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Abstract: In this paper, we propose a new approach for numerically simulating the growth of cracks in
unidirectional composite materials, termed extended isogeometric analysis, evaluating the maximum
stress intensity factor and T-stress. To validate our approach, we used a small anisotropic plate with
two edge cracks, beginning with formulating the governing equations based on the energy integral
method, Stroh’s Formula, and the Elastic Law describing the behaviour of anisotropic materials, while
considering boundary conditions and initial states. A MATLAB code was developed to solve these
equations numerically and to post-process the tensile stress and the stress intensity factor (SIF) in the
first mode. The results for the SIF closely match those obtained using the extended finite element
method (X-FEM), with a discrepancy of only 0.0021 Pa·m0.5. This finding underscores the credibility
of our approach. The extended finite element method has demonstrated robustness in predicting
crack propagation in composite materials in recent years, leading to its adoption by several widely
used software packages in various industries.

Keywords: unidirectional composite material; crack growth; extended isogeometric analysis; stress
intensity factor; energy integral method; Stroh’s formula; extended finite element method

1. Introduction

The integrity of a mechanical product requires numerical validation when the calcula-
tion of the tensile stress and the stress intensity factor around critical zones, specifically,
cracked ones, is essential for predicting damage [1]. That is why, in the field of compos-
ite materials, researchers have developed several approaches, such as the X-FEM, which
provides efficient results for anisotropic materials. However, the calculation time remains
long and CPU-intensive. Our paper proposes the use of the X-IGA technique to reduce the
calculation time and improve the accuracy of the numerical results.

X-IGA is particularly helpful for breaking down mechanical systems into components
connected by nodes and establishing boundary conditions [2,3], which collectively form a
mesh that approximates the geometry under study [4]. Extended finite element approaches,
on the other hand, are useful when singularities are present and the conventional method is
not suitable. To overcome such challenges, these techniques amplify concentrated stresses
using the Heaviside function and enhance crack edges.

Because of the unique characteristics of non-uniform rational B-splines (NURBS) [5,6]
the importance of isogeometric analysis (IGA) has grown significantly in recent years.
This methodology provides a curved approximation, which is very useful for properly
representing the curved geometries present in the system being studied. In addition, the
flexibility of NURBS makes it easier to approximate partial derivatives for functions that
express the geometric properties of the system, which improves IGA’s analytical capabilities
and precisely captures complex geometric aspects.

Similar to the finite element method (FEM) [7], the isogeometric analysis (IGA) ap-
proach first encountered difficulties while managing singularities. Nevertheless, as the
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literature [8] shows, more recent developments have resulted in the creation of extensions
like X-IGA and the X-FEM, which have improved capabilities for handling crack-related
problems. Notably, by using fewer computational grids than the X-FEM, X-IGA offers
notable gains in terms of computing efficiency. Specifically, X-IGA, which is comparable to
the X-FEM, applies the concepts of IGA to mechanical fracture propagation and allows for
the precise calculation of stress, strain, and the maximum stress intensity factor (SIF) using
comparable computer models and equations.

As per papers [8,9], S. Montassir demonstrates that X-IGA and the X-FEM have been
highly effective in providing a numerical estimation of the stress intensity factor when
compared to experimental data. Therefore, this paper can further delve into this analysis,
particularly in the context of anisotropic materials, and validate the consistency of the
results by verifying convergence between the two methods.

This paper is composed of five sections, with the aim of presenting the main idea of
the article in an orderly fashion. Section 1 is devoted to introducing the main idea and
projecting towards the content of the article.

The purpose of the Section 2 is to clarify our approach. It gives a brief introduction
to isogeometric analysis (IGA), clarifies the meaning of non-uniform rational B-splines
(NURBS) basis functions, and shows how two-dimensional numerical simulations can
use NURBS basis functions in place of Lagrange basis functions. Our particular study
situation is mathematically described in Section 3, taking into account the part’s mechanical
properties, which deviate greatly from those of isotropic materials [10]. The main system of
equations for static elastic deformation is then formulated, describing displacement near
the crack and the stress intensity factor, respectively, with the help of Stroh’s formula [11]
and the Energetic Method [12–26].

The numerical simulation of the studied model is presented in the Section 4. It starts
with input data on the geometry and material properties of the portion that is being
studied, which is fixed on one side and exposed to tensile stress on the other, as shown
in Section 3 The authors pre-processed the same input data for our suggested X-IGA and
X-FEM techniques, and then we compared the findings and held a discussion.

A summary of our findings is provided in the conclusion of this article, which empha-
sizes the efficiency of X-IGA for both isotropic and unidirectional composite anisotropic
materials. Compared to the X-FEM, X-IGA simplifies the process by going straight from
Computer-Aided Design (CAD) to the solving steps [6]. It also emphasizes how NURBS ba-
sis functions can represent geometry with lowest possible stiffness matrix dimensions [27].
The crucial issue, “Will IGA eventually supplant the FEM in all structural simulation
applications?” is addressed in the final paragraph.

2. Methodology
2.1. Overview of IGA and X-IGA

Currently, isogeometric analysis is one of the most-employed methods for numerical
calculations and the simulation of structural behaviour. This is primarily due to the
effectiveness of NURBS as a prominent approach for handling curved geometries. By
leveraging the basic functions of this methodology instead of Lagrange basis functions, we
can achieve more precise results while reducing the grid count and optimizing solving time.

Similar to the X-FEM, X-IGA serves as an extension of IGA tailored for studying
mechanical crack propagation. By applying consistent logic and formulas, we can derive
approximate values for stress, strain, and the maximum stress intensity factor (SIF).

2.2. IGA Concept

The knot vector is {ξ} = {ξ1, . . ., ξn+p+1}. The polynomial function of order P, Ni, serves
as the B-spline basis component [28,29] and is written in formal notation:

Ni,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1
0 in the other cases

(1)
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and for P > 0,

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξ − ξi+1

ξi+p+1 − ξi+1
Ni−1,p−1(ξ) (2)

Using the last formula to construct surfaces based on the control point Bi,j, there is
another function for the second direction, named Mj,q, where the order here is q and the
knot vector is {η} = {η1, . . ., ηn}. The curve is defined by the following:

Mj,q(ξ) =
η − ηi

ηi+p − ηi
Mi,p−1(ξ) +

η − ηi+1

ηi+p+1 − ηi+1
ηi−1,p−1(ξ) (3)

2.3. NURBS for Two Dimensions

The difference between NURBS and B-spline functions is the introduction of a set of
the n × n positive elements wi, called weight. According to citations in articles [20,28], the
rational basis function is as follows:

Ri,j(ξ,η ) =
Ni,p(ξ)Mj,q(η)wi,j

∑n
a=1 ∑n

b=1 Na,b(ξ)Ma,b

(
η) wa,b

(4)

The curve’s formula is as follows:

C(ξ,η) =
n

∑
i=1

∑n
j=1 Ri,j(ξ, η) Bi,j (5)

3. Mathematical Formulation
3.1. Elastic Behaviour Law for Anisotropic Material

In case of 2D studies, the stress–strain relation for anisotropic material can be expressed
by the following:  σx

σy
Txy

 =


Ex

1−νxyνyx

νxyEy
1−νxyνyx

0

νxyEy
1−νxyνyx

Ey
1−νxyνyx

0

0 0 Gxy


 εx

εy
Yxy

 (6)

The Coulomb modulus Gxy is defined by the following:

Gxy =
Ex Ey

Ex + Ey + 2Eyνxy
(7)

The symmetry of the elasticity matrix has been satisfied because νxy Ey = νyx Ex,
where νxy νyx are Poisson coefficients of the material in the case of the 2D anisotropic one,
so automatically νxy ̸= νyx (Figure 1).

Figure 1. A general anisotropic plate in tension for a plane of coordinate (X,Y) with the polar
component of the crack (r, θ).
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For the equilibrium stat, the equation is as follows:{
Div

(
σij

)
= 0

εij =
1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

) (8)

3.2. Expression of the Displacement near the Crack

Stroh’s formula ensures that the displacement near a crack in an anisotropic 2D
plate is the real part of the displacement’s asymptote, and it can be calculated using the
following relation:

Ui(r, θ) =

√
2
π

Re
(

KαAimBmα
−1

(√
r(cos(θ) + µmsin(θ)

)
(9)

where i, m = 1, 2 et α = I, II the deformation in modes I and II. Using the Einstein indices,
the formula of stress can be expressed by the following:

σij = (−1)j
√

1
2π

Re

KαBimBmα
−1 δjl + µmδj2(√

r(cos(θ) + µmsin(θ)
)
 (10)

Using δjk, as the Kronecker delta and µm representing distinct complex numbers with
the imaginary part from Equation (11),

a11µm
4 − 2 a16 µm

3 + (2 a12 + a66)µm
2 − 2 a26µm + a22 = 0 (11)

3.3. The SIF Using the Interaction Energy Integral Method

As a reliable and efficient method, the authors purposefully chose to apply the en-
ergetic integral method in this investigation. The integral method of interaction energy
provided an older approach based on an energetic viewpoint that was very helpful in com-
plex situations arising in anisotropic materials. Through the application of this approach,
they aimed to tackle various issues presented by the behaviour of these materials, such as
directional dependence and heterogeneity. Furthermore, the interaction energy integral
approach offered an extensive framework for examining crack propagation and related
stress fields in anisotropic materials [11]. This technique made it easier to calculate impor-
tant quantities, such as the stress intensity factor (SIF), which was essential for estimating
the likelihood of fracture propagation and structural failure. In addition, this method
provided flexibility and adaptability based on energy balance, making it an excellent choice
for managing the transformation of elastic energy into displacement energy. Researchers
could thereby control crack growth and capture the complex interactions between forces
and displacement within the material structure. This capability was particularly crucial
when working with anisotropic materials, where conventional analytical techniques may
not fully capture material behaviour.

Overall, this methodological approach aimed to improve the breadth and accuracy of
studying orthotropic materials, advancing our understanding of their mechanical behaviour.
The expression of this energy is given by the following:

J =
x (

Wδ1j − σijUi,1
)
njds, (12)

where i, j = 1, 2 denotes our two-dimensional problem, s is an arbitrary closed curve
surrounding the crack directed by the normal vector n, and w represents the stress–strain
elastic energy defined as

w =
1
2

σij : εij. (13)
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By superposing the true and the auxiliary states, the energy can be decomposed as

J(1+2) = J(1) + J(2), (14)

where

• (1) denotes the integral in the true state over an arbitrary area around the crack.
• (2) denotes the integral in the auxiliary state, chosen to coincide with the crack tip

asymptotic field. It satisfies both the equilibrium and the traction-free boundary
condition on the crack surface.

For the elastic anisotropic solid under mixed mode loading, the J integral is also
expressed as

J = KT LK (15)

where
K = [KI KII] and L = Re(iAB−1) ∆. (16)

Referring to papers [6,7,27], the stress intensity factor (SIF) of anisotropic materials is
given by the following:

[KI I KI ] =

√
π

8r
Re

−1
(

iAB−1
)
[U1U2] (17)

The crack tip enrichment function in matrix form [11] is as follows:

Fα(r, θ) =
√

r
{

Re

[
B−1 A1β

B−1 A2β

]}
(18)

where
A1 = [A11 12] and A2 = [A21 A22]

In an anisotropic medium, the matrices A and B depend on the properties of the
anisotropic materials and are independent of the coordinate system.

The standard DOFs are represented by ui, aj represents the crack faces, and, finally,

the enrichment DOFs for tip singularities are represented by bβ
k .

3.4. X-IGA Formulation for Linear Elastic Fracture

Due to the intrinsic effectiveness of isogeometric analysis (IGA) in handling singu-
larities, X-IGA is a powerful enhancement. The key strategy involves adding enrichment
functions designed specifically for crack analysis to the IGA model, alongside the use of
the Heaviside function, as described in the cited paper [30]. Thanks to these capabilities,
X-IGA can accurately compute, capture, and study crack behaviour as well as calculate the
stress intensity factors (SIFs) and forces around cracks, as illustrated in Figure 2.

Figure 2. Enrichment nodes of X-IGA.
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Far from the crack position, where there is no enrichment, the displacement of the
control points can be expressed as

Ui
IGA = ∑N1

1 ΦiUi (19)

Φi denotes the shape function, referring to the univariate NURBS basis function. The
expression of the displacement around the crack utilizes the Heaviside function, as written
in the following formula:

Ui
HEAVISIDE =

N2

∑
1

Ni H(x)ai (20)

For the knots enriched near the crack front, the authors used the following formula:

Ui
Nearcrack = ∑NTIP

i=1 ∑
α

NiFα(x)bα
i (21)

where

• H(x) is the Heaviside function defined as H(x) =
{
+1 above crack
−1 below crack

.

• N1, N2, and NTIP represent the number of standard IGA elements, the number of
elements enriched with the Heaviside function, and the number of knots enriched
near the crack front, respectively. F(x) denotes the enrichment function near the crack
front. The total displacement is now expressed as follows:

Uh(ξ) = ∑Nenr
i=1 Bi(ξ)ui + ∑Nd

j=1

{
H(ξ)− H

(
ξj
)}

aj + ∑Nt
k=1 Bk(ξ)∑4

β=1 [Fβ(ξ)− Fβ(ξk)]b
β
k (22)

3.5. IGA Stiffness Matrix Construction

Considering a physical domain named Ω, bounded by Γ, a distinction is made between
two kinds of force distributions: volume density and surface density, located on Γ. The
equilibrium static equation is written as∮

(u): D: (δu)Ω =
x

Γ t δu d Γ +
y

Ω b δu dΩ (23)

where D refers to the elasticity matrix and b and t denote the body force distribution
and boundary stress, respectively. By interpolating the displacement with NURBS basis
functions and using the Bubnov–Galerkin method [31], where the same shape functions Φi
are used for both u and δu, the formula is as follows:

u(x) =
N1
∑

i=1
Φi(ξ)ui

δu(x) =
N1
∑

i=1
Φi(ξ)δui

(24)

where δui denotes the nodal displacement variation.
The derivative of the shape function is defined in the physical space as a function of

the parametric space representation:

[
Φi,x Φi,y

]
=

[
Φi,ξ Φi,η

][ξ,x ξ,y
η,x η,y

]
(25)

In the case of two-dimensional simulation, B is given by the following:

[B] =

 Φi,x 0
0 Φi,y
Φi,y Φi,x

 (26)
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With the substitution of Equation (22), we can derive the following discrete set of
equations: 

[K] {u} = {f}
Ki, j =

t
Ω BiT D Bj dΩ

fi =
s

Γ Φi t d Γ +
t

Ω Φi b d Ω
(27)

where i = 1, 2, 3 and j = 1, 2.
An optimized workflow can be used to create an efficient algorithm with a MATLAB

code to simulate models using IGA (Figure 3).

Figure 3. An IGA workflow simulation.

4. Simulation and Discussion
4.1. Geometry and Material Inputs Data

In this study, a 2D plate made of composite unidirectional orthotropic material was
used to evaluate the efficiency of X-IGA in calculating the maximum stress intensity factor
(SIF) and tensile stress for the first mode. Tables 1 and 2 below contains details about the
geometry.

Table 1. The geometry inputs data.

Length Thickness Initial Crack Length: a

200 mm 2 mm 20 mm (two crack on the middle)

Table 2. The assigned material.

Material
Young Modulus
in X Direction

[GPa]

Young Modulus
in Y Direction

[GPa]

Poisson
Coefficient

XY

Coulomb
Modulus XY

[GPa]

Orthotropic composite
material 121 8.6 0.27 4.9
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The material used was Epoxy Carbon UD 230 GPa prepreg, described in Table 2.

4.2. X-IGA and X-FEM Pre-Processing

For the identical case study with the same plate geometry, crack length, and material,
we conducted two numerical studies (Figure 4) using X-IGA in MATLAB [32] and the
X-FEM in Ansys. Tables 3 and 4 below outlines the preprocessing steps undertaken with
the X-IGA method.

Figure 4. NURBS representation of the 2D plate mesh (h-refinement) p = q = 3.

Table 3. X-IGA preprocessing data.

IGA Model with Enriched Control Points
Near the Two Cracks Boundary Conditions

Total number of control points = 1296
Uknot = [0 0 0 0.5 1 1 1];

Vknot = [0 0 0 1 1 1];

50 MPA stress applied in the upper side.
Fixation in the lower side.

Table 4. Mesh refinement around the crack’s size (Figures 5–8).

Coarse mesh size 3 mm

Mesh size of refinement 1 1 mm

Mesh size of refinement 2 0.33 mm

Mesh size of refinement 1 0.11 mm

Figure 5. A meshed box (refinement 3).
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Figure 6. The X-FEM mesh refinement 1 around the right crack.

Figure 7. The X-FEM mesh refinement 2 around the right crack.
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Figure 8. The X-FEM mesh refinement 3 around the right crack.

4.3. Results and Discussion

This paragraph focuses on the post-processing stage of the numerical model simulated
using the X-FEM and the X-IGA method, aimed at comparing T-stress, the SIF, and strain.

Recently, Ansys has emerged as a powerful software tool for crack propagation cal-
culations, leveraging the new “SMART CRACK” functionality based on the X-FEM and
the J-integral method. Its flexibility allows for the iterative refinement of the mesh around
cracked zones without the need to repeat all of the preceding steps. The following table
presents the T-stress results from the X-FEM simulation across varying mesh sizes (Table 5).

Table 5. T-stress and the SIF post viewing, using the X-FEM in the function of refinement.

Number of Refinement
around Cracks

SIF in Mode 1
(×105Pa·m0.5) T-Stress (MPa)

1 10.62 596.81

2 8.84 614.38

3 7.814 638.58

Graphically, the T-stress variation step decreases rapidly, which clearly shows the
convergence of the T-stress value as a function of refining, and it is also an indicator
of the reliability of the simulation, which can even replace experience to evaluate the
X-IGA simulation.

The Ansys 2021 software allows for the introduction of a damage study, enabling easy
post-processing of stiffness intensity factors and other desired outputs. The authors have
graphically plotted the curve showing the variation of the SIF with mesh refinement in
Figures 9 and 10, aiming to determine the optimal mesh size where convergence begins.
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Figure 9. A graphical representation of T-stress in the first mode using X-FEM.

Figure 10. The graphical result for the SIF mode 1 using X-FEM in the function of refinement.

The novelty of this article lies in developing an IGA version through a MATLAB
code with the same enrichment capability as the X-FEM, specifically for application with
anisotropic materials. The post-processing of this simulation, along with IGA input data,
is described in Table 6. It is noteworthy that the obtained values closely approximate
those from the X-FEM, lending reliability to the results without the need for experimental
validation (Figure 11). This hypothesis is further supported by the consistency observed
between numerical and experimental results in articles [10,20].

Table 6. T-stress post viewing using X-IGA with h-refinement.

X-IGA Type of Refinement h-Refinement

Maximum value of T-stress 638.58 MPa

The comparison of the maximum SIF and the tensile strain obtained by the two
methods also confirms the approximate nature of the results (Table 7).
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Figure 11. T-stress using X-IGA post-processing.

Table 7. Strain in the x direction post viewing, using X-IGA and the X-FEM.

Numerical Approach X-FEM X-IGA

Maximum value 0.0206 0.0209

The maximum values of the SIF obtained from each simulation are described in the
following Table 8.

Table 8. The maximum stress intensity factor in mode 1 using the X-FEM and X-IGA.

Numerical Approach X-FEM X-IGA

Maximum stress intensity factor 7.814 × 105 Pa·m0.5. 7.835 × 105 Pa·m0.5.

The results of tensile stress, deformation, and the maximum stress intensity factor
(SIF) obtained from the two numerical simulations underscore the robustness of this study
and bolster the hypotheses put forth in articles [16,33], which demonstrate the efficiency
of X-IGA and the X-FEM by comparing results with experimental and analytical findings.
With an extensive array of investigations at their disposal, the authors confidently assert
the conformity and reliability of their findings. However, within this confirmation lies a
crucial and pressing question: which methodology ultimately demonstrates superiority in
predicting crack growth within composite anisotropic materials—X-IGA or the X-FEM?

Delving deeper into the realm of research, the studies outlined in papers [16,33,34]
and [20] bring to light the effectiveness and versatility of non-uniform rational B-splines
(NURBS) basis functions in accurately describing curved shapes. This stands in stark
contrast to the traditional Lagrange polynomial interpolation method, which heavily relies
on polygonal approximations and often necessitates a considerable number of elements
to adequately capture the intricacies of curved geometry. One of the inherent strengths
of NURBS functions lies in their adeptness at representing elliptical crack geometry with
minimal control points, thus streamlining the computational process while maintaining
precision and accuracy. In a seminal study conducted by S. Montassir and K. Yagoubi [8],
it was demonstrated that X-IGA consistently yields SIF results with lower error rates
compared to its X-FEM counterpart, all while employing fewer computational nodes and
significantly reducing overall computational times. Moreover, the findings presented in
the current article [35] further bolster this assertion, showcasing evidence within its tables
that IGA not only decreases computation time but also reduces the number of Degrees of
Freedom (DOFs) in finite element method simulations.
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5. Conclusions

Basically, this paper’s main goal is to carefully investigate and compare the perfor-
mance of X-IGA with the well-known X-FEM method in terms of determining the maximum
stress intensity factor and tensile stress for the purpose of predicting crack growth within
composite anisotropic materials.

Moreover, it is critical to recognize the dominating trend in numerical simulations
of fracture formation, which primarily concern orthotropic materials. Thus, starting with
the creation of governing equations based on the elastic behaviour law for composite
anisotropic materials and Stroh’s formula [11], the authors have attempted to expand the
applicability and utility of such methodologies.

Through this initiative, the authors have been able to simplify the algorithmic frame-
work that we used to update the X-IGA simulation’s code, using the workflow of Figure 3.
The authors list some important findings and suggestions as follows:

• The numerical simulation process used in X-IGA is significantly faster than that of
its FEM equivalent. This is mainly because control points are directly used, and the
stiffness matrix is constructed using NURBS basis functions.

• The smooth transition from Computer-Aided Design (CAD) to the solution stage is
made possible by this seamless integration, which eliminates the need for intermediate
preprocessing tools and streamlines the computational workflow.

• The research suggests a new and straightforward design strategy to improve X-IGA’s
usability and accessibility for composite anisotropic materials by using just the neutral
to simplify the reduction of the three-dimensional (3D) and two-dimensional (2D)
representations, which makes it easier to pre-process with X-IGA code and two-
dimensional code.

• The convergence of the X-FEM results in the function of refining demonstrates the
reliability of the results and can replace the experimental study to test the efficiency of
the proposed X-IGA approach.

Expanding on the results from [35], it is clear that X-IGA is superior to the X-FEM,
especially when it comes to smaller SIF mistakes and fewer control point needs. This benefit
is mostly due to the following:

• NURBS functions are naturally precise and adaptable when it comes to approximating
curved geometries; therefore, there is no need for significant modification.

• The Lagrange function’s approximation of curved geometry frequently requires signif-
icant refinement, which increases the need for elements and nodes in polygonal ap-
proximations and lengthens runtime, particularly when refinement is needed around
a crack.

• This query highlights how dynamic and constantly changing numerical simulations
are, and, as such, it is worth investigating further in the continuing effort to improve
computational techniques in the fields of engineering and materials science.

• According to [36,37], X-IGA with few control points shows smaller SIF errors than
the X-FEM, which can be attributed to NURBS functions’ accuracy in approximat-
ing curved geometries [38]. NURBS are able to accurately represent curved form
behaviour in addition to approximating the true geometry. On the other hand, using
Lagrange functions to approximate curved geometry necessitates a significant amount
of refining [34], which raises the element and node requirements for polygonal ap-
proximations [39], which in turn lengthens runtime, particularly when refinement is
required around a crack.

The main queries raised in our paper are: Why do we keep using the FEM rather than
IGA? Could the FEM eventually be replaced by IGA?

As for the perspective of this work, we aim in the near future to explore the isogeo-
metric analysis (IGA) method to conduct 3D calculations and demonstrate its capability
to yield better results than the traditional finite element method (FEM). Additionally, we
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will investigate the optimization methods already employed within our teams [40–45] to
mitigate crack propagation.

Even if IGA is better than the X-FEM in terms of precision and time optimization, it
is not powerful and efficient for the contact modelling, so another investigation that we
will work on with our team is how to combine the FEM and IGA to improve this field and
introduce friction and contact interfaces.
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