

Article Investigation of Thermal and Spectroscopic Properties of Tellurite-Based Glasses Doped with Rare-Earth Oxides for Infrared Solid-State Lasers

Ahlem Boussetta ¹, Aref M. Al-Syadi ^{2,3}, Kamel Damak ⁴, Ali Erçin Ersundu ⁵, Miray Çelikbilek Ersundu ⁵, Essam Ramadan ⁶, Ali M. Alshehri ⁷, Khalid I. Hussein ^{8,*}, Ramzi Maalej ⁴ and El Sayed Yousef ⁷

- ¹ Laboratory of Systems Integration and Emerging Energies, National Engineering School of Sfax (ENIS), University of Sfax, Sfax 3018, Tunisia; ahlem.bousseta@ipeis.usf.tn
- ² Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia; arefalsyadi@yahoo.com
- ³ Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Najran University, Najran 11001, Saudi Arabia
- ⁴ LaMaCoP, Faculty of Sciences of Sfax, University of Sfax, Sfax 3018, Tunisia; kamel.damak@ipeis.usf.tn (K.D.); ramzi.maalej@fss.usf.tn (R.M.)
- ⁵ Department of Metallurgical and Materials Engineering, Yildiz Technical University, Davutpasa Campus KMA-205, Esenler, Istanbul 34220, Turkey; ersundu@yildiz.edu.tr (A.E.E.); miray@yildiz.edu.tr (M.Ç.E.)
- ⁶ Physics Department, Faculty of Science, Al Azhar University, Assuit Assiut 71542, Egypt; esam_ramadan2008@yahoo.com
- ⁷ Department of Physics, Faculty of Science, King Khalid University, Abha P.O. Box 9004, Saudi Arabia; amshehri@kku.edu.sa (A.M.A.); ayousf@kku.edu.sa (E.S.Y.)
- ⁸ Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- * Correspondence: kirahim@kku.edu.sa

Abstract: The thermal and optical properties of $60\text{TeO}_2-20\text{K}_2\text{TeO}_3-10\text{WO}_3-10\text{Nb}_2\text{O}_5$ (in mol%) glasses doped with Ho₂O₃, Er₂O₃, and Tm₂O₃ were explored in the present work. The thermal stability, refractive index n, extinction coefficient k, absorption coefficient α , and optical band gap of the glasses were evaluated. The UV–Vis–NIR absorption spectra, the Judd–Ofelt intensity parameter, the spectroscopic quality factor, and the emission and absorption cross-sections were calculated to investigate the effects of Er³⁺ and Tm³⁺, respectively, on the band spectroscopic properties of Ho³⁺ ions. The results showed that the maximum emission cross-section was approximately 8×10^{-21} cm², and the values of the full width at half maximum (*FWHM*), quality factor ($\sigma_e \times FWHM$), and gain coefficient of Ho³⁺: ⁵I₇ \rightarrow ⁵I₈ were also reported. The value of the *FWHM* × σ_e was 1200 × 10⁻²⁸ cm³, which showed greater gain characteristics than earlier study results. For 2 µm mid-infrared solid-state lasers, the glasses that were examined might be a good host material.

Keywords: co-doped tellurite glasses; rare earth; DSC; thermal properties; refractive index; Judd–Ofelt analysis; gain quality

1. Introduction

Lasers, optical fiber amplifiers, flat-panel displays, optoelectronics, memory devices, solar cells, and light-emitting diodes are just a few of the numerous technical and scientific uses of glasses [1,2]. Oxide glasses often have several desirable characteristics, including low optical properties thresholds, and great transparency. Several researchers have been actively working to change these materials to acquire significant nonlinear coefficients, which are needed for using them in nonlinear optical devices [1–3]. It is well known that tellurite-based glasses are transparent in the mid-infrared range, have a high refractive index, and a high density. Not only are these glasses non-toxic, but they also resist moisture and are stable against devitrification. These characteristics make the glasses useful in

Citation: Boussetta, A.; Al-Syadi, A.M.; Damak, K.; Ersundu, A.E.; Çelikbilek Ersundu, M.; Ramadan, E.; Alshehri, A.M.; Hussein, K.I.; Maalej, R.; Yousef, E.S. Investigation of Thermal and Spectroscopic Properties of Tellurite-Based Glasses Doped with Rare-Earth Oxides for Infrared Solid-State Lasers. *Materials* **2024**, *17*, 3717. https://doi.org/10.3390/ ma17153717

Academic Editor: Israel Felner

Received: 2 July 2024 Revised: 19 July 2024 Accepted: 24 July 2024 Published: 27 July 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). many fields, including laser windows, nonlinear optical devices (including limiters, optical switches, and modulators), and optical fibers [4]. The addition of rare-earth ions is essential for white-light-emitting diodes, and glass systems based on TeO_2 are very promising matrices for this purpose [5]. There has been a recent renaissance in the study of earthdoped materials for photonic applications, display monitors, X-ray imaging, scintillators, lasers, up-conversion, and amplifiers for fiber-optic communications [5–7]. Rare-earthdoped glasses have important applications in solid laser sources, optical sensors, solar cells, optical telecommunication, white-light-emitting diodes, and optical data storage devices [7,8]. Tellurite glasses with added transition metal oxides should have a higher softening point and more stability, as seen with WO₃ [9]. The WO₃ and TeO₂ components of the glass are network formers. WO₄ tetrahedral and WO₆ octahedral structural units and TeO₃ trigonal pyramid and TeO₄ trigonal bipyramid units are the two different kinds of dopant sites that are present in the glass because of this [10]. The two different types of dopant sites vary in the intensity of their ligand fields and, as a result, in their distributions in space due to their unique geometries [5]. According to Pandey et al. [6], the third nonlinearity effect is due to the ability of WO_3 to increase the density of the non-bridging oxygen atoms, which causes the optical band gap to increase in Bi₂O₃-WO₃-TeO₂ glasses. According to Kim and Yoko [11], the optical band gap, third-order susceptibility, $\chi^{(3)}$, real refractive index, static refractive index, and empty d-shell transition metal cations, including Nb⁵⁺ cations, affect oxide glasses.

The present work aims to study the optical properties of the TeO₂-K₂TeO₃-WO₃-Nb₂O₅ glass system, doped with rare-earth oxides (Ho₂O₃, Er₂O₃, and Tm₂O₃). The optical characteristics are correlated with the structure's phase transitions and thermal stability, which are determined using differential scanning calorimetry and a double-beam spectrophotometer. The ultraviolet–visible–near-infrared (UV–Vis–NIR) absorption and emission spectra of Ho³⁺-single-doped, Ho³⁺/Er³⁺-co-doped, and Ho³⁺/Tm³⁺-co-doped tellurite glasses (TKWN1, TKWN2, and TKWN3, respectively) were analyzed at room temperature. Based on the Judd–Ofelt theory, the detailed spectroscopic parameters, radiative transition probabilities, radiative lifetimes, and branching ratios of the TKWN1 sample were obtained. Moreover, the absorption and emission cross-sections of Ho³⁺ were calculated via McCumber theory. In addition, the gain coefficient of Ho³⁺: ⁵I₇→⁵I₈, the quality factor ($\sigma_e^{peak} \times FWHM$), and the full width at half maximum (*FWHM*) were also reported. Finally, the possible visible and NIR emissions and their applications for future green laser sources and optical amplifiers were discussed.

2. Experimental Section

Using the melt quench technique, tellurite-based glasses with the composition ($60\text{TeO}_2-20\text{K}_2\text{TeO}_3-10\text{WO}_3-10\text{Nb}_2\text{O}_5$) mol%, doped with rare-earth oxides (Ho₂O₃, Er₂O₃, and Tm₂O₃ in ppm ratio), were prepared. The details of their composition are shown in Table 1. The powder was mixed and heated in a platinum crucible in a furnace at 960 °C for 35 min. Subsequently, the highly viscous melt was cast into a graphite mold. The quenched glass was annealed at 250 °C for 2 h and then slowly cooled to room temperature (RT). The color of the prepared samples depended on the ratio of NiO in the glasses (as clarified in Figure 1). The thermal analysis of the glasses was carried out via differential scanning calorimetry (DSC Shimadzu 50) with a heating rate of 10 °C/min in the range of 20–550 °C. The density of the glass samples was evaluated using the Archimedes method.

$$\rho = \frac{W_{air} \times \rho_l}{(W_{air} - W_l)} \tag{1}$$

where W_{air} and W_L are the weights of the glass sample in air and toluene, respectively. ρ_l is the density of toluene liquid ($\rho_l = 0.865 \text{ gm} \cdot \text{cm}^3$).

Sample	Composition (mol%)	ρ (g/cm ³)	V _m (cm ³ /mol)	OPD (mol/L)
TKWN1	60TeO ₂ -20K ₂ TeO ₃ -10WO ₃ -10Nb ₂ O ₅ -30,000 ppmHo ₂ O ₃	4.9125	41.07	65.51
TKWN2	60TeO ₂ -20K ₂ TeO ₃ -10WO ₃ -10Nb ₂ O ₅ -30,000 ppmHo ₂ O ₃ -30,000 ppm Er ₂ O ₃	4.9597	41.80	66.51
TKWN3	60TeO ₂ -20K ₂ TeO ₃ -10WO ₃ -10Nb ₂ O ₅ -30,000 ppmHo ₂ O ₃ -30,000 ppm Tm ₂ O ₃	4.9641	41.78	66.53

Table 1. Composition, density ρ , molar volume V_m, and oxygen packing density (OPD) of TKWN glasses.

Figure 1. Photographs of as-prepared TKWN glasses.

The optical absorption and transmission spectra were measured in the wavelength range of 400–2500 nm using aJASCO V-570 spectrophotometer (JASCO INTERNATIONAL CO., LTD. Tokyo, Japan).

3. Results and Discussion

3.1. Density, Molar Volume, and Oxygen Packing Density

The density (ρ), molar volume ($V_{\rm m}$), and oxygen packing density (OPD) of the studied glasses are listed in Table 1. The density of the glasses varied between 4.9125 and 4.9641 g/cm³. The addition of rare-earth oxides to TeO_2 -based glasses leads to a relatively slight increase in density. This increase is related to the molecular weights of rare-earth oxides, which are much greater than those of other constituents in the studied TeO₂-based glass, and also to the change in the coordination number of rare-earth ions [12,13]. Therefore, the densities of the glasses co-doped with the two types of rare-earth oxides, Ho_2O_3 and Er_2O_3 (TKWN2 sample) and Ho_2O_3 and Tm_2O_3 (TKWN3 sample), were relatively higher than the glass doped with Ho₂O₃ only (TKWN1 sample). Furthermore, the molecular weights of Er_2O_3 and Tm_2O_3 (382.5 and 385.866 g/mol, respectively) are higher than that of Ho_2O_3 (377.858 g/mol), which led to an increase in the density of the TKWN2 and TKWN3 glasses compared to the TKWN1 glass. Given that the density is inversely proportional to the molar volume and proportional to the average molecular weight, it is reasonable to assume that the two quantities will behave in opposition to one another in most amorphous materials (especially glass). In this glass system, the TKWN1 glass, doped only with Ho₂O₃, exhibited the reverse behavior, with a reduced density and molar volume. Previous reports [13,14] describe this unusual behavior for several glass systems containing rare-earth elements. It is well known that changes in molecular weight and density have an impact on the extent to which the molar volume changes. In comparison to the TKWN2 and TKWN3 glasses, the rate of change in the molar volume of the TKWN1 glass was lower. Hence, the network became more closed and tightly packed. This behavior could have been due to the addition of Er_2O_3 and Tm_2O_3 to the TKWN2 and TKWN3 glasses, respectively.

3.2. Thermal Properties

The DSC curves of the TKWN glasses doped with rare-earth oxides and tempered at a rate of 10 °C/min are illustrated in Figure 2. This glassy material's thermal stability was confirmed by the DSC traces that were obtained for the samples. Each DSC scan exhibited a small endothermic peak corresponding to the glass transition temperature (T_g) , followed by exothermic peaks, with two peaks $(T_{p1} \text{ and } T_{p2})$ for the TKWN1 sample and one peak (T_{p1}) for the TKWN2 and TKWN3 samples, which corresponded to the crystallization temperature. The glass transition temperature (T_g) , onset crystallization temperature (T_c) , and peak crystallization temperatures $(T_{p1} \text{ and } T_{p2})$ were measured and recorded, as shown in Table 2. The T_g provides information about the strength of the bonds and connectivity in the glass network, i.e., the T_g increases with the increasing connectivity and bond strength in the glass [15]. The values of T_g for the present glass system were close to those of TeO₂-based glasses [16,17], which show high T_g values. The increase in the T_g values can result from the combined effect of incorporating both Nb₂O₅ and WO₃ [18-21]. From Table 2, it is clear that the doping of the TKWN glasses with Er₂O₃ and Tm₂O₃ had a strong influence on the T_g as well as the onset and peak crystallization temperatures (T_c and T_p), which shifted to significantly higher temperatures (as shown in Figure 2).

Figure 2. DSC curves of TKWN glasses at heating rate of 10 °C/min.

Sample Code	T _g ∘C	T _c °C	T_{p1} °C	<i>T</i> _{p2} °C	Δ <i>T</i> °C	Н	K _{SP} °C
TKWN1	344	431	462	542	87	0.253	10.63
TKWN2	355	438	463	-	83	0.234	7.61
TKWN3	356	439	464	-	83	0.233	7.58

Table 2. Values of T_g , T_c , T_p , ΔT , H, and *KSP* for TKWN glasses.

We found that adding Er_2O_3 and Tm_2O_3 to the TKWN glass doped with Ho_2O_3 improved the value of T_g . This might have been because the bonds were very strong. Thus, the as-prepared glasses were more rigid and had better glass-forming capabilities after adding rare-earth oxides [14]. A further explanation for the reported increase in the T_g with increasing rare-earth oxide concentrations might be the OPD, as shown in Table 1. The OPD is a measure of the closeness of the oxide network's packing. As the concentration of rare-earth oxides increases, it is evident that the OPD increases as well. This suggests that as the amount of rare-earth oxides grows, the structure becomes more compact. The presence of rare-earth oxides in the glass system suggests the production of a more compact macromolecular chain, which in return increases the T_g , since a closer macromolecular structure requires greater internal energy for chain mobility, which is necessary for the glass transition [22]. An estimate for the thermal stability of glass has been calculated utilizing the thermal stability factor $\Delta T = (T_c - T_g)$. To achieve the required large working range, e.g., during the fabrication process, it is favorable to have ΔT values that are as large as possible [23–26]. Hruby's equation, namely $H = \Delta T/T_g$, and the glass compositional dependencies of Hruby's coefficient were estimated by Sestak [27,28]. Table 2 displays Hruby's coefficient (*H*) and the thermal stability factor (ΔT); these are important in evaluating the glass devitrification process [29,30]. It was observed that the thermal stability of the studied glasses decreased with increasing rare-earth oxide concentrations. The parameter K_{SP} , which is related to the stability of glass against crystallization, can be calculated using the following relationship [31]:

$$K_{SP} = \frac{(T_p - T_c)(T_p - T_g)}{T_g}$$
(2)

where T_g is the glass transition temperature, T_c is the onset crystallization temperature, and T_p is the peak crystallization temperature.

Table 2 shows the KSP values for the as-prepared glasses, which lay within the range of those of tellurite-based glasses, which include alkaline and heavy metal ions, as reported in Refs. [16,31,32].

3.3. Optical Properties

The optical transmission spectra of the TKWN glasses doped with rare-earth oxides are illustrated in Figure 3. From this figure, we can see several peaks in the spectrum, which are due to the presence of rare-earth ions (Ho³⁺, Er³⁺, and Tm³⁺) in the glasses. Figures 4 and 5 show the optical absorption spectra of the as-prepared glasses. Numerous peaks are due to the presence of rare-earth ions in the glass. The absorption coefficient (α) for the as-prepared glasses was calculated using the following equation [33]:

$$\alpha = \frac{1}{d} ln \left(\frac{I_0}{I_t} \right) = 2.303 \frac{A}{d} \tag{3}$$

where I_0 , I_t , A, and d are the incident intensity, transmitted intensity, absorbance, and thickness of the film, respectively.

Figure 3. Optical transmission spectra of TKWN glasses.

Figure 4. Room-temperature optical absorption spectra of TKWN glasses near UV-visible range.

Figure 5. Room-temperature optical absorption spectra of TKWN glasses near infrared range.

When designing devices that include glass, the material's refractive index is an essential parameter that must be considered. The following equation expresses the relationship between the reflectance (R) and extinction coefficient (k) using the value of the real component of the complex refractive index (n), according to Fresnel's theory of light reflectivity:

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} \tag{4}$$

The value of *k* can be calculated according to the following equation [34]:

$$k = \frac{\alpha \lambda}{4\pi} \tag{5}$$

where λ is the wavelength in micrometers.

The calculated n and k values of the TKWN glasses doped with rare-earth oxides are given in Figures 6 and 7, respectively. As shown in Figure 6, the refractive index (n) decreased when increasing the wavelength of the incident photon.

Figure 6. Dependence of refractive index (n) on wavelength (λ) for TKWN glasses.

The density, the electronic polarizability of the oxide ion, the coordination number, and the polarizability of the initial neighbor ions coordinated with it (anions) are among the several important variables that impact the refractive index [21]. The Er_2O_3 or Tm_2O_3 added to the TKWN glass doped with Ho_2O_3 caused a minor increase in the *n* values. In addition, we found that the density, ρ , and *n* had a linear relationship. See Figure 6 for the highest values of *n* for the TKWN glass samples doped with Ho_2O_3 and Tm_2O_3 .

The Sellmeier dispersion formula is one of the most well-known fitted dispersion equations that describes the index variation, *n*, vs. the wavelength, λ . The five coefficients included in this formula allow it to fit the data perfectly throughout a wide spectrum range, in agreement with the observations. One means to describe the propagation characteristics of waveguides constructed from the materials under study is to employ the dispersion data in the form of fitting Sellmeier coefficients. The following is the Sellmeier dispersion formula in the spectra of the absorption bands; when (*hv*) is smaller than (*E*_{opt}), the photon band gap energy is as follows [35,36]:

$$n^{2}(\lambda) = A + B / \left(1 - \frac{C}{\lambda^{2}}\right) + D / \left(1 - \frac{E}{\lambda^{2}}\right)$$
(6)

where λ is the wavelength in micrometers. In this case, the glass materials' dispersion characteristics are *A*, *B*, *C*, *D*, and *E*. The first and second terms relate to the refractive index contributions of larger and lower energy gaps from electronic absorption. The last term indicates how the lattice absorption causes the refractive index to decrease [35,36]. Equation (6) was used to fit the experimental data, yielding the Sellmeier coefficients shown in Table 3. Figure 6 shows the refractive index behavior for the as-prepared glasses with the wavelength calculated using Sellmeier's equations [35].

Figure 7. Dependence of extinction coefficient (k) on wavelength (λ) for TKWN glasses.

Table 3. Values of *A*, *B*, *C*, *D*, E_{opt} , R_m , α_m , and *M* for TKWN glasses.

	Sellm	eier Coefficien	ts			R _m	α _m	14
Sample Code	Α	В	С	D	(eV)	Mol^{-1}	$ m \AA^{-3}$	M
TKWN1	3.185	0.7423	0.2562	0.01403	2.453	20.30	8.05	0.506
TKWN2	3.195	0.7542	0.2604	0.017015	2.481	20.75	8.23	0.504
TKWN3	3.204	0.7771	0.2508	0.009851	2.501	20.84	8.26	0.501

Furthermore, $E_g = 1.24/\lambda$ is the average absorption band gap, E_g (measured in electron volts), and it may be used to determine the lattice absorption frequency or E_g [35]. For more information about optically induced transitions and optical band gaps in materials, it is helpful to investigate their optical absorption edges. The basic idea behind this processing is the absorption of photons whose energies are higher than the energy of the band gap. At the basic absorption edge, electromagnetic waves interact with electrons in the valence band to cause two types of optical transitions: direct and indirect. The Tauc relation [37] provides the relationship between α and the photon energy of the incoming radiation, hv.

$$\alpha \, h\nu = b \left(h\nu - E_{opt} \right)^s \tag{7}$$

where ν is the frequency and h is the Planck constant. While b remains constant, the value of s varies according to the interband transition process. The parameter s takes the value of $\frac{1}{2}$ in the case of the direct allowed transition, while it is equal to 2 in the case of the indirect

allowed transition. Equation (7), which is associated with indirect permitted transitions in most types of glass, shows a straight line for s = 2. The Tauc plot of $(\alpha h\nu)^{1/2}$ against $(h\nu)$ for the as-prepared glasses is shown in Figure 8. To determine the E_{opt} of these glasses, we extrapolated their linear domains at the absorption edge to intersect the hv axis at $(\alpha h\nu)^{1/2} = 0$. Table 3 lists the E_{opt} values. Adding Er_2O_3 or Tm_2O_3 to the TKWN glass doped with Ho₂O₃ slightly increased the E_{opt} value; it was greatest in the TKWN glass sample that was co-doped with Ho₂O₃ and Tm_2O_3 . As mentioned previously regarding the thermal properties and density of the proposed glass material, the strong bonds are the expected cause of the increase in the E_{opt} . values. The results for the present glass material show that when the amount of rare-earth oxides is increased, the structure becomes more closely packed, leading to an increase in the T_g , ρ , and OPD. Hence, increasing the number of rare-earth oxides in the glass system is suggested to form a more rigid macromolecular chain, which decreases the amount of non-bridging oxygen (NBO) and increases the E_{opt} .

Figure 8. Plot of $(\alpha h \nu)^{1/2}$ against h ν for TKWN glasses.

By applying the Wemple–DiDomenico (WDD) relationship to the model of a single oscillator, we may describe the dispersion of n [38].

$$n^2 = 1 + \left(\frac{E_d E_o}{E_o^2 - (h\nu)^2}\right) \tag{8}$$

where E_d is the dispersion energy, which represents the average strength of the interband optical transitions, and E_0 is the energy of the effective dispersion oscillator or the average energy gap. Figure 9 shows the variation in $(n^2 - 1)^{-1}$ versus $(hv)^2$ for the studied glasses. The values of E_d and E_o can be directly determined from the slope $(E_o E_d)^{-1}$ and the intercept on the vertical axis (E_d/E_o) . The static refractive index (n_0) of the as-prepared glasses is calculated via the extrapolation of the Wemple–DiDomenico dispersion relation, Equation (8), when $hv \rightarrow 0$, and this gives the following expression:

$$n_0 = \sqrt{1 + E_d / E_o} \tag{9}$$

where n_0 is the static refractive index. The deduced values of E_0 , E_d , and n_0 are listed in Table 4. It is observed that the value of n_0 for the as-prepared glasses increases with

Figure 9. Plot of $(n^2 - 1)^{-1}$ as a function of $(hv)^2$ for TKWN glasses.

 Table 4. Optical parameters of TKWN glasses.

		Dispersion Parameters	
Sample Code	E_{0} (eV)	$E_{\rm d}$ (eV)	no
TKWN1	8.60	25.25	1.983
TKWN2	8.68	25.69	1.989
TKWN3	9.03	26.98	1.996

Figure 10. Variation in n^2 as a function of λ^2 for TKWN glasses.

$$R_m = \left(\frac{n_o^2 - 1}{n_o^2 + 2}\right) V_m \tag{10}$$

where V_m is the molar volume.

According to the following Clasius–Mosotti relationship, the molar electronic polarizability of a material is proportional to its molar refractivity, which, in effect, corresponds to the glass's structure [33].

$$\alpha_m = \left(\frac{3}{4\pi N_A}\right) R_m \tag{11}$$

where N_A is Avogadro's number. The values of R_m and α_m are listed in Table 3. These values increase with the increase in the rare-earth content. The metallization criterion (*M*) gives information about the metallic or non-metallic nature of the glass, and it is calculated through the following relationship [31]:

$$M = 1 - \frac{R_m}{V_m} \tag{12}$$

If M > 0, the materials demonstrate an insulating nature, but if M < 0, the materials exhibit a metallic nature. The results of the metallization criterion (M) are listed in Table 3 and are within the range of 0.501–0.506. Therefore, the as-prepared glasses demonstrate an insulating nature [16,31].

3.4. Absorption Spectra, Judd–Ofelt Analysis, and Radiative Properties

Extrinsic absorption, which is associated with internal electronic transitions, particularly in the 4f shells of rare-earth ions, and intrinsic absorption, which occurs at short and long wavelengths, are the two processes that lead to the development of the optical spectra of single-rare-earth-doped or co-doped glasses [39,40].

The room-temperature UV–Vis–NIR absorption spectra recorded in the range of 400–2500 nm for the Ho³⁺-single-doped, Ho³⁺/Er³⁺-co-doped, and Ho³⁺/Tm³⁺-co-doped tellurite glasses (TKWN1, TKWN2, and TKWN3, respectively) and the absorption peaks related to electronic transitions from the ground states of Ho³⁺, Er³⁺, and Tm³⁺ to their corresponding excited levels are presented in Figures 4 and 5, respectively. The eight absorption peaks from the ground state Ho³⁺ are responsible for the bands at the wavelengths of 420, 450, 485, 540, 645, 890, 1155, and 1950 nm for Ho³⁺: ⁵I₈ regarding the degree of intensity; correspondingly, the resulting values are ⁵G₅, ⁵F₁+⁵G₆, ⁵F₃, ⁵S₂+⁵F₄, ⁵F₅, ⁵I₆, and ⁵I₇. The seven absorption peaks from the ground state Er³⁺ are Er³⁺: ⁴I_{15/2} to the excited levels ⁴F_{7/2}, ²H_{11/2}, ⁴S_{3/2}, ⁴F_{9/2}, ⁴I_{9/2}, ⁴I_{11/2}, and ⁴I_{13/2}, respectively. The bands with peaks at the wavelengths of 450, 645, 685, 795, and 1710 nm are derived from the five absorption peaks that start the transition of the ground state Tm³⁺, namely Tm³⁺: ³H₆ to the excited levels ¹G₄, ³F₂, ³F₃, ³H₃, ³H₅, and ³F₄, respectively. These are identical to the absorption peaks seen in other glasses [41–43].

Figure 4 further confirms that the presence of Er^{3+} or Tm^{3+} ions in the matrix causes absorption bands to form due to the energy-level quantum structures in these ions [44]. In photoluminescence measurements, the 808 nm commercial laser diode (LD) can be utilized as a pumping source because although Ho³⁺ ions do not exhibit any clear absorption peaks around 808 nm or 980 nm, the ³H₄ ground state of Tm³⁺ and the ⁴I_{9/2} ground state of Er^{3+} both exhibit an absorption peak at around 800 nm. The locations of the absorption peaks exhibit no apparent variations when compared to the Ho³⁺-single-doped sample (TKWN1). In addition, the two Ho³⁺/Er³⁺-co-doped tellurite glasses (TKWN2 and TKWN3, respectively) match the tellurite glass samples in terms of the forms and peak locations of each transition [45–47]. In order to investigate the potential spectroscopic parameters of the single-doped sample (TKWN1), the Judd–Ofelt (JO) theory is adopted without taking into account the energy transfer and multiphonon de-excitation probabilities. Detailed applications of the JO model have been described in other papers [48,49]. We compute the experimental electric dipole line strength (S_{ed}^{mes}) of the Ho³⁺-single-doped glass sample (TKWN1) using the absorbance spectra (Figures 4 and 5). Unlike the glasses doped with other rare-earth ions, such Er^{3+} and Tm^{3+} , the magnetic dipole transitions in the Ho³⁺-ion-doped glass are sufficient to be undetectable [50]. Thus, the magnetic dipole transitions should be taken into account when we calculate the experimental electric dipole line strength (S_{ed}^{mes}). The calculated values are given in Table 5, along with the values of the magnetic dipole line strength S_{md} , the three phenomenological intensity parameters Ω_t (t = 2, 4, 6), and the calculated electric dipole line strength (S_{ed}^{cal}). As shown in Table 5, good agreement is found between the calculated and the experimental values, and the lower value of the root mean square deviation between the experimental and the calculated line strengths of the transitions ($\delta_{rms} = 0.5659 \times 10^{-20} \text{ cm}^2$) indicates the validity of JO theory for the prediction of the spectral intensity of Ho³⁺.

Table 5. Values of average wavelengths, refractive indices, integrated absorption coefficients, and electric and magnetic dipole line strengths for Ho³⁺-single-doped tellurite glass (TKWN1).

Transition from ⁵ <i>I</i> ₈ to	$\overline{\lambda}$ (nm)	п	$\int OD(\lambda)d\lambda$ (nm)	S_{ed}^{cal} (pm ²)	S_{ed}^{mes} (pm ²)	S_{md} (pm ²)	
⁵ <i>I</i> ₇	1950	1.9884	25.9613	1.9518	1.2918	0.9493	
${}^{5}I_{6}$	1155	1.9959	5.0289	0.8340	1.0327	0	
${}^{5}I_{5}$	895	2.0041	0.52004	0.1202	0.1370	0	
${}^{5}F_{5}$	645	2.0226	6.0251	1.4788	2.1687	0	
${}^{5}S_{2} + {}^{5}F_{4}$	540	2.0420	4.65323	1.4749	1.9679	0	
⁵ F ₃	485	2.0609	0.92585	0.3694	0.4291	0	
${}^{5}F_{1} + {}^{5}G_{6}$	450	2.0790	9.9929	4.9075	4.9172	0	
${}^{5}G_{5}$	420	2.1003	0.89175	1.0969	0.4619	0	
$\Omega_2 = 1.993 \times 10^{-20} \text{ cm}^2$			$\Omega_4 = 2.055 imes 1$	10^{-20} cm^2	$\Omega_6 = 1.066$	$ imes 10^{-20} ext{ cm}^2$	
$\delta_{rms}=0.5659 imes10^{-20}{ m cm}^2$							

Hypersensitive transitions (HSTs) are transitions associated with all absorptions, e.g., Ho³⁺: ${}^{5}I_{8} \rightarrow {}^{5}G_{5}$ transitions. These transitions are very sensitive to the surrounding local environment of the doped ions and follow the selection criteria $\Delta L \leq 2$, $\Delta J \leq 2$, and $\Delta S = 0$ [51–53].

It is well known that parameter Ω_2 represents HSTs and is dependent on the shortrange effects of rare-earth ions (the covalency and asymmetry in the community). The ion site is more centro-symmetric and its chemical interaction with the ligand is more ionic when the value of Ω_2 is smaller, both of which contribute to the covalent nature [54]. The massive (bulk) characteristics of the host glass, such as its basicity and strength, are associated with the constants Ω_4 and Ω_6 . In addition, the vibrational levels related to the essential rare-earth ions confined to the ligand atoms have a significant impact on them [55–57]. The host glass's basicity and hardness increase with increasing values of Ω_4 and Ω_6 . The three Ho³⁺ intensity parameters follow the trend $\Omega_4 > \Omega_2 > \Omega_6$, according to an analysis of the data in Table 5.

The spectroscopic quality factor ($\chi = \Omega_4/\Omega_6$) is an important characteristic in predicting the luminescence efficiency [58]. In the sample TKWN1, the value calculated is 1.93, which is higher than those of previously reported Ho³⁺-single-doped samples [59,60].

To predict the emission performance in the studied glass (TKWN1), the radiative properties, such as the radiative transition probabilities ($A_{rad}(J \rightarrow J') = A_{ed} + A_{md}$), branching ratios ($\beta_{rad}(JJ')$), and radiative lifetimes (τ_{rad}), for the ($J \rightarrow J'$) transitions for spontaneous emission are calculated through JO intensity parameters. All data computed are tabulated in Table 6. Compared to fluorophosphate (90.42 s⁻¹) [61], tellurite (165.8 s⁻¹) [60], and germanate glass (69.2 s⁻¹) [62], the TKWN1 sample examined in this study has A_{rad} in which the Ho³⁺ \rightarrow ⁵ I_7 \rightarrow ⁵ I_8 transition was high and equal to 38.7 s⁻¹. This is determined by the higher refractive index (n = 1.98) of the tellurite glass, because the larger refractive index of the host glass, the higher the radiative transition probability, which provides a better likelihood of achieving laser action [63]. Thus, the TKWN1 is possibly a suitable material that might be able to achieve 2 µm fluorescence via the Ho³⁺: ⁵ I_7 \rightarrow ⁵ I_8 transition.

Table 6. Calculated radiative parameters of different states of Ho³⁺-single-doped tellurite glass (TKWN1).

Transition	$\overline{ u}$ (cm $^{-1}$)	n	S_{ed} (pm ²)	S_{md} (pm ²)	A_{ed} (s ⁻¹)	$A_{md}~({ m s}^{-1})$	β (%)	$ au_r$ (ms)
$^{5}I_{7} \rightarrow ^{5}I_{8}$	5102	1.9884	1.9505	0.8670	195	43.6554	100.0000	4.1983
${}^5I_6 \rightarrow {}^5I_8$	8658	1.9959	0.8305	0	475	0	86.1550	1 0174
${}^5I_6 \rightarrow {}^5I_7$	3556	1.9874	1.3362	1.2450	52	24.4519	13.8450	1.8124
$5I_5 \rightarrow 5I_8$	11148	2.0040	0.1201	0	177	0	40.9162	
${}^5I_5 \rightarrow {}^5I_7$	6046	1.9897	0.9896	0	225	0	52.0198	2.3152
${}^5I_5 \rightarrow {}^5I_6$	2612	1.9873	1.0679	1.2050	19	11.0797	7.0640	
$^{5}I_{4} \rightarrow {}^{5}I_{8}$	13333	2.0124	0.0082	0	26	0	7.6306	
${}^5I_4 \rightarrow {}^5I_7$	8231	1.9947	0.1720	0	22	0	36.0841	2 9607
${}^{5}I_{4} \rightarrow {}^{5}I_{6}$	4675	1.9880	1.3163	0	168	0	49.8021	2.9007
${}^5I_4 \rightarrow {}^5I_5$	2185	1.9872	1.2959	0.7640	17	5.0263	6.4831	
${}^5F_5 \rightarrow {}^5I_8$	15504	2.0226	1.5178	0	6272	0	78.3197	
${}^5F_5 \rightarrow {}^5I_7$	10402	2.0014	1.2166	0	1446	0	18.0502	
${}^{5}F_{5} \rightarrow {}^{5}I_{6}$	6846	1.9913	0.8152	0	270	0	3.3668	0.1249
${}^5F_5 \rightarrow {}^5I_5$	4356	1.9877	0.2474	0	21	0	0.2610	
${}^5F_5 \rightarrow {}^5I_4$	2171	1.9872	0.0174	0	0	0	0.0023	
${}^5S_2 \rightarrow {}^5I_8$	18882	2.0449	0.2202	0	3808	0	55.6069	
${}^5S_2 \rightarrow {}^5I_7$	13080	2.0114	0.4431	0	2357	0	34.4197	
${}^5S_2 \rightarrow {}^5I_6$	9524	1.9986	0.2033	0	405	0	5.9170	0 1460
${}^5S_2 \rightarrow {}^5I_5$	7034	1.9917	0.1105	0	87	0	1.2745	0.1400
${}^5S_2 \rightarrow {}^5I_4$	4848	1.9881	0.7365	0	189	0	2.7603	
${}^5S_2 \rightarrow {}^5F_5$	2678	1.9873	0.0345	0	1	0	0.0217	
${}^5F_4 \rightarrow {}^5I_8$	18868	2.0448	1.2702	0	12173	0	79.3540	
${}^5F_4 \rightarrow {}^5I_7$	13766	2.0143	0.4581	0	1589	0	10.3557	
${}^5F_4 \rightarrow {}^5I_6$	10210	2.0008	0.7410	0	1016	0	6.6243	0.0652
${}^5F_4 \rightarrow {}^5I_5$	7720	1.9933	0.7804	0	455	0	2.9631	0.0052
${}^5F_4 \rightarrow {}^5I_4$	5535	1.9889	0.3239	0	69	0	0.4486	
${}^5F_4 \rightarrow {}^5F_5$	3364	1.9873	0.6371	0.3620	30	8.6944	0.2541	
${}^5F_4 \rightarrow {}^5S_2$	686	1.9872	0.0400	0	0	0	0.0001	
${}^5F_3 \rightarrow {}^5I_8$	20619	2.0609	0.3649	0	6088	0	45.0747	
${}^{5}F_{3} \rightarrow {}^{5}I_{7}$	15517	2.0226	0.7745	0	5043	0	37.3366	
${}^5F_3 \rightarrow {}^5I_6$	11961	2.0070	0.4212	0	1211	0	8.9682	
${}^5F_3 \rightarrow {}^5I_5$	9470	1.9984	0.4917	0	688	0	5.0934	0.0740
${}^5F_3 \rightarrow {}^5I_4$	7285	1.9923	0.6292	0	395	0	2.9249	
${}^5F_4 \rightarrow {}^5F_5$	5115	1.9884	0.3492	0	75	0	0.5567	
${}^5F_3 \rightarrow {}^5S_2$	2437	1.9872	0.0153	0	0	0	0.0026	
${}^5F_3 \rightarrow {}^5F_4$	1751	1.9872	0.3772	0.5800	3	2.5237	0.0427	

As a key parameter influencing the potential laser performance, the absorption (σ_a) and emission (σ_e) cross-sections need to be calculated. The absorption cross-sections corresponding to the ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺ are first determined from the measured absorption spectra using the Beer–Lambert equation [64,65], while the emission cross-sections for the ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺ is evaluated from the obtained absorption cross-sections based on McCumber's theory [66]. The calculated absorption and emission cross-sections of Ho³⁺ in the range of 1850–2100 nm are displayed in Figure 11. The absorption and emission maxima are located at 1950 nm and 2045 nm, according to Figure 11.

Figure 11. Calculated absorption and emission cross-sections for ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺-ion-doped tellurite glass (TKWN1).

Therefore, the peak value of the stimulated emission cross-section is approximately 8×10^{-21} cm². It is smaller than the estimated values for bismuth glass $(10.09 \times 10^{-21} \text{ cm}^2)$ [67] and tellurite glass $(10 \times 10^{-21} \text{ cm}^2)$ [68], but it is far larger than that of silicate $(3.54 \times 10^{-21} \text{ cm}^2)$ [69], fluoride $(2.47 \times 10^{-21} \text{ cm}^2)$ [70], and germanate glass $(3.13 \times 10^{-21} \text{ cm}^2)$ [60].

There is a direct correlation between the refractive index of the host glass and the emission cross-section; a higher refractive index increases the possibility of spontaneous radiative transitions. The higher spontaneous radiative transition probability and high refractive index are the primary factors that cause the Ho³⁺ in the produced glass to have an extended emission cross-section.

Additionally, the $FWHM \times \sigma_e$ value is a significant indicator that is often used to define the gain characteristics; the TKWN1 sample corresponds with larger gain properties and a wider gain bandwidth with a higher gain quality value. This study computed that the emission cross-section (σ_e) and FWHM are 8×10^{-21} cm² and 150 nm, respectively. Furthermore, as Table 7 illustrates, the $FWHM \times \sigma_e$ is 1200×10^{-28} cm³ greater than that of a variety of glasses [71]. The TKWN1 sample may have promise as a laser material, according to these findings.

	FWHM (nm)	$\sigma_e~({ m cm}^2)$	$\sigma_e imes FWHM$ (cm ³)	Reference
TKWN1	150	$8.0 imes10^{-21}$	1200×10^{-28}	Present work
Silicate	82	$5.5 imes10^{-21}$	$220 imes 10^{-28}$	[71]
Phosphate	78	$6.4 imes10^{-21}$	236.8×10^{-28}	[71]
Germanate	84	$4.0 imes 10^{-21}$	$336 imes 10^{-21}$	[71]

Table 7. Comparison of *FWHM*, σ_e , and $\sigma_e \times FWHM$ values for ${}^5I_7 \rightarrow {}^5I_8$ transition of TKWN1.

The wavelength-dependent gain cross-section, which establishes the gain spectrum shape and amplification performance, may be computed using the formula given in a previous article [72] based on the absorption and emission cross-sections of Ho³⁺. Figure 12 shows the computed gain cross-section spectra of the Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ radiative transition in the Ho³⁺-single-doped tellurite glass, with a population inversion value P ranging from 0 to

1 and with an interval of 0.2. It is clear from this spectrum that as the inversion population develops, the gain region moves to longer wavelengths and the gain cross-section improves.

Figure 12. Gain coefficient for ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺-single-doped tellurite glass (TKWN1).

When compared to germanate glass (0.47 cm^{-1}) , tellurite glass (1.2 cm^{-1}) , and fluorophosphate glass (0.66 cm^{-1}) , the highest gain cross-section at 2045 nm is 6.94 cm⁻¹ [73–75]. A positive gain coefficient indicates a low pump threshold for laser operation when P is 0.6 and λ is greater than 1910 nm [76]. A quasi-three-level system is characterized by an extended positive gain band that increases with P [77].

4. Conclusions

Systematic investigations have been performed to understand the effects of Ho₂O₃, Er₂O₃, and Tm₂O₃ doping on the thermal and optical properties of TeO₂-K₂TeO₃-WO₃-Nb₂O₅ glass. The DSC spectra confirmed the amorphous nature of the as-prepared glasses. Moreover, the DSC spectra showed that the glass transition temperature increased with the incorporation of Er₂O₃ and Tm₂O₃ into the TeO₂-K₂TeO₃-WO₃-Nb₂O₅ glass doped with Ho₂O₃. The thermal stability was investigated through the thermal stability factor ΔT , Hruby's coefficient *H*, and parameter *K*_{SP}. The data obtained on the transmittance *T* and absorbance *A* for the as-prepared glasses were used to calculate the absorption index *a*, the refractive index *n*, the extinction coefficient k, and the optical band gap *E*_{opt}. The optical band gap *E*_{opt} and refractive index *n* slightly increased with Ho₂O₃. Furthermore, the TeO₂-K₂TeO₃-WO₃-Nb₂O₅ glass sample doped with both Ho₂O₃ and Tm₂O₃ displayed the highest values for these parameters. The UV–Vis–NIR absorption and emission spectra of the Ho³⁺-single-doped, Ho³⁺/Er³⁺-co-doped, and Ho³⁺/Tm³⁺-co-doped tellurite glasses (TKWN1, TKWN2, and TKWN3, respectively) were examined at room temperature.

The Judd–Ofelt theory was used to determine the full spectroscopic characteristics, radiative lifetimes, branching ratios, and radiative transition probabilities of the TKWN1 sample. Furthermore, McCumber's theory was used to compute the absorption and emission cross-sections of Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$. There was a maximum emission cross-section of 8×10^{-21} cm². Additionally, the gain coefficient of Ho³⁺, ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$, the quality factor ($\sigma_{e} \times FWHM$), and the *FWHM* were studied. The *FWHM* × σ_{e} value was 1200 × 10⁻²⁸ cm³, indicating that alternative glasses have greater gain characteristics. Hence, the TKWN1 sample has potential to be utilized as a host material for 2 µm mid-infrared solid-state lasers.

Author Contributions: A.B.: Conceptualization, Methodology, Investigation, Writing—original draft, Formal analysis, Writing—review and editing; A.M.A.-S.: Conceptualization, Methodology, Formal analysis, Investigation, Writing—original draft; K.D.: Conceptualization, Methodology, Investigation, Writing—original draft, Formal analysis, A.E.E.: Conceptualization, Methodology, Investigation, Writing—original draft, Formal analysis, Writing—review and editing; A.E.E.: Conceptualization, Methodology, Investigation, Writing—original draft, Formal analysis, Writing—review and editing; M.Ç.E.: Investigation, Writing—original draft, Conceptualization, Methodology, Investigation, Visualization; E.R.: Investigation, Writing—original draft, Conceptualization, Methodology, Investigation, Visualization; R.M.: Conceptualization, Methodology, Investigation, Visualization; R.M.: Conceptualization, Methodology, Investigation, Visualization; Writing—review and editing; K.I.H.: Methodology, Writing—original draft, Visualization; Writing—review and editing; Funding acquisition; E.S.Y.: Methodology, Investigation, Visualization, Writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Education in KSA through project number KKU-IFP2-DA-6.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability Statement: The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- Jagannath, G.; Eraiah, B.; Gaddam, A.; Fernandes, H.R.; Brazete, D.; Jayanthi, K.; Krishnakanth, K.N.; Rao, S.V.; Ferreira, J.M.F.; Annapurna, K.; et al. Structural and femtosecond third-order nonlinear optical properties of sodium borate oxide glasses: Effect of antimony. J. Phys. Chem. C 2019, 123, 5591–5602. [CrossRef]
- Shanmugavelu, B.; Ravi Kanth Kumar, V.; Kuladeep, R.; Rao, D. Narayana, Third order nonlinear optical properties of bismuth zinc borate glasses. J. Appl. Phys. 2013, 114, 243103. [CrossRef]
- 3. El-Ghany, H. Physical and optical characterization of manganese ions in sodium–zinc–phosphate glass matrix. *IARJSET* 2018, *5*, 43–53. [CrossRef]
- 4. Gandhi, Y.; Mohan, N.K.; Veeraiah, N. Role of nickel ion coordination on spectroscopic and dielectric properties of ZnF₂–As₂O₃–TeO₂: NiO glass system. *J. Non-Cryst. Solids* **2011**, 357, 1193–1202. [CrossRef]
- Lakshminarayana, G.; Qiu, J.; Brik, M.G.; Kumar, G.A.; Kityk, I.V. Spectral analysis of Er3⁺-, Er³⁺/Yb³⁺-and Er³⁺/Tm³⁺/Yb³⁺doped TeO₂–ZnO–WO₃–TiO₂–Na₂O glasses. *J. Phys. Condens. Matter* 2008, 20, 375101. [CrossRef]
- 6. Pandey, S.D.; Samanta, K.; Singh, J.; Sharma, N.D.; Bandyopadhyay, A.K. Bandyopadhyay, Raman scattering of rare earth sesquioxide Ho₂O₃: A pressure and temperature dependent study. *J. Appl. Phys.* **2014**, *116*, 133504. [CrossRef]
- Bashar, K.A.; Lakshminarayana, G.; Baki, S.O.; Mohammed, A.-B.F.A.; Caldino, U.; Meza-Rocha, A.N.; Singh, V.; Kityk, I.V.; Mahdi, M.A. Tunable white-light emission from Pr³⁺/Dy³⁺ co-doped B₂O₃-TeO₂-PbO-ZnO-Li₂O-Na₂O glasses. *Opt. Mater.* 2019, 88, 558–569. [CrossRef]
- Wantana, N.; Kaewnuam, E.; Damdee, B.; Kaewjaeng, S.; Kothan, S.; Kim, H.; Kaewkhao, J. Energy transfer-based emission analysis of Eu³⁺ doped Gd₂O₃-CaOSiO₂-B₂O₃ glasses for laser and X-rays detection material applications. *J. Lumin.* 2018, 194, 75–81. [CrossRef]
- 9. Wang, G.; Xu, S.; Dai, S.; Zhang, J.; Jiang, Z. Thermal stability and spectroscopic properties of Yb³⁺-doped zinc–tungsten–tellurite glasses. *J. Alloys Compd.* **2004**, *373*, 246–251. [CrossRef]
- 10. Himei, Y.; Osaka, A.; Namba, T.; Miura, Y. Coordination change of Te atoms in binary tellurite glasses. *J. Non-Cryst. Solids* **1994**, 177, 164–169. [CrossRef]
- 11. Kim, S.; Yoko, T. Nonlinear optical properties of TeO₂-based glasses: MOx–TeO₂ (M = Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses. *J. Am. Ceram. Soc.* **1995**, *78*, 1061–1065. [CrossRef]
- 12. Gaafar, M.S.; Marzouk, S.Y. Mechanical and structural studies on sodium borosilicate glasses doped with Er₂O₃ using ultrasonic velocity and FTIR spectroscopy. *Phys. B Condens. Matter* **2007**, *388*, 294. [CrossRef]
- 13. Wang, M.-T.; Cheng, J.-S.; Li, M.; He, F. Structure and properties of soda lime silicate glass doped with rare earth. *Phys. B Condens. Matter* **2011**, 406, 187–191. [CrossRef]
- 14. El-Okr, M.; Ibrahem, M.; Farouk, M. Structure and properties of rare-earth-doped glassy systems. *J. Phys. Chem. Solids* **2008**, *69*, 2564–2567. [CrossRef]

- Al-Syadi, A.M.; Al-Assiri, M.S.; Hassan, H.M.A.; El Enany, G.; El-Desoky, M.M. Effect of sulfur addition on the electrochemical performance of lithium-vanadium-phosphate glasses as electrodes for energy storage devices. *J. Electroanal. Chem.* 2017, 804, 36–41. [CrossRef]
- Hussein, K.I.; Al-Syadi, A.M.; Alqahtani, M.S.; Elkhoshkhany, N.; Algarni, H.; Reben, M.; Yousef, E.S. Thermal Stability, Optical Properties, and Gamma Shielding Properties of Tellurite Glass Modified with Potassium Chloride. *Materials* 2022, 15, 2403. [CrossRef]
- 17. Krishna, G.; Veeraiah, N.; Venkatramaiah, N.; Venkatesan, R. Induced crystallization and physical properties of Li₂O–CaF₂–P₂O₅: TiO₂ glass system: Part, I. Characterization, spectroscopic and elastic properties. *J. Alloys Compd.* **2008**, 450, 477–485. [CrossRef]
- 18. Blanchandin, S.; Thomas, P.; Marchet, P.; Champarnaud-Mesjard, J.-C.; Frit, B. Equilibrium and non-equilibrium phase diagram within the TeO₂-rich part of the TeO₂-Nb₂O₅ system. *J. Mater. Chem.* **1999**, *9*, 1785–1788. [CrossRef]
- 19. Blanchandin, S.; Marchet, P.P.; Thomas, P.; Champarnaud-Mesjard, J.-C.; Frit, B.; Chagraoui, A. New investigations within the TeO₂-WO₃ system: Phase equilibrium diagram and glass crystallization. *J. Mater. Sci.* **1999**, *34*, 4285–4292. [CrossRef]
- Carreaud, J.; Labruyère, A.; Dardar, H.; Moisy, F.; Duclère, J.-R.; Couderc, V.; Bertrand, A.; Dutreilh-Colas, M.; Delaizir, G.; Hayakawa, T.; et al. Lasing effects in new Nd³⁺-doped TeO₂–Nb₂O₅–WO₃ bulk glasses. *Opt. Mater.* 2015, 47, 99–107. [CrossRef]
- 21. Reben, M.; Burtan-Gwizdała, B.; Cisowski, J.; Grelowska, I.; Yousef, E.S.; Bukalska, J. Influence of modifiers on thermal and optical properties of TeO₂–P₂O₅–ZnO–PbF₂ glasses. *Opt. Appl.* **2019**, *49*.
- 22. Bahgat, A.A.; Moustafa, M.G.; Shaisha, E.E. Enhancement of electric conductivity in transparent glass–ceramic nanocomposites of Bi₂O₃–BaTiO₃ glasses. *J. Mater. Sci. Technol.* **2013**, *29*, 1166–1176. [CrossRef]
- 23. Yousef, E.S.; Al-Qaisi, B. Kinetics and fabrication nanocrystallization of optical tellurophosphate glasses in system as: TeO₂·P₂O₅·ZnO·LiNbO₃. *J. Alloys Compd.* **2012**, *538*, 193–200. [CrossRef]
- 24. Yousef, E.S. Characterization of oxyfluoride tellurite glasses through thermal, optical and ultrasonic measurements. *J. Phys. D Appl. Phys.* **2005**, *38*, 3970. [CrossRef]
- Yousef, E.S.; Damak, K.; Maalej, R.; Rüssel, C. Thermal stability and UV–Vis-NIR spectroscopy of a new erbium-doped fluorotellurite glass. *Phil. Mag.* 2012, 92, 899. [CrossRef]
- Yousef, E.S.; Hotzel, M.; Russel, C. Linear and non-linear refractive indices of tellurite glasses in the system TeO₂–WO₃–ZnF₂. J. Non-Cryst. Solids 2004, 342, 82. [CrossRef]
- 27. Sestak, J. Applicability of DTA to the Study of Crystallization Kinetics of Glasses. Phys. Chem. Glas. 1974, 15, 137.
- 28. Hruby, A. Evaluation of glass-forming tendency by means of DTA. Czechoslov. J. Phys. 1972, 22, 1187. [CrossRef]
- Sidkey, M.A.; Gaafar, M.S. Ultrasonic studies on network structure of ternary TeO₂–WO₃–K₂O glass system. *Phys. B Condens. Matter* 2004, 348, 46–55. [CrossRef]
- 30. Lakshminarayana, G.; Kaky, K.M.; Baki, S.O.; Lira, A.; Nayar, P.; Kityk, I.V.; Mahdi, M.A. Physical, structural, thermal, and optical spectroscopy studies of TeO₂–B₂O₃–MoO₃–ZnO–R₂O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses. *J. Alloys Compd.* **2017**, *690*, 799–816. [CrossRef]
- Elkhoshkhany, N.; Mohamed, H.M.; Yousef, E.S. UV–Vis-NIR spectroscopy, structural and thermal properties of novel oxyhalide tellurite glasses with composition TeO₂-B₂O₃-SrCl₂-LiF-Bi₂O₃ for optical application. *Results Phys.* 2019, 13, 102222. [CrossRef]
- 32. Oo, H.M.; Mohamed-Kamari, H.; Wan-Yusoff, W.M.D. Optical properties of bismuth tellurite-based glass. *Int. J. Mol. Sci.* 2012, 13, 4623–4631. [CrossRef] [PubMed]
- 33. Yousef, E.S.; Al-Qaisi, B. UV spectroscopy, refractive indices and elastic properties of the (76 x) TeO₂·9P₂O₅·15ZnO·xLiNbO₃ glass. *Solid State Sci.* **2013**, *19*, 6–11. [CrossRef]
- 34. Al-Assiri, M.S.; El-Desoky, M.M.; Alyamani, A.; Al-Hajry, A.; Al-Mogeeth, A.; Bahga, A.A. Spectroscopic study of nanocrystalline V₂O₅·nH₂O films doped with Li ions. *Opt. Laser Technol.* **2010**, *422*, 994–1003. [CrossRef]
- 35. Ghosh, G. Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. *Appl. Opt.* **1997**, *36*, 1540–1546. [CrossRef]
- Ghosh, G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses. J. Am. Ceram. Soc. 1995, 78, 2828–2830.
 [CrossRef]
- 37. Abd-Elnaiem, A.M.; Moustafa, S.; Abdelraheem, A.M.; Abdel-Rahim, M.A.; Mahmoud, A.Z. Effects of annealing on structural and optical properties of Ge20Se70Sn10 thin films for optoelectronic applications. J. Non-Cryst. Solids 2020, 549, 120353. [CrossRef]
- 38. Wemple, S.; DiDomenico, M., Jr. Behavior of the electronic dielectric constant in covalent and ionic materials. *Phys. Rev. B* **1971**, *3*, 1338–1351. [CrossRef]
- Elkhoshkhany, N.; Marzoukb, S.Y.; Moataza, N.; Kandil, S.H. Structural and optical properties of TeO₂-Li₂O-ZnO-Nb₂O₅-Er₂O₃ glass system. J. Non-Cryst. Solids 2018, 500, 289. [CrossRef]
- Maaoui, M.; Haouari, Z.; Zaaboub, I.; Fraj, F.; Saidi, H.; Ouada, B. Concentration effects on the optical spectroscopic properties of Er³⁺-doped TeO₂–Nb₂O₅–ZnO vitreous system. J. Alloys. Compd. 2016, 663, 395.
- Taherunnisa, S.; Rudramamba, K.S.; KrishnaReddy, D.V.; Venkateswarlu, T.; Zhydachevskyy, Y.; Suchocki, A.; Piasecki, M.; RamiReddy, M. Efficient 2.01 μm mid-infrared (MIR) and visible emission in Ho³⁺ doped phosphate glasses enhanced by Er³⁺ ions. *Infrared Phys. Techn.* 2020, 107, 103294. [CrossRef]
- Kıbrıslı, O.; Erol, E.; Vahedigharehchopogh, N.; Yousef, E.S.; Ersundu, M.C.; Ersundu, A.E. Noninvasive optical temperature sensing behavior of Ho³⁺ and Ho³⁺/Er³⁺ doped tellurite glasses through up and down-converted emissions. *Sens. Actuators A* 2020, *315*, 112321. [CrossRef]

- 43. Wang, C.; Tian, Y.; Gao, X.; Liu, Q.; Huang, F.; Li, B.; Zhang, J.; Xu, S. Mid-infrared fluorescence properties, structure and energy transfer around 2 μm in Tm³⁺ /Ho³⁺ co-doped tellurite glass. *J. Lumin.* **2017**, *194*, 791–796. [CrossRef]
- 44. Qi, F.; Huang, F.; Wang, T.; Lei, R.; Zhang, J.; Xu, S.; Zhang, L. Influence of Tm^{3+} ions on the amplification of Ho^{3+} : ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transition in fluoride glass modified by Al(PO₃)₃ for applications in midinfrared optics. *Chin. Opt. Lett.* **2017**, *15*, 62–67.
- 45. Ebendorff-Heidepriem, H.; Szabó, I.; Rasztovits, Z.E. Crystallization behavior and spectroscopic properties of Ho³⁺-doped ZBYA-fluoride glass. *Opt. Mater.* **2000**, *14*, 127–136. [CrossRef]
- 46. Guan, P.; Fan, X.; Li, W.; Liu, X.; Yu, C.; Zhang, L.; Hu, L. High-efficiency ~2 μm laser in a single-mode Tm-doped lead germanate composite fiber. *Chin. Opt. Lett.* **2016**, *14*, 72–75.
- Xia, L.; Li, C.; Ding, J.; Li, J.; Zhou, Y.; Zhang, Y. Enhanced 2.7 μm mid-infrared emission in Er³⁺/Ho³⁺ co-doped tellurite glass. Opt. Laser Technol. 2021, 138, 106913.
- Yusof, N.N.; Ghoshal, S.K.; Jupri, S.A. Luminescence of Neodymium Ion-Activated Magnesium Zinc Sulfophosphate Glass: Role of Titanium Nanoparticles Sensitization. Opt. Mater. 2020, 109, 110390. [CrossRef]
- Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, S.; Venkateswarulu, M.; Rao, A.S. Structural, optical and photoluminescence properties of alkaline-earth boro tellurite glasses doped with trivalent Neodymium for 1.06 μm optoelectronic devices. *Opt. Mater.* 2021, 111, 110615. [CrossRef]
- 50. Yao, S.; Lv, S.; Feng, Z. Judd-Ofelt analysis of Ho³⁺ doped CaYAlO₄ single crystal. J. Lumin. 2021, 238, 118219. [CrossRef]
- RekhaRani, P.; Venkateswarlu, M.; Swapna, K.; Mahamuda, S.; Srinivas Prasad, M.V.V.K.; Rao, A.S. Spectroscopic and luminescence properties of Ho³⁺ ions doped barium lead alumino fluoro borate glasses for green laser applications. *Solid State Sci.* 2020, 102, 106175.
- 52. Babu, P.; Seo, H.J.; Kesavulu, C.R.; Jang, K.H.; Jayasankar, C.K. Thermal and Optical Properties of Er³⁺-Doped Oxyfluorotellurite Glasses. *J. Lumin.* **2009**, *129*, 444. [CrossRef]
- 53. Cases, R.; Chammaro, M.A. Judd-Ofelt analysis and multiphonon relaxations of rare earth ions in fluorohafnate glasses. *J. Solid State Chem.* **1991**, *90*, 313. [CrossRef]
- 54. Raja, J.; Amjad Dousti, M.R.; Sahar, M.R. Spectroscopic investigation and Judd–Ofelt analysis of silver nanoparticles embedded Er³⁺-doped tellurite glass. *Curr. Appl. Phys.* **2015**, *15*, 1–7.
- 55. Leal, J.J.; Narro-García, R.; Desirena, H.; Marconi, J.D.; Rodríguez, E.; Linganna, K.; De la Rosa, E. Spectroscopic properties of tellurite glasses co-doped with E^{r3+} and Yb³⁺. *J. Lumin.* **2015**, *162*, 72–80. [CrossRef]
- Suthanthirakumar, P.; Karthikeyan, P.; Manimozhi, P.K.; Marimuthu, K. Structural and spectroscopic behavior of Er³⁺/Yb³⁺ co-doped boro-tellurite glasses. J. Non-Cryst. Solids 2015, 10, 26–34. [CrossRef]
- 57. Zhao, G.Y.; Tian, Y.; Wang, X.; Fan, H.Y.; Hu, L.L. Spectroscopic properties of 1.8 μm emission in Tm3+ doped bismuth silicate glass. *J. Lumin.* **2013**, *134*, 837–841.
- Watekar, P.R.; Ju, S.; Han, W.T. Optical properties of Ho-doped alumino–germano-silica glass optical fiber. J. Non-Cryst. Solids. 2008, 354, 1453–1459. [CrossRef]
- Xu, X.C.; Zhou, Y.X.; Wang, S.; Wei, S.L.; Dai, S.X.; Wang, X.S. Near-infrared emission and energy transfer mechanism of Tm³⁺/Yb³⁺ codoped tellurite glasses. J. Optoelectron. Laser 2012, 8, 1500–1508.
- 60. Zhang, Q.; Chen, G.; Zhang, G. Spectroscopic properties of Ho³⁺/Yb³⁺ codoped lanthanum aluminum germanate glasses with efficient energy transfer. *J. Appl. Phys.* **2009**, *106*, 113102–113106. [CrossRef]
- Tian, Y.; Xu, R.; Zhang, L.; Hu, L.; Zhang, J. Enhanced effect of Ce³⁺ ions on 2 μm emission and energy transfer properties in Yb³⁺/Ho³⁺ doped fluorophosphate glasses. J. Appl. Phys. 2011, 109, 083535. [CrossRef]
- Zhang, Q.; Ding, J.; Shen, Y.; Zhang, G.; Lin, G.; Qiu, J.; Chen, D. Infrared emission properties and energy transfer between Tm³⁺ and Ho³⁺ in lanthanum aluminum germanate glasses. *J. Opt. Soc. Am. B* 2010, 27, 975–980. [CrossRef]
- 63. Heo, J.; Shin, Y.B.; Jang, J.N. Spectroscopic analysis of Tm³⁺ in PbO-Bi₂O₃-Ga₂O₃ glass. *Appl. Opt.* **1995**, *34*, 4284. [CrossRef]
- 64. Damak, K.; Maâlej, R.; Yousef, E.S.; Qusti, A.H.; Rüssel, C. Thermal and spectroscopic properties of Tm³⁺ doped TZPPN transparent glass laser material. *J. Non-Cryst. Solids* **2012**, *358*, 2974. [CrossRef]
- 65. Yousef, E.S. Er³⁺ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application. *J. Alloys Compd.* **2013**, *561*, 234. [CrossRef]
- 66. Payne, S.A.; Chase, L.L.; Smith, L.K.; Kway, W.L. Infrared cross-section measurements for crystals doped with Er³⁺, Tm³⁺, and Ho³⁺. *IEEE J. Quantum Electron.* **1992**, *28*, 2619–2630. [CrossRef]
- 67. Zhou, D.; Jin, D.; Ni, Q.; Song, X.; Bai, X.; Han, K. Fabrication of double-cladding Ho³⁺/Tm³⁺ co-doped Bi₂O₃–GeO₂–Ga₂O₃–BaF₂ glass fiber and its performance in a 2.0-μm laser. *J. Am. Ceram. Soc.* **2019**, *102*, 4748–4756. [CrossRef]
- Li, K.; Wang, G.; Zhang, J.; Hu, L. Broadband 2 μm emission in Tm³⁺-Ho³⁺ co-doped TeO₂-WO₃-La₂O₃ glass. *Solid State Commun.* 2010, *150*, 1915–1918. [CrossRef]
- Li, M.; Liu, X.; Guo, Y.; Hu, L.; Zhang, J. Energy transfer characteristics of silicate glass doped with Er³⁺, Ho³⁺, Tm³⁺ for 2 μm emission. *J. Appl. Phys.* 2013, 114, 2–9. [CrossRef]
- 70. Florez, A.; Oliveira, S.L.; Florez, M. Spectroscopic characterization of Ho³⁺ iondoped fluoride glass. *J. Alloys Compd.* **2006**, 418, 238–242. [CrossRef]
- 71. Yi, L.X.; Wang, M.; Feng, S.Y.; Chen, Y.K.; Wang, G.H.; Hu, L.L.; Zhang, J.J. Emissions properties of Ho³⁺: ⁵I₇ → ⁵I₈ transition sensitiezed by Er³⁺ and Yb³⁺ in fluorophosphates glasses. *Opt. Mater.* **2009**, *31*, 1586–1590. [CrossRef]
- 72. McCumber, D.E. Theory of phonon terminated optical masers. Phys. Rev. 1964, 34, A299–A306. [CrossRef]

- 73. Fan, J.; Fan, Y.; Yang, Y.; Chen, D.; Calvez, L.; Zhang, X.; Zhang, L. Spectroscopic properties and energy transfer in Yb³⁺-Ho³⁺ co-doped germanate glass emitting at 2.0 μm. *J. Non-Cryst. Solids* **2011**, *357*, 2431–2434. [CrossRef]
- Li, K.; Zhang, Q.; Fan, S.; Zhang, L.; Zhang, J.; Hu, L. Mid-infrared luminescence and energy transfer characteristics of Ho³⁺/Yb³⁺ codoped lanthanum-tungsten-tellurite glasses. *Opt. Mater.* 2010, 33, 31–35. [CrossRef]
- 75. Tian, Y.; Zhang, L.; Feng, S.; Xu, R.; Hu, L.; Zhang, J. 2 μm Emission of Ho³⁺-doped fluorophosphate glass sensitized by Yb³⁺. Opt. Mater. 2010, 32, 1508–1513. [CrossRef]
- 76. Wang, W.C.; Yuan, J.; Liu, X.Y.; Chen, D.D.; Zhang, Q.Y.; Jiang, Z.H. An efficient 1.8 μm emission in Tm³⁺ and Yb³⁺/Tm³⁺ doped fluoride modified germinate glasses for a diode-pump mid-infrared laser. J. Non-Cryst. Solids 2014, 404, 19–25. [CrossRef]
- Zou, X.; Toratani, H. Spectroscopic properties and energy transfers in Tm³⁺ singly-and Tm³⁺/Ho³⁺ doubly-doped glasses. J. Non-Cryst. Solids 1996, 195, 113–124. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.