating cardiac metabolism, particularly in conditions of insulin
resistance. Preclinical studies in mice have shown that both genetic modulation and protein
concentrations of PPARα and PGC-1α are impaired in insulin resistance conditions, leading
to an impairment of the insulin–cardiac axis [156,157]. Specifically, in conditions such as
heart failure and diabetic cardiomyopathy, PPARα gene expression is downregulated, and
the concentrations of PPARα and PGC-1α are reduced. These alterations contribute to
metabolic stress, characterized by a reduction in protective substrates, ultimately leading
to a greater predisposition to heart failure and diabetic cardiomyopathy [158–162].

5.4. Renin–Angiotensin–Aldosterone System

The renin–angiotensin–aldosterone system (RAAS) significantly influences insulin
resistance (IR) and its complications, particularly in hyperglycemic conditions [163]. De-
spite salt and volume excess, RAAS activation is implicated in diabetic cardiomyopathy,
while blocking RAAS has been shown to mitigate cardiac damage [164]. In addition to its
AT1 and AT2 receptors, angiotensin II (Ang-II) interacts with NOX, leading to increased
oxidative stress and inflammation through enhanced production of oxidants and free radi-
cals [165]. Studies confirm the effectiveness of drugs like ramipril in reducing markers of
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oxidative stress such as p47phox and p22phox, and in inhibiting NADPH-driven oxidant
production [166,167].

RAAS activation not only induces systemic insulin resistance but also affects car-
diac insulin signaling pathways, including the mTOR–S6K1 pathway [168]. Furthermore,
heightened signaling through Ang-II type 1 receptors and mineralocorticoid receptors in
myocardial cells promotes a proinflammatory immune response characterized by increased
leukocyte adhesion, cytokine expression, and macrophage infiltration, contributing to
chronic cardiac inflammation [169]. In addition to impairing insulin signaling, activation of
mineralocorticoid receptors via RAAS triggers the mTOR-S6K1 pathway, which reduces
nitric oxide production in cardiovascular tissues. This reduction impairs cardiac relaxation
and, over time, leads to vascular and cardiac stiffness, ultimately causing cardiac fibrosis
and diastolic dysfunction [170–172].

5.5. Inflammation and Maladaptive Immune Response

In conditions of insulin resistance and diabetic disease, both the innate and adaptive
immune systems play a fundamental pathophysiological role in the modulation and pro-
gression of inflammatory damage that develops at the endothelial level [173]. Moreover,
cardiac insulin signaling also appears to be altered by the pro-inflammatory response [174].
Helper T cells seem to be activated, and concomitant activation of macrophage cells is
associated with inflammatory cell proliferation and an increase in inflammatory cytokine
secretion, leading to impaired insulin signaling [175–177]. The activated T cells could mod-
ulate increased cytokine secretion, and the resultant milieu of pro-inflammatory cytokines,
chemokines, and growth factors is an important risk factor for cardiac fibrosis and impaired
diastolic relaxation [178].

Additionally, PPARα’s role in modulating the inflammatory response, mediated by the
inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity,
seems to be impaired in this context [179]. NF-κB-regulated genes are overexpressed in
these individuals, and the consequent activation of NF-κB in myocardial tissue appears to
contribute to the progression of inflammation in myocardial muscle cells in subjects with
heart failure [180].

6. Cardiovascular Diseases

As described above, the insulin–heart axis is pathologically associated with the de-
velopment of heart diseases, primarily cardiac hypertrophy and diabetic cardiomyopathy.
However, alterations in the insulin–heart axis could also be risk factors for other heart
pathologies and foster additional risk factors [99] (Figure 3).

6.1. Epidemiology Variations in the Context of Diabetes and Cardiovascular Disease Risks
6.1.1. Variations by Age

Age is a critical factor influencing the prevalence and severity of insulin resistance and
associated cardiovascular disease risks. As individuals age, there is a natural decline in
insulin sensitivity, which can be exacerbated by age-related increases in adiposity, changes
in body composition, and reductions in physical activity. Older adults often experience a
higher accumulation of visceral fat, which is strongly associated with IR [181]. Additionally,
aging is linked to a decline in β-cell function in the pancreas, resulting in reduced insulin
secretion. The combination of these factors contributes to a higher incidence of T2DM and
cardiovascular disease in the elderly [181,182]. Studies have shown that interventions such
as maintaining a healthy diet, engaging in regular physical activity, and managing body
weight are crucial in mitigating the age-related decline in insulin sensitivity and reducing
the risk of diabetes and cardiovascular complications [183].
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Figure 3. Modifications in insulin resistance pathways contributing to cardiovascular disease risk.
SNS: sympathetic nervous system, RAAS: renin–angiotensin–aldosterone system.

6.1.2. Variations by Sex

Research indicates that premenopausal women have a notably lower incidence of
metabolic disorders, including IR, compared to men [77]. This is largely due to the protec-
tive effects of female sex hormones like estradiol (17β-oestradiol) that enhance the activity
of proopiomelanocortin neurons and link insulin receptors to transient receptor potential
channel activation, thereby guarding against IR [184–186]. Endogenous estrogens also
activate estrogen receptor-α in various tissues, such as the brain, liver, skeletal muscle, and
adipose tissue, which helps reduce IR. Additionally, estrogens impact body fat levels, fat
distribution, glucose metabolism, and insulin sensitivity, leading to higher insulin respon-
siveness in premenopausal women than in men [181,187,188]. Differences in visceral and
hepatic fat, lower levels of the insulin-sensitizing hormone adiponectin, resting energy
expenditure, and lipid metabolism contribute to higher IR in males compared to females,
highlighting the need for more research into these sex-specific mechanisms [189,190].

6.1.3. Ethnic Variations

Insulin sensitivity and resistance exhibit significant variation across different ethnic
groups. In Asia, the Singapore Adults Metabolism Study found that Chinese and Malays
had higher insulin sensitivity compared to Asian Indians among lean, young Singaporean
males, correlating with a lower prevalence of T2DM in Chinese (9.7%) and Malays (16.6%)
compared to Asian Indians (17.2%) [77]. In the UK, South Asian children exhibit greater
insulin resistance than white European children, with girls showing more insulin resistance
than boys, indicating both sex and ethnic differences in insulin sensitivity and body compo-
sition [191,192]. In the USA, African Americans consistently show greater insulin resistance
compared to non-Hispanic Whites, even when factors such as fat mass and visceral adipose
tissue are accounted for. Studies among adolescents reveal that African Americans have
higher insulin resistance as measured by intravenous glucose tolerance tests compared
to Hispanics and non-Hispanic Whites, with differences persisting despite similar body
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composition and abdominal adiposity [193]. In prepubertal children, African Americans
displayed 42% lower insulin sensitivity than non-Hispanic Whites, with obesity, visceral fat,
and ethnicity being independent risk factors [194]. Furthermore, healthy African Americans
adults with a family history of diabetes show significantly lower insulin sensitivity than
their non-Hispanic Whites counterparts, highlighting ethnicity as a major determinant
of peripheral insulin sensitivity and greater hepatic glucose output [195]. Additionally, a
meta-analysis of 48 studies confirmed the finding of greater insulin resistance in healthy
African Americans compared to non-Hispanic Whites. Conversely, while Hispanic Amer-
icans exhibit similar insulin resistance to African Americans, they do not experience the
same degree of clinical disparities in diabetes and cardiovascular risk, suggesting that other
factors contribute to the racial disparity in T2DM among African Americans [196].

6.2. Impact of Insulin Resistance on Cardiac Remodeling and Hypertrophy

Cardiac remodeling, characterized by myocardial fibrosis and ventricular remodel-
ing, underlies the development of cardiac hypertrophy and precedes the onset of heart
failure [197,198]. The cardiac–insulin axis plays a pathophysiological role through both in-
tracellular and extracellular mechanisms. Cell death, induced by apoptosis and autophagy,
is fundamental to the development of cardiac hypertrophy. In a state of insulin resistance,
these processes are enhanced, mainly through the inhibition of the PI3K/Akt signaling
pathway, while the RAS/MAPK signaling pathway remains activated [199]. Mature car-
diomyocytes are non-regenerative; therefore, the increase in apoptosis and autophagy
stimulates cardiac cell hypertrophy [200–202].

A recent study evaluated the association between cardiac hypertrophy and insulin
resistance in mice subjected to abdominal aortic constriction surgery [203]. After 20 weeks
of follow-up, echocardiographic examination revealed increased parietal thickness and
diastolic pressure indicative of cardiac hypertrophy. Cardiac insulin resistance was assessed
through a glucose clamp test and evaluation of myocardial glucose uptake after insulin
infusion. Mice with cardiac hypertrophy exhibited a higher degree of insulin resistance
than the control group, as demonstrated by lower glucose uptake after insulin infusion.
The same study showed that p38 MAPK protein expression was lower in the experimental
group, indicating reduced mitochondrial biosynthesis and oxidative dysfunction associ-
ated with PGC-1 via post-transcriptional regulation [204,205]. Clinical studies have also
demonstrated the association between insulin resistance and cardiac hypertrophy. A recent
case-control study on 52 asymptomatic, Black, sub-Saharan African hypertensive subjects
found that obesity and insulin resistance are primary predictors of left ventricular hypertro-
phy [206]. Another study on a population of 1476 subjects naïve to clinical cardiovascular
disease evaluated the association of insulin resistance with heart remodeling. Cardiovas-
cular magnetic resonance imaging revealed that insulin resistance was associated with
cardiac hypertrophy, reduced myocardial shortening, and torsion [207]. Cardiac remodel-
ing associated with insulin resistance also appears to involve the right heart chambers and
results in progressive alterations in filling pressures and volumes, contributing to heart
failure risk [208]. A sub-analysis of the TOSCA study, conducted on patients with type
2 diabetes mellitus over 36 months, showed a higher risk of death and hospitalizations
associated with echocardiographic evaluation [209]. Another clinical study on subjects
with heart failure with preserved ejection fraction found a significant association between
insulin resistance and myocardial dysfunction, specifically worse left ventricular longi-
tudinal strain, even after multivariable adjustment (p = 0.040) [210]. Intriguingly, it was
observed in vivo that insulin induces a significant rise in LVEF after submaximal work.
However, this rise was significantly lower in insulin-resistant subjects, both with type 2
diabetes [211], and in obese non-diabetic subjects [212]. Furthermore, insulin resistance
has been associated with coronary artery disease [213]. In Denmark, nearly 5000 subjects
who underwent coronary angiography were screened for a genetic risk score of 53 single
nucleotide polymorphisms for cardiovascular diseases [214]. A strong association was
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found between genetic predisposition to insulin resistance and coronary artery disease (OR
1.41, 95% CI: 1.10–1.82, p < 0.01) [214].

6.3. The Role of Insulin Resistance in Altered Lipid Metabolism and Cardiovascular Risk

The altered lipid profile caused by insulin resistance typically includes hypertriglyc-
eridemia, increased concentrations of very-low-density lipoprotein (VLDL), decreased
concentrations of high-density lipoprotein (HDL), and the formation of small dense LDL
(sdLDL) [215]. Insulin regulates lipid metabolism at multiple levels. VLDL is synthesized
in the liver through a process regulated by insulin, which promotes the degradation of
apoprotein-B (apoB) via the PI3K pathway, hindering VLDL assembly and secretion. In in-
sulin resistance, this mechanism is altered, resulting in increased production of triglyceride-
rich VLDL [216]. Additionally, reduced lipoprotein clearance contributes to high circu-
lating levels of these particles [217]. The formation of sdLDL is influenced by the altered
function of cholesteryl ester transfer protein (CETP) and hepatic lipase. CETP promotes
triglyceride transfer from VLDL to LDL and HDL, increasing their triglyceride content.
These triglyceride-rich lipoproteins become substrates for hepatic lipase, which removes
triglycerides, transforming LDL into sdLDL and increasing HDL catabolism by reducing
apoprotein A (apoA) concentration [218,219]. This lipid profile is strongly atherogenic as
sdLDL penetrates the vascular wall more easily, has a longer half-life, is more oxidizable,
and has a lower affinity for LDL receptors [220]. Several studies point to a relationship
between insulin resistance and hypertension [221,222] with numerous alterations synergis-
tically damaging endothelial function and altering the balance between vasoconstrictor and
vasodilator mechanisms [223,224]. Furthermore, hypertriglyceridemia promotes hyperacti-
vation of the RAAS, which promote diabetic cardiomyopathy, as previously described [223].

6.4. The Impact of Insulin Resistance on Vascular Health and Abdominal Aortic Aneurysm Risk

Diabetes and insulin resistance exert multifaceted and detrimental effects on the vas-
cular system, often leading to endothelial dysfunction, increased arterial stiffness, and
accelerated atherosclerosis. Endothelial dysfunction, a hallmark of diabetes and insulin re-
sistance, is characterized by impaired nitric oxide bioavailability, increased oxidative stress,
and inflammatory responses within the vascular endothelium [129]. This dysfunction
contributes to increased arterial stiffness, which is further exacerbated by hyperglycemia-
induced cross-linking of collagen and other extracellular matrix components, making the
arteries less compliant and more prone to injury [225]. Additionally, insulin resistance is
associated with dyslipidemia, including elevated levels of triglycerides, LDL cholesterol,
and decreased HDL cholesterol, as previously treated, which accelerates the formation of
atherosclerotic plaques [215]. These plaques narrow the arterial lumen, restrict blood flow,
and can lead to serious cardiovascular events such as myocardial infarction and stroke [226].
These conditions are generally associated with a higher risk of cardiovascular diseases [227].
However, intriguingly, diabetes appears to be associated with a lower risk of abdominal
aortic aneurysm (AAA) [228]. The mechanisms underlying this paradoxical association
are not fully understood, but several hypotheses have been proposed. One significant
factor is the role of hyperglycemia in enhancing the cross-linking of collagen within the
arterial wall through the formation of advanced glycation end-products (AGEs). This
increased collagen cross-linking can lead to a stiffer and more structurally stable arterial
wall, which may reduce the likelihood of aneurysm formation and expansion. Additionally,
AGEs can inhibit the activity of matrix metalloproteinases (MMPs), enzymes that degrade
extracellular matrix components and are implicated in the pathogenesis of AAA. By re-
ducing MMP activity, AGEs may further contribute to the stabilization of the aortic wall
in diabetic individuals. Moreover, some diabetes medications, such as metformin, have
been shown to possess anti-inflammatory properties. Chronic inflammation is a key factor
in the development and progression of AAAs, and the anti-inflammatory effects of these
medications may help to mitigate this risk [229]. Metformin, in particular, has been noted
for its ability to improve endothelial function and reduce oxidative stress, which could



Int. J. Mol. Sci. 2024, 25, 8369 14 of 26

further protect against aneurysm formation [228]. Additionally, insulin resistance and
hyperinsulinemia associated with type 2 diabetes can lead to increased levels of insulin-
like growth factors, which may promote vascular smooth muscle cell proliferation and
contribute to the strengthening of the arterial wall [230]. This proliferative effect could
counteract the typical weakening of the aortic wall observed in AAA. Despite the general
negative impact of diabetes on vascular health, these specific mechanisms appear to confer
a protective effect against the development of AAA. However, it is important to note that
while diabetes may reduce the risk of AAA, it does not eliminate it entirely [228].

7. Cardiovascular Advantages of Insulin Therapy

Exogenous insulin has emerged as a potential player in cardiovascular health, offering
a range of benefits through various mechanisms, as evidenced by both experimental
models and clinical applications. However, the effectiveness and safety of insulin therapy
in improving cardiovascular outcomes require careful consideration of its benefits and
potential risks [231].

7.1. Experimental Models

In experimental settings, insulin’s cardiovascular benefits are primarily linked to
its vasodilatory and antiatherogenic effects. Insulin exerts potent vasodilatory effects by
stimulating the production of nitric oxide (NO), a crucial vasodilator that reduces vascular
resistance and enhances blood flow in both peripheral and coronary circulations [232–234].
This vasodilatory effect is mediated through the activation of endothelial NO synthase
(eNOS), which is facilitated by the PI3K signaling pathway [235,236]. In animal models,
insulin has been shown to improve blood flow by increasing capillary recruitment and
enhancing vasodilation in response to physiological stimuli [235,236]. In addition to its
vasodilatory properties, insulin has demonstrated antiatherogenic effects in experimen-
tal models. Studies have shown that insulin administration reduces the size of aortic
atherosclerotic lesions in genetically modified mice, such as apolipoprotein E (ApoE) knock-
out mice, which are prone to atherosclerosis [237]. Furthermore, the conditional deletion
of insulin receptors in these models results in accelerated atherosclerosis, underscoring
the importance of insulin signaling in maintaining vascular health [238]. Insulin’s ability
to modulate vascular inflammation is another critical factor. It reduces the expression
of proinflammatory cytokines and transcription factors, such as nuclear factor-kappa B
(NF-κB), which are involved in chronic inflammation and atherosclerosis. By decreasing
oxidative stress and inflammatory markers, insulin helps mitigate the risk of cardiovascular
diseases associated with chronic inflammation [239,240].

7.2. Clinical Setting

Clinical evidence further supports the cardiovascular benefits of insulin therapy, par-
ticularly in the management of diabetes. The Diabetes Control and Complications Trial
(DCCT) and its long-term follow-up, the Epidemiology of Diabetes Interventions and Com-
plications (EDIC) study, provide robust evidence that intensive insulin therapy improves
glycemic control and reduces cardiovascular events in individuals with type 1 diabetes.
This reduction in cardiovascular risk is attributed to better overall glycemic control, which
helps prevent endothelial dysfunction and arterial damage [241,242]. However, the clinical
application of insulin is not without challenges. Intensive insulin therapy is often associated
with an increased risk of hypoglycemia, which has been linked to adverse cardiovascular
outcomes. The ACCORD and ADVANCE trials highlighted that severe hypoglycemia
could lead to a two- to threefold increase in cardiovascular events and mortality. This risk
underscores the need for careful monitoring and management of blood glucose levels to
prevent hypoglycemic episodes [243,244]. In addition to its role in managing blood glucose
levels, insulin has antiplatelet effects that are beneficial in preventing cardiovascular events.
In healthy males, insulin reduced platelet aggregation in response to various agonists by
producing NO and cGMP [245,246]. Insulin reduces platelet aggregation and hyperactivity,
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which is particularly relevant in the context of acute coronary syndromes [247]. Finally,
insulin therapy has also been shown to impact carotid intima-media thickness, a surrogate
marker for atherosclerosis. Intensive insulin therapy can significantly slow the progression
of this marker in patients with type 1 diabetes, indicating a potential protective effect
against atherosclerosis. Additionally, insulin’s ability to modulate inflammation and ox-
idative stress in clinical settings adds to its cardiovascular benefits, making it a valuable
component of diabetes management [248].

8. Future Directions

Future research should focus on elucidating the precise molecular mechanisms under-
lying the insulin–cardiac axis and its cardiovascular manifestations. Investigating novel
therapeutic targets, such as specific signaling pathways and molecular mediators involved
in insulin-stimulated glucose uptake and cardiac insulin signaling, holds promise for devel-
oping more effective treatments. In particular, research into GLP-1 receptor agonists, as well
as GLP-1/GIP and GLP-1/GIP/glucagon agonists, could enhance understanding of their
dual role in improving insulin sensitivity and conferring cardiovascular benefits through
endothelial function improvement and inflammation reduction [249]. Similarly, SGLT2 in-
hibitors, which offer cardiovascular protection beyond glycemic control by lowering blood
pressure and optimizing myocardial metabolism, are crucial areas of study [250]. Exploring
adiponectin mimetics, such as AdipoRon, that replicate adiponectin’s anti-inflammatory
and anti-atherogenic effects could also yield significant therapeutic insights [251]. Addi-
tionally, addressing the role of resistin and developing antagonists to counteract its adverse
cardiovascular impacts remains a vital area for research [252]. Moreover, exploring the
genetic and epigenetic factors contributing to insulin–cardiac axis and its complications
could provide insights into personalized medicine approaches [253]. Longitudinal studies
are needed to better understand the progression of insulin resistance-related cardiovascular
diseases and the impact of early interventions, as well as the impact of a multifactorial
approach and in special populations [254–257]. Lastly, clinical trials evaluating the ef-
ficacy and safety of new pharmacological agents targeting insulin–cardiac axis and its
downstream effects on the cardiovascular system are crucial [258].

9. Research Methodology

To investigate the insulin–heart axis, we conducted a comprehensive literature search
in PubMed, Scopus, and Web of Science (last accessed on 24 July 2024) using keywords
such as “insulin signaling”, “heart”, “cardiomyocytes”, “metabolic dysfunction”, “cardio-
vascular disease”, and related terms. Our search included articles published since June
2024, focusing on peer-reviewed studies in English. From an initial pool of more than
2500 articles, we screened titles and abstracts, excluding articles not meeting our inclusion
criteria (studies focusing on the physiological role of insulin in cardiomyocytes, research
addressing the pathological implications of disrupted insulin signaling in cardiovascu-
lar diseases, experimental studies, clinical trials, and observational studies that provide
insights into the insulin–heart axis). The full texts of about 1000 articles were assessed,
leading to the selection of 258 articles relevant to the physiological and pathological roles
of insulin signaling in the heart. We synthesized data from these studies to highlight
key mechanisms and therapeutic implications, while noting the limitation of excluding
non-English articles.

10. Conclusions

Insulin resistance is a multifaceted condition with significant implications for car-
diovascular health. It involves complex interactions between insulin signaling pathways,
metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, RAAS
activation, and inflammation. These processes contribute to the development of diabetic
cardiomyopathy, cardiac hypertrophy, and other cardiovascular diseases. Understanding
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the underlying mechanisms and identifying effective therapeutic targets are essential for
mitigating the adverse cardiovascular effects of insulin resistance.

Author Contributions: Conceptualization, A.C., R.G. and E.V.; methodology: A.C., R.G. and E.V.;
writing—original draft preparation, A.C., R.G. and E.V.; writing—review and editing, A.C., R.G., E.V.,
C.S., L.R., V.R., M.M. and R.M.; supervision R.M., M.M. and F.C.S. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors received no financial support for the research, authorship, and/or publication
of this article.

Institutional Review Board Statement: The authors have reviewed the literature data and have
reported results coming from studies approved by local ethics committee.

Informed Consent Statement: Not applicable.

Data Availability Statement: No dataset was generated for the publication of this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Abel, E.D. Insulin signaling in the heart. Am. J. Physiol. Endocrinol. Metab. 2021, 321, E130–E145. [CrossRef] [PubMed]
2. Belke, D.D.; Betuing, S.; Tuttle, M.J.; Graveleau, C.; Young, M.E.; Pham, M.; Zhang, D.; Cooksey, R.C.; McClain, D.A.; Litwin,

S.E.; et al. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J. Clin.
Investig. 2002, 109, 629–639. [CrossRef] [PubMed]

3. Opie, L.H.; Lopaschuk, G.D. Fuels: Aerobic and anaerobic metabolism. In Heart Physiology, from Cell to Circulation; Opie, L.H., Ed.;
Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004; pp. 306–354.

4. Kolwicz, S.C., Jr.; Purohit, S.; Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of
cardiomyocytes. Circ. Res. 2013, 113, 603–616. [CrossRef] [PubMed]

5. Randle, P.J.; Garland, P.B.; Hales, C.N.; Newsholme, E.A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the
metabolic disturbances of diabetes mellitus. Lancet 1963, 1, 785–789. [CrossRef] [PubMed]

6. Opie, L.H. Cardiac metabolism–emergence, decline, and resurgence. Part II. Cardiovasc. Res. 1992, 26, 817–830. [CrossRef]
[PubMed]

7. Bertrand, L.; Horman, S.; Beauloye, C.; Vanoverschelde, J.L. Insulin signalling in the heart. Cardiovasc. Res. 2008, 79, 238–248.
[CrossRef]

8. Chen, Y.X.; Zhao, A.R.; Wei, T.W.; Wang, H.; Wang, L.S. Progress of Mitochondrial Function Regulation in Cardiac Regeneration.
J. Cardiovasc. Transl. Res. 2024. [CrossRef]

9. Wang, L.Y.; Chen, C. Energy metabolism homeostasis in cardiovascular diseases. J. Geriatr. Cardiol. 2021, 18, 1044–1057. [CrossRef]
[PubMed]

10. Ritterhoff, J.; Tian, R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: New paradigms and
challenges. Nat. Rev. Cardiol. 2023, 20, 812–829. [CrossRef]

11. Wilhelmi de Toledo, F.; Grundler, F.; Sirtori, C.R.; Ruscica, M. Unravelling the health effects of fasting: A long road from obesity
treatment to healthy life span increase and improved cognition. Ann. Med. 2020, 52, 147–161. [CrossRef]

12. Ikeda, H.; Shiojima, I.; Ozasa, Y.; Yoshida, M.; Holzenberger, M.; Kahn, C.R.; Walsh, K.; Igarashi, T.; Abel, E.D.; Komuro, I.
Interaction of myocardial insulin receptor and IGF receptor signaling in exercise-induced cardiac hypertrophy. J. Mol. Cell. Cardiol.
2009, 47, 664–675. [CrossRef] [PubMed]

13. Hermida, M.A.; Dinesh Kumar, J.; Leslie, N.R. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv.
Biol. Regul. 2017, 65, 5–15. [CrossRef] [PubMed]

14. Vidal, S.; Bouzaher, Y.H.; El Motiam, A.; Seoane, R.; Rivas, C. Overview of the regulation of the class IA PI3K/AKT pathway by
SUMO. Semin. Cell Dev. Biol. 2022, 132, 51–61. [CrossRef] [PubMed]

15. Shiojima, I.; Yefremashvili, M.; Luo, Z.; Kureishi, Y.; Takahashi, A.; Tao, J.; Rosenzweig, A.; Kahn, C.R.; Abel, E.D.; Walsh, K. Akt
signaling mediates postnatal heart growth in response to insulin and nutritional status. J. Biol. Chem. 2002, 277, 37670–37677.
[CrossRef] [PubMed]

16. Skurk, C.; Izumiya, Y.; Maatz, H.; Razeghi, P.; Shiojima, I.; Sandri, M.; Sato, K.; Zeng, L.; Schiekofer, S.; Pimentel, D.; et al. The
FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J. Biol. Chem. 2005, 280, 20814–20823.
[CrossRef] [PubMed]

17. Safaroghli-Azar, A.; Sanaei, M.J.; Pourbagheri-Sigaroodi, A.; Bashash, D. Phosphoinositide 3-kinase (PI3K) classes: From cell
signaling to endocytic recycling and autophagy. Eur. J. Pharmacol. 2023, 953, 175827. [CrossRef] [PubMed]

18. Riehle, C.; Abel, E.D. Insulin signaling and heart failure. Circ. Res. 2016, 118, 1151–1169. [CrossRef] [PubMed]
19. Lopaschuk, G.D.; Folmes, C.D.; Stanley, W.C. Cardiac energy metabolism in obesity. Circ. Res. 2007, 101, 335–347. [CrossRef]

[PubMed]

https://doi.org/10.1152/ajpendo.00158.2021
https://www.ncbi.nlm.nih.gov/pubmed/34056923
https://doi.org/10.1172/JCI0213946
https://www.ncbi.nlm.nih.gov/pubmed/11877471
https://doi.org/10.1161/CIRCRESAHA.113.302095
https://www.ncbi.nlm.nih.gov/pubmed/23948585
https://doi.org/10.1016/S0140-6736(63)91500-9
https://www.ncbi.nlm.nih.gov/pubmed/13990765
https://doi.org/10.1093/cvr/26.9.817
https://www.ncbi.nlm.nih.gov/pubmed/1451158
https://doi.org/10.1093/cvr/cvn093
https://doi.org/10.1007/s12265-024-10514-w
https://doi.org/10.11909/j.issn.1671-5411.2021.12.006
https://www.ncbi.nlm.nih.gov/pubmed/35136399
https://doi.org/10.1038/s41569-023-00887-x
https://doi.org/10.1080/07853890.2020.1770849
https://doi.org/10.1016/j.yjmcc.2009.08.028
https://www.ncbi.nlm.nih.gov/pubmed/19744489
https://doi.org/10.1016/j.jbior.2017.06.003
https://www.ncbi.nlm.nih.gov/pubmed/28712664
https://doi.org/10.1016/j.semcdb.2021.10.012
https://www.ncbi.nlm.nih.gov/pubmed/34753687
https://doi.org/10.1074/jbc.M204572200
https://www.ncbi.nlm.nih.gov/pubmed/12163490
https://doi.org/10.1074/jbc.M500528200
https://www.ncbi.nlm.nih.gov/pubmed/15781459
https://doi.org/10.1016/j.ejphar.2023.175827
https://www.ncbi.nlm.nih.gov/pubmed/37269974
https://doi.org/10.1161/CIRCRESAHA.116.306206
https://www.ncbi.nlm.nih.gov/pubmed/27034277
https://doi.org/10.1161/CIRCRESAHA.107.150417
https://www.ncbi.nlm.nih.gov/pubmed/17702980


Int. J. Mol. Sci. 2024, 25, 8369 17 of 26

20. Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005,
85, 1093–1129. [CrossRef]

21. Kodde, I.F.; van der Stok, J.; Smolenski, R.T.; de Jong, J.W. Metabolic and genetic regulation of cardiac energy substrate preference.
Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 146, 26–39. [CrossRef]

22. Ventura-Clapier, R.; Garnier, A.; Veksler, V. Energy metabolism in heart failure. J. Physiol. 2004, 555, 1–13. [CrossRef]
23. Siddle, K.; Urso, B.; Niesler, C.A.; Cope, D.L.; Molina, L.; Surinya, K.H.; Soos, M.A. Specificity in ligand binding and intracellular

signalling by insulin and insulin-like growth factor receptors. Biochem. Soc. Trans. 2001, 29, 513–525. [CrossRef]
24. Nakae, J.; Kido, Y.; Accili, D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev. 2001, 22, 818–835.

[CrossRef]
25. Avruch, J. Insulin signal transduction through protein kinase cascades. Mol. Cell. Biochem. 1998, 182, 31–48. [CrossRef] [PubMed]
26. Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806.

[CrossRef] [PubMed]
27. Muniyappa, R.; Montagnani, M.; Koh, K.K.; Quon, M.J. Cardiovascular actions of insulin. Endocr. Rev. 2007, 28, 463–491.

[CrossRef]
28. Thirone, A.C.; Huang, C.; Klip, A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol.

Metab. 2006, 17, 72–78. [CrossRef] [PubMed]
29. Heineke, J.; Molkentin, J.D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 2006,

7, 589–600. [CrossRef]
30. McMullen, J.R.; Jennings, G.L. Differences between pathological and physiological cardiac hypertrophy: Novel therapeutic

strategies to treat heart failure. Clin. Exp. Pharmacol. Physiol. 2007, 34, 255–262. [CrossRef]
31. Proud, C.G. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc. Res. 2004, 63, 403–413. [CrossRef]
32. Wang, Y. Mitogen-activated protein kinases in heart development and diseases. Circulation 2007, 116, 1413–1423. [CrossRef]

[PubMed]
33. DeBosch, B.; Sambandam, N.; Weinheimer, C.; Courtois, M.; Muslin, A.J. Akt2 regulates cardiac metabolism and cardiomyocyte

survival. J. Biol. Chem. 2006, 281, 32841–32851. [CrossRef] [PubMed]
34. Gu, J.; Yan, X.; Dai, X.; Wang, Y.; Lin, Q.; Xiao, J.; Zhou, S.; Zhang, J.; Wang, K.; Zeng, J.; et al. Metallothionein Preserves Akt2

Activity and Cardiac Function via Inhibiting TRB3 in Diabetic Hearts. Diabetes 2018, 67, 507–517. [CrossRef] [PubMed]
35. Abel, E.D.; Kaulbach, H.C.; Tian, R.; Hopkins, J.C.; Duffy, J.; Doetschman, T.; Minnemann, T.; Boers, M.E.; Hadro, E.; Oberste-

Berghaus, C.; et al. Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J.
Clin. Investig. 1999, 104, 1703–1714. [CrossRef] [PubMed]

36. Tian, R.; Abel, E.D. Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 2001,
103, 2961–2966. [CrossRef] [PubMed]

37. Wende, A.R.; Kim, J.; Holland, W.L.; Wayment, B.E.; O’Neill, B.T.; Tuinei, J.; Brahma, M.K.; Pepin, M.E.; McCrory, M.A.; Luptak,
I.; et al. Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological
stresses. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H1098–H1108. [CrossRef] [PubMed]

38. Fischer-Rasokat, U.; Beyersdorf, F.; Doenst, T. Insulin addition after ischemia improves recovery of function equal to ischemic
preconditioning in rat heart. Basic Res. Cardiol. 2003, 98, 329–336. [CrossRef] [PubMed]

39. Fischer-Rasokat, U.; Doenst, T. Insulin-induced improvement of postischemic recovery is abolished by inhibition of protein kinase
C in rat heart. J. Thorac. Cardiovasc. Surg. 2003, 126, 1806–1812. [CrossRef] [PubMed]

40. Zaha, V.; Francischetti, I.; Doesn’t, T. Insulin improves postischemic recovery of function through PI3K in isolated working rat
heart. Mol. Cell. Biochem. 2003, 247, 229–232. [CrossRef]

41. Fullmer, T.M.; Pei, S.; Zhu, Y.; Sloan, C.; Manzanares, R.; Henrie, B.; Pires, K.M.; Cox, J.E.; Abel, E.D.; Boudina, S. Insulin
suppresses ischemic preconditioning-mediated cardioprotection through Akt-dependent mechanisms. J. Mol. Cell. Cardiol. 2013,
64, 20–29. [CrossRef]

42. Watson, R.T.; Pessin, J.E. Bridging the GAP between insulin signaling and GLUT4 translocation. Trends Biochem. Sci. 2006, 31,
215–222. [CrossRef] [PubMed]

43. Watson, R.T.; Pessin, J.E. GLUT4 translocation: The last 200 nanometers. Cell Signal. 2007, 19, 2209–2217. [CrossRef]
44. Huang, S.; Czech, M.P. The GLUT4 glucose transporter. Cell Metab. 2007, 5, 237–252. [CrossRef] [PubMed]
45. He, A.; Liu, X.; Liu, L.; Chang, Y.; Fang, F. How many signals impinge on GLUT4 activation by insulin? Cell Signal. 2007, 19, 1–7.

[CrossRef] [PubMed]
46. Berwick, D.C.; Dell, G.C.; Welsh, G.I.; Heesom, K.J.; Hers, I.; Fletcher, L.M.; Cooke, F.T.; Tavaré, J.M. Protein kinase B phosphoryla-

tion of PIKfyve regulates the trafficking of GLUT4 vesicles. J. Cell Sci. 2004, 117, 5985–5993. [CrossRef]
47. Yamada, E.; Okada, S.; Saito, T.; Ohshima, K.; Sato, M.; Tsuchiya, T.; Uehara, Y.; Shimizu, H.; Mori, M. Akt2 phosphorylates Synip

to regulate docking and fusion of GLUT4-containing vesicles. J. Cell Biol. 2005, 168, 921–928. [CrossRef] [PubMed]
48. Lefebvre, V.; Mechin, M.C.; Louckx, M.P.; Rider, M.H.; Hue, L. Signaling pathway involved in the activation of heart 6-

phosphofructo-2-kinase by insulin. J. Biol. Chem. 1996, 271, 22289–22292. [CrossRef]
49. Hue, L.; Beauloye, C.; Marsin, A.S.; Bertrand, L.; Horman, S.; Rider, M.H. Insulin and ischemia stimulate glycolysis by acting on

the same targets through different and opposing signaling pathways. J. Mol. Cell. Cardiol. 2002, 34, 1091–1097. [CrossRef]

https://doi.org/10.1152/physrev.00006.2004
https://doi.org/10.1016/j.cbpa.2006.09.014
https://doi.org/10.1113/jphysiol.2003.055095
https://doi.org/10.1042/bst0290513
https://doi.org/10.1210/edrv.22.6.0452
https://doi.org/10.1023/A:1006823109415
https://www.ncbi.nlm.nih.gov/pubmed/9609112
https://doi.org/10.1038/414799a
https://www.ncbi.nlm.nih.gov/pubmed/11742412
https://doi.org/10.1210/er.2007-0006
https://doi.org/10.1016/j.tem.2006.01.005
https://www.ncbi.nlm.nih.gov/pubmed/16458527
https://doi.org/10.1038/nrm1983
https://doi.org/10.1111/j.1440-1681.2007.04585.x
https://doi.org/10.1016/j.cardiores.2004.02.003
https://doi.org/10.1161/CIRCULATIONAHA.106.679589
https://www.ncbi.nlm.nih.gov/pubmed/17875982
https://doi.org/10.1074/jbc.M513087200
https://www.ncbi.nlm.nih.gov/pubmed/16950770
https://doi.org/10.2337/db17-0219
https://www.ncbi.nlm.nih.gov/pubmed/29079702
https://doi.org/10.1172/JCI7605
https://www.ncbi.nlm.nih.gov/pubmed/10606624
https://doi.org/10.1161/01.CIR.103.24.2961
https://www.ncbi.nlm.nih.gov/pubmed/11413087
https://doi.org/10.1152/ajpheart.00101.2017
https://www.ncbi.nlm.nih.gov/pubmed/28822962
https://doi.org/10.1007/s00395-003-0414-y
https://www.ncbi.nlm.nih.gov/pubmed/12955406
https://doi.org/10.1016/S0022-5223(03)01229-7
https://www.ncbi.nlm.nih.gov/pubmed/14688691
https://doi.org/10.1023/A:1024183527668
https://doi.org/10.1016/j.yjmcc.2013.08.005
https://doi.org/10.1016/j.tibs.2006.02.007
https://www.ncbi.nlm.nih.gov/pubmed/16540333
https://doi.org/10.1016/j.cellsig.2007.06.003
https://doi.org/10.1016/j.cmet.2007.03.006
https://www.ncbi.nlm.nih.gov/pubmed/17403369
https://doi.org/10.1016/j.cellsig.2006.05.018
https://www.ncbi.nlm.nih.gov/pubmed/16919913
https://doi.org/10.1242/jcs.01517
https://doi.org/10.1083/jcb.200408182
https://www.ncbi.nlm.nih.gov/pubmed/15753124
https://doi.org/10.1074/jbc.271.37.22289
https://doi.org/10.1006/jmcc.2002.2063


Int. J. Mol. Sci. 2024, 25, 8369 18 of 26

50. Rider, M.H.; Bertrand, L.; Vertommen, D.; Michels, P.A.; Rousseau, G.G.; Hue, L. 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase: Head-to-head with a bifunctional enzyme that controls glycolysis. Biochem. J. 2004, 381, 561–579. [CrossRef]

51. Rider, M.H.; Hue, L. Activation of rat heart phosphofructokinase-2 by insulin in vivo. FEBS Lett. 1984, 176, 484–488. [CrossRef]
52. Murashige, D.; Jang, C.; Neinast, M.; Edwards, J.J.; Cowan, A.; Hyman, M.C.; Rabinowitz, J.D.; Frankel, D.S.; Arany, Z.

Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 2020, 370, 364–368. [CrossRef]
[PubMed]

53. Barrett, E.J.; Schwartz, R.G.; Francis, C.K.; Zaret, B.L. Regulation by insulin of myocardial glucose and fatty acid metabolism in
the conscious dog. J. Clin. Investig. 1984, 74, 1073–1079. [CrossRef] [PubMed]

54. Peterson, L.R.; Herrero, P.; McGill, J.; Schechtman, K.B.; Kisrieva-Ware, Z.; Lesniak, D.; Gropler, R.J. Fatty acids and insulin
modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes 2008, 57, 32–40. [CrossRef] [PubMed]

55. Labbé, S.M.; Grenier-Larouche, T.; Noll, C.; Phoenix, S.; Guérin, B.; Turcotte, E.E.; Carpentier, A.C. Increased myocardial uptake
of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans. Diabetes 2012, 61, 2701–2710. [CrossRef]

56. Labbé, S.M.; Grenier-Larouche, T.; Croteau, E.; Normand-Lauzière, F.; Frisch, F.; Ouellet, R.; Guérin, B.; Turcotte, E.E.; Carpentier,
A.C. Organ-specific dietary fatty acid uptake in humans using positron emission tomography coupled to computed tomography.
Am. J. Physiol. Endocrinol. Metab. 2011, 300, E445–E453. [CrossRef] [PubMed]

57. Russell, R.R., 3rd; Cline, G.W.; Guthrie, P.H.; Goodwin, G.W.; Shulman, G.I.; Taegtmeyer, H. Regulation of exogenous and
endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart. A three tracer study of glycolysis,
glycogen metabolism, and glucose oxidation. J. Clin. Investig. 1997, 100, 2892–2899. [CrossRef] [PubMed]

58. Chen, T.M.; Goodwin, G.W.; Guthrie, P.H.; Taegtmeyer, H. Effects of insulin on glucose uptake by rat hearts during and after
coronary flow reduction. Am. J. Physiol. 1997, 273, H2170–H2177. [CrossRef]

59. Mazumder, P.K.; O’Neill, B.T.; Roberts, M.W.; Buchanan, J.; Yun, U.J.; Cooksey, R.C.; Boudina, S.; Abel, E.D. Impaired cardiac
efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 2004, 53, 2366–2374. [CrossRef]

60. Karwi, Q.G.; Wagg, C.S.; Altamimi, T.R.; Uddin, G.M.; Ho, K.L.; Darwesh, A.M.; Seubert, J.M.; Lopaschuk, G.D. Insulin directly
stimulates mitochondrial glucose oxidation in the heart. Cardiovasc. Diabetol. 2020, 19, 207. [CrossRef]

61. Kovacic, S.; Soltys, C.L.; Barr, A.J.; Shiojima, I.; Walsh, K.; Dyck, J.R. Akt activity negatively regulates phosphorylation of
AMP-activated protein kinase in the heart. J. Biol. Chem. 2003, 278, 39422–39427. [CrossRef]

62. Gamble, J.; Lopaschuk, G.D. Insulin inhibition of 5′ adenosine monophosphate-activated protein kinase in the heart results in
activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism 1997, 46, 1270–1274. [CrossRef]
[PubMed]

63. Luiken, J.J.; Ouwens, D.M.; Habets, D.D.; van der Zon, G.C.; Coumans, W.A.; Schwenk, R.W.; Bonen, A.; Glatz, J.F. Permissive
action of protein kinase C-zeta in insulin-induced CD36- and GLUT4 translocation in cardiac myocytes. J. Endocrinol. 2009, 201,
199–209. [CrossRef] [PubMed]

64. Jain, S.S.; Luiken, J.J.; Snook, L.A.; Han, X.X.; Holloway, G.P.; Glatz, J.F.; Bonen, A. Fatty acid transport and transporters in muscle
are critically regulated by Akt2. FEBS Lett. 2015, 589, 2769–2775. [CrossRef] [PubMed]

65. Banke, N.H.; Wende, A.R.; Leone, T.C.; O’Donnell, J.M.; Abel, E.D.; Kelly, D.P.; Lewandowski, E.D. Preferential oxidation of
triacylglyceride-derived fatty acids in heart is augmented by the nuclear receptor PPARalpha. Circ. Res. 2010, 107, 233–241.
[CrossRef] [PubMed]

66. Hedhli, N.; Pelat, M.; Depre, C. Protein turnover in cardiac cell growth and survival. Cardiovasc. Res. 2005, 68, 186–196. [CrossRef]
[PubMed]

67. Proud, C.G. Signalling to translation: How signal transduction pathways control the protein synthetic machinery. Biochem. J.
2007, 403, 217–234. [CrossRef] [PubMed]

68. Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat.
Cell Biol. 2002, 4, 648–657. [CrossRef]

69. Potter, C.J.; Pedraza, L.G.; Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 2002, 4, 658–665. [CrossRef]
[PubMed]

70. Manning, B.D.; Cantley, L.C. Rheb fills a GAP between TSC and TOR. Trends Biochem. Sci. 2003, 28, 573–576. [CrossRef]
71. Rolfe, M.; McLeod, L.E.; Pratt, P.F.; Proud, C.G. Activation of protein synthesis in cardiomyocytes by the hypertrophic agent

phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochem. J.
2005, 388, 973–984. [CrossRef]

72. Pham, F.H.; Sugden, P.H.; Clerk, A. Regulation of protein kinase B and 4E-BP1 by oxidative stress in cardiac myocytes. Circ. Res.
2000, 86, 1252–1258. [CrossRef] [PubMed]

73. Sharma, S.; Guthrie, P.H.; Chan, S.S.; Haq, S.; Taegtmeyer, H. Glucose phosphorylation is required for insulin-dependent mTOR
signalling in the heart. Cardiovasc. Res. 2007, 76, 71–80. [CrossRef] [PubMed]

74. Wang, L.; Wang, X.; Proud, C.G. Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-
sensitive steps. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1056–H1068. [CrossRef] [PubMed]

75. Kim, J.; Wende, A.R.; Sena, S.; Theobald, H.A.; Soto, J.; Sloan, C.; Wayment, B.E.; Litwin, S.E.; Holzenberger, M.; LeRoith, D.; et al.
Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol. Endocrinol. 2008, 22,
2531–2543. [CrossRef] [PubMed]

https://doi.org/10.1042/BJ20040752
https://doi.org/10.1016/0014-5793(84)81223-5
https://doi.org/10.1126/science.abc8861
https://www.ncbi.nlm.nih.gov/pubmed/33060364
https://doi.org/10.1172/JCI111474
https://www.ncbi.nlm.nih.gov/pubmed/6381537
https://doi.org/10.2337/db07-1199
https://www.ncbi.nlm.nih.gov/pubmed/17914030
https://doi.org/10.2337/db11-1805
https://doi.org/10.1152/ajpendo.00579.2010
https://www.ncbi.nlm.nih.gov/pubmed/21098737
https://doi.org/10.1172/JCI119838
https://www.ncbi.nlm.nih.gov/pubmed/9389756
https://doi.org/10.1152/ajpheart.1997.273.5.H2170
https://doi.org/10.2337/diabetes.53.9.2366
https://doi.org/10.1186/s12933-020-01177-3
https://doi.org/10.1074/jbc.M305371200
https://doi.org/10.1016/S0026-0495(97)90229-8
https://www.ncbi.nlm.nih.gov/pubmed/9361684
https://doi.org/10.1677/JOE-09-0046
https://www.ncbi.nlm.nih.gov/pubmed/19273501
https://doi.org/10.1016/j.febslet.2015.08.010
https://www.ncbi.nlm.nih.gov/pubmed/26296318
https://doi.org/10.1161/CIRCRESAHA.110.221713
https://www.ncbi.nlm.nih.gov/pubmed/20522803
https://doi.org/10.1016/j.cardiores.2005.06.025
https://www.ncbi.nlm.nih.gov/pubmed/16061215
https://doi.org/10.1042/BJ20070024
https://www.ncbi.nlm.nih.gov/pubmed/17376031
https://doi.org/10.1038/ncb839
https://doi.org/10.1038/ncb840
https://www.ncbi.nlm.nih.gov/pubmed/12172554
https://doi.org/10.1016/j.tibs.2003.09.003
https://doi.org/10.1042/BJ20041888
https://doi.org/10.1161/01.RES.86.12.1252
https://www.ncbi.nlm.nih.gov/pubmed/10864916
https://doi.org/10.1016/j.cardiores.2007.05.004
https://www.ncbi.nlm.nih.gov/pubmed/17553476
https://doi.org/10.1152/ajpheart.2000.278.4.H1056
https://www.ncbi.nlm.nih.gov/pubmed/10749698
https://doi.org/10.1210/me.2008-0265
https://www.ncbi.nlm.nih.gov/pubmed/18801929


Int. J. Mol. Sci. 2024, 25, 8369 19 of 26

76. Riehle, C.; Wende, A.R.; Zhu, Y.; Oliveira, K.J.; Pereira, R.O.; Jaishy, B.P.; Bevins, J.; Valdez, S.; Noh, J.; Kim, B.J.; et al. Insulin
receptor substrates are essential for the bioenergetic and hypertrophic response of the heart to exercise training. Mol. Cell. Biol.
2014, 34, 3450–3460. [CrossRef] [PubMed]

77. Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in insulin resistance: Insights into mechanisms and therapeutic
strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [CrossRef]
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