Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 May 1;267(3):647–652. doi: 10.1042/bj2670647

Different receptors mediate the hepatic catabolism of tissue-type plasminogen activator and urokinase.

J Krause 1, W Seydel 1, G Heinzel 1, P Tanswell 1
PMCID: PMC1131346  PMID: 2160232

Abstract

Tissue-type plasminogen activator (t-PA) and urokinase (u-PA) are proteins with partial structural similarity and which are of importance in the therapy of thrombotic diseases. Both are known to be cleared from the circulation in vivo by uptake in the liver. The present study investigated whether the hepatic catabolism of u-PA and t-PA is mediated by a common receptor system. Four experimental protocols of increasing complexity were used: hepatocyte plasma membranes, isolated primary hepatocytes, liver perfusion and whole animals. For t-PA, a specific high-affinity binding site to hepatocytes and plasma membranes could be defined with a mean Kd of 4 +/- 3 nM, whereas the Kd for u-PA was less than 300 nM. Binding of t-PA could not be competed for by u-PA, and vice versa. Furthermore, clearance of t-PA in isolated perfused rat livers and in rabbits in vivo was 3-fold higher than that of u-PA, and a 50-100-fold molar excess of u-PA failed to inhibit clearance of t-PA in either system, and vice versa. Taken together, the results imply that hepatic elimination of t-PA and u-PA is mediated by distinct receptor systems of differing affinity.

Full text

PDF
647

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkesteijn C. L. A kinetic method for serum 5'-nucleotidase using stabilised glutamate dehydrogenase. J Clin Chem Clin Biochem. 1976 Mar;14(3):155–158. doi: 10.1515/cclm.1976.14.1-12.155. [DOI] [PubMed] [Google Scholar]
  2. Bakhit C., Lewis D., Billings R., Malfroy B. Cellular catabolism of recombinant tissue-type plasminogen activator. Identification and characterization of a novel high affinity uptake system on rat hepatocytes. J Biol Chem. 1987 Jun 25;262(18):8716–8720. [PubMed] [Google Scholar]
  3. Blasi F., Riccio A., Sebastio G. Human plasminogen activators. Genes and proteins structure. Horiz Biochem Biophys. 1986;8:377–414. [PubMed] [Google Scholar]
  4. Collen D. Molecular mechanisms of fibrinolysis and their application to fibrin-specific thrombolytic therapy. J Cell Biochem. 1987 Feb;33(2):77–86. doi: 10.1002/jcb.240330202. [DOI] [PubMed] [Google Scholar]
  5. Einarsson M., Smedsrød B., Pertoft H. Uptake and degradation of tissue plasminogen activator in rat liver. Thromb Haemost. 1988 Jun 16;59(3):474–479. [PubMed] [Google Scholar]
  6. Emeis J. J., van den Hoogen C. M., Jense D. Hepatic clearance of tissue-type plasminogen activator in rats. Thromb Haemost. 1985 Oct 30;54(3):661–664. [PubMed] [Google Scholar]
  7. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  8. Fuchs H. E., Berger H., Jr, Pizzo S. V. Catabolism of human tissue plasminogen activator in mice. Blood. 1985 Mar;65(3):539–544. [PubMed] [Google Scholar]
  9. GIANETTO R., DE DUVE C. Tissue fractionation studies. 4. Comparative study of the binding of acid phosphatase, beta-glucuronidase and cathepsin by rat-liver particles. Biochem J. 1955 Mar;59(3):433–438. doi: 10.1042/bj0590433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gordon P. B., Kovacs A. L., Seglen P. O. Temperature dependence of protein degradation, autophagic sequestration and mitochondrial sugar uptake in rat hepatocytes. Biochim Biophys Acta. 1987 Jul 6;929(2):128–133. doi: 10.1016/0167-4889(87)90167-4. [DOI] [PubMed] [Google Scholar]
  11. Hajjar K. A., Hamel N. M., Harpel P. C., Nachman R. L. Binding of tissue plasminogen activator to cultured human endothelial cells. J Clin Invest. 1987 Dec;80(6):1712–1719. doi: 10.1172/JCI113262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hearing V. J., Law L. W., Corti A., Appella E., Blasi F. Modulation of metastatic potential by cell surface urokinase of murine melanoma cells. Cancer Res. 1988 Mar 1;48(5):1270–1278. [PubMed] [Google Scholar]
  13. Hotchkiss A., Refino C. J., Leonard C. K., O'Connor J. V., Crowley C., McCabe J., Tate K., Nakamura G., Powers D., Levinson A. The influence of carbohydrate structure on the clearance of recombinant tissue-type plasminogen activator. Thromb Haemost. 1988 Oct 31;60(2):255–261. [PubMed] [Google Scholar]
  14. Huarte J., Belin D., Bosco D., Sappino A. P., Vassalli J. D. Plasminogen activator and mouse spermatozoa: urokinase synthesis in the male genital tract and binding of the enzyme to the sperm cell surface. J Cell Biol. 1987 May;104(5):1281–1289. doi: 10.1083/jcb.104.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hwang S. B. Specific receptor sites for platelet activating factor on rat liver plasma membranes. Arch Biochem Biophys. 1987 Sep;257(2):339–344. doi: 10.1016/0003-9861(87)90574-1. [DOI] [PubMed] [Google Scholar]
  16. Kuiper J., Otter M., Rijken D. C., van Berkel T. J. Characterization of the interaction in vivo of tissue-type plasminogen activator with liver cells. J Biol Chem. 1988 Dec 5;263(34):18220–18224. [PubMed] [Google Scholar]
  17. Lijnen H. R., Van Hoef B., Collen D. Differential reactivity of Glu-Gly-Arg-CH2Cl, a synthetic urokinase inhibitor, with single-chain and two-chain forms of urokinase-type plasminogen activator. Eur J Biochem. 1987 Jan 15;162(2):351–356. doi: 10.1111/j.1432-1033.1987.tb10608.x. [DOI] [PubMed] [Google Scholar]
  18. Meijer D. K., Keulemans K., Mulder G. J. Isolated perfused rat liver technique. Methods Enzymol. 1981;77:81–94. doi: 10.1016/s0076-6879(81)77013-7. [DOI] [PubMed] [Google Scholar]
  19. Mohler M. A., Refino C. J., Chen S. A., Chen A. B., Hotchkiss A. J. D-Phe-Pro-Arg-chloromethylketone: its potential use in inhibiting the formation of in vitro artifacts in blood collected during tissue-type plasminogen activator thrombolytic therapy. Thromb Haemost. 1986 Oct 21;56(2):160–164. [PubMed] [Google Scholar]
  20. Morton P. A., Owensby D. A., Sobel B. E., Schwartz A. L. Catabolism of tissue-type plasminogen activator by the human hepatoma cell line Hep G2. Modulation by plasminogen activator inhibitor type 1. J Biol Chem. 1989 May 5;264(13):7228–7235. [PubMed] [Google Scholar]
  21. Owensby D. A., Sobel B. E., Schwartz A. L. Receptor-mediated endocytosis of tissue-type plasminogen activator by the human hepatoma cell line Hep G2. J Biol Chem. 1988 Aug 5;263(22):10587–10594. [PubMed] [Google Scholar]
  22. Pekarthy J. M., Short J., Lansing A. I., Lieberman I. Function and control of liver alkaline phosphatase. J Biol Chem. 1972 Mar 25;247(6):1767–1774. [PubMed] [Google Scholar]
  23. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  24. Rush G. F., Alberts D. The hepatic binding and uptake kinetics of epidermal growth factor: studies with isolated rat hepatocytes. Life Sci. 1987 Feb 16;40(7):679–685. doi: 10.1016/0024-3205(87)90270-0. [DOI] [PubMed] [Google Scholar]
  25. Seifried E., Tanswell P., Rijken D. C., Barrett-Bergshoeff M. M., Su C. A., Kluft C. Pharmacokinetics of antigen and activity of recombinant tissue-type plasminogen activator after infusion in healthy volunteers. Arzneimittelforschung. 1988 Mar;38(3):418–422. [PubMed] [Google Scholar]
  26. Smedsrød B., Einarsson M., Pertoft H. Tissue plasminogen activator is endocytosed by mannose and galactose receptors of rat liver cells. Thromb Haemost. 1988 Jun 16;59(3):480–484. [PubMed] [Google Scholar]
  27. Steffens G. J., Günzler W. A., Otting F., Frankus E., Flohé L. The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe Seylers Z Physiol Chem. 1982 Sep;363(9):1043–1058. doi: 10.1515/bchm2.1982.363.2.1043. [DOI] [PubMed] [Google Scholar]
  28. Stump D. C., Kieckens L., De Cock F., Collen D. Pharmacokinetics of single chain forms of urokinase-type plasminogen activator. J Pharmacol Exp Ther. 1987 Jul;242(1):245–250. [PubMed] [Google Scholar]
  29. Ueno T., Kobayashi N., Maekawa T. Studies on metabolism of urokinase and mechanism of thrombolysis by urokinase. Thromb Haemost. 1979 Oct 31;42(3):885–894. [PubMed] [Google Scholar]
  30. Vassalli J. D., Baccino D., Belin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol. 1985 Jan;100(1):86–92. doi: 10.1083/jcb.100.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vehar G. A., Spellman M. W., Keyt B. A., Ferguson C. K., Keck R. G., Chloupek R. C., Harris R., Bennett W. F., Builder S. E., Hancock W. S. Characterization studies of human tissue-type plasminogen activator produced by recombinant DNA technology. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):551–562. doi: 10.1101/sqb.1986.051.01.067. [DOI] [PubMed] [Google Scholar]
  32. Wagle S. R., Ingebretsen W. R., Jr Isolation, purification, and metabolic characteristics of rat liver hepatocytes. Methods Enzymol. 1975;35:579–594. doi: 10.1016/0076-6879(75)35186-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES