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Abstract: The thermal and optical properties of 60TeO2-20K2TeO3-10WO3-10Nb2O5 (in mol%) glasses
doped with Ho2O3, Er2O3, and Tm2O3 were explored in the present work. The thermal stability,
refractive index n, extinction coefficient k, absorption coefficient α, and optical band gap of the
glasses were evaluated. The UV–Vis–NIR absorption spectra, the Judd–Ofelt intensity parameter,
the spectroscopic quality factor, and the emission and absorption cross-sections were calculated to
investigate the effects of Er3+ and Tm3+, respectively, on the band spectroscopic properties of Ho3+

ions. The results showed that the maximum emission cross-section was approximately 8× 10−21 cm2,
and the values of the full width at half maximum ( FWHM), quality factor ( σe × FWHM), and gain
coefficient of Ho3+: 5I7→5I8 were also reported. The value of the FWHM × σe was 1200 × 10−28 cm3,
which showed greater gain characteristics than earlier study results. For 2 µm mid-infrared solid-state
lasers, the glasses that were examined might be a good host material.

Keywords: co-doped tellurite glasses; rare earth; DSC; thermal properties; refractive index; Judd–Ofelt
analysis; gain quality

1. Introduction

Lasers, optical fiber amplifiers, flat-panel displays, optoelectronics, memory devices,
solar cells, and light-emitting diodes are just a few of the numerous technical and scientific
uses of glasses [1,2]. Oxide glasses often have several desirable characteristics, including
low optical properties thresholds, and great transparency. Several researchers have been
actively working to change these materials to acquire significant nonlinear coefficients,
which are needed for using them in nonlinear optical devices [1–3]. It is well known that
tellurite-based glasses are transparent in the mid-infrared range, have a high refractive
index, and a high density. Not only are these glasses non-toxic, but they also resist moisture
and are stable against devitrification. These characteristics make the glasses useful in
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many fields, including laser windows, nonlinear optical devices (including limiters, optical
switches, and modulators), and optical fibers [4]. The addition of rare-earth ions is essential
for white-light-emitting diodes, and glass systems based on TeO2 are very promising
matrices for this purpose [5]. There has been a recent renaissance in the study of earth-
doped materials for photonic applications, display monitors, X-ray imaging, scintillators,
lasers, up-conversion, and amplifiers for fiber-optic communications [5–7]. Rare-earth-
doped glasses have important applications in solid laser sources, optical sensors, solar
cells, optical telecommunication, white-light-emitting diodes, and optical data storage
devices [7,8]. Tellurite glasses with added transition metal oxides should have a higher
softening point and more stability, as seen with WO3 [9]. The WO3 and TeO2 components
of the glass are network formers. WO4 tetrahedral and WO6 octahedral structural units
and TeO3 trigonal pyramid and TeO4 trigonal bipyramid units are the two different kinds
of dopant sites that are present in the glass because of this [10]. The two different types of
dopant sites vary in the intensity of their ligand fields and, as a result, in their distributions
in space due to their unique geometries [5]. According to Pandey et al. [6], the third
nonlinearity effect is due to the ability of WO3 to increase the density of the non-bridging
oxygen atoms, which causes the optical band gap to increase in Bi2O3-WO3-TeO2 glasses.
According to Kim and Yoko [11], the optical band gap, third-order susceptibility, χ(3),
real refractive index, static refractive index, and empty d-shell transition metal cations,
including Nb5+ cations, affect oxide glasses.

The present work aims to study the optical properties of the TeO2-K2TeO3-WO3-
Nb2O5 glass system, doped with rare-earth oxides (Ho2O3, Er2O3, and Tm2O3). The
optical characteristics are correlated with the structure’s phase transitions and thermal
stability, which are determined using differential scanning calorimetry and a double-beam
spectrophotometer. The ultraviolet–visible–near-infrared (UV–Vis–NIR) absorption and
emission spectra of Ho3+-single-doped, Ho3+/Er3+-co-doped, and Ho3+/Tm3+-co-doped
tellurite glasses (TKWN1, TKWN2, and TKWN3, respectively) were analyzed at room
temperature. Based on the Judd–Ofelt theory, the detailed spectroscopic parameters,
radiative transition probabilities, radiative lifetimes, and branching ratios of the TKWN1
sample were obtained. Moreover, the absorption and emission cross-sections of Ho3+ were
calculated via McCumber theory. In addition, the gain coefficient of Ho3+: 5I7→5I8, the
quality factor ( σ

peak
e × FWHM

)
, and the full width at half maximum ( FWHM) were also

reported. Finally, the possible visible and NIR emissions and their applications for future
green laser sources and optical amplifiers were discussed.

2. Experimental Section

Using the melt quench technique, tellurite-based glasses with the composition (60TeO2-
20K2TeO3-10WO3-10Nb2O5) mol%, doped with rare-earth oxides (Ho2O3, Er2O3, and
Tm2O3 in ppm ratio), were prepared. The details of their composition are shown in Table 1.
The powder was mixed and heated in a platinum crucible in a furnace at 960 ◦C for 35 min.
Subsequently, the highly viscous melt was cast into a graphite mold. The quenched glass
was annealed at 250 ◦C for 2 h and then slowly cooled to room temperature (RT). The
color of the prepared samples depended on the ratio of NiO in the glasses (as clarified
in Figure 1). The thermal analysis of the glasses was carried out via differential scanning
calorimetry (DSC Shimadzu 50) with a heating rate of 10 ◦C/min in the range of 20–550 ◦C.
The density of the glass samples was evaluated using the Archimedes method.

ρ =
Wair × ρl

(Wair − Wl)
(1)

where Wair and WL are the weights of the glass sample in air and toluene, respectively. ρl
is the density of toluene liquid ( ρl = 0.865 gm·cm3).
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Table 1. Composition, density ρ, molar volume Vm, and oxygen packing density (OPD) of TKWN glasses.

Sample Composition (mol%) ρ

(g/cm3)
Vm

(cm3/mol)
OPD

(mol/L)

TKWN1 60TeO2-20K2TeO3-10WO3-10Nb2O5-30,000 ppmHo2O3 4.9125 41.07 65.51

TKWN2 60TeO2-20K2TeO3-10WO3-10Nb2O5-30,000
ppmHo2O3-30,000 ppm Er2O3

4.9597 41.80 66.51

TKWN3 60TeO2-20K2TeO3-10WO3-10Nb2O5-30,000
ppmHo2O3-30,000 ppm Tm2O3

4.9641 41.78 66.53
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Figure 1. Photographs of as-prepared TKWN glasses.

The optical absorption and transmission spectra were measured in the wavelength
range of 400–2500 nm using aJASCO V-570 spectrophotometer (JASCO INTERNATIONAL
CO., LTD. Tokyo, Japan).

3. Results and Discussion
3.1. Density, Molar Volume, and Oxygen Packing Density

The density (ρ), molar volume (Vm), and oxygen packing density (OPD) of the stud-
ied glasses are listed in Table 1. The density of the glasses varied between 4.9125 and
4.9641 g/cm3. The addition of rare-earth oxides to TeO2-based glasses leads to a relatively
slight increase in density. This increase is related to the molecular weights of rare-earth
oxides, which are much greater than those of other constituents in the studied TeO2-based
glass, and also to the change in the coordination number of rare-earth ions [12,13]. There-
fore, the densities of the glasses co-doped with the two types of rare-earth oxides, Ho2O3
and Er2O3 (TKWN2 sample) and Ho2O3 and Tm2O3 (TKWN3 sample), were relatively
higher than the glass doped with Ho2O3 only (TKWN1 sample). Furthermore, the molecu-
lar weights of Er2O3 and Tm2O3 (382.5 and 385.866 g/mol, respectively) are higher than
that of Ho2O3 (377.858 g/mol), which led to an increase in the density of the TKWN2
and TKWN3 glasses compared to the TKWN1 glass. Given that the density is inversely
proportional to the molar volume and proportional to the average molecular weight, it is
reasonable to assume that the two quantities will behave in opposition to one another in
most amorphous materials (especially glass). In this glass system, the TKWN1 glass, doped
only with Ho2O3, exhibited the reverse behavior, with a reduced density and molar volume.
Previous reports [13,14] describe this unusual behavior for several glass systems containing
rare-earth elements. It is well known that changes in molecular weight and density have
an impact on the extent to which the molar volume changes. In comparison to the TKWN2
and TKWN3 glasses, the rate of change in the molar volume of the TKWN1 glass was lower.
Hence, the network became more closed and tightly packed. This behavior could have been
due to the addition of Er2O3 and Tm2O3 to the TKWN2 and TKWN3 glasses, respectively.

3.2. Thermal Properties

The DSC curves of the TKWN glasses doped with rare-earth oxides and tempered
at a rate of 10 ◦C/min are illustrated in Figure 2. This glassy material’s thermal stability
was confirmed by the DSC traces that were obtained for the samples. Each DSC scan
exhibited a small endothermic peak corresponding to the glass transition temperature
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(Tg), followed by exothermic peaks, with two peaks (Tp1 and Tp2) for the TKWN1 sample
and one peak (Tp1) for the TKWN2 and TKWN3 samples, which corresponded to the
crystallization temperature. The glass transition temperature (Tg), onset crystallization
temperature (Tc), and peak crystallization temperatures (Tp1 and Tp2) were measured and
recorded, as shown in Table 2. The Tg provides information about the strength of the bonds
and connectivity in the glass network, i.e., the Tg increases with the increasing connectivity
and bond strength in the glass [15]. The values of Tg for the present glass system were close
to those of TeO2-based glasses [16,17], which show high Tg values. The increase in the Tg
values can result from the combined effect of incorporating both Nb2O5 and WO3 [18–21].
From Table 2, it is clear that the doping of the TKWN glasses with Er2O3 and Tm2O3 had a
strong influence on the Tg as well as the onset and peak crystallization temperatures (Tc
and Tp), which shifted to significantly higher temperatures (as shown in Figure 2).
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Table 2. Values of Tg, Tc, Tp, ∆T, H, and KSP for TKWN glasses.

Sample Code Tg
◦C

Tc
◦C

Tp1
◦C

Tp2
◦C

∆T
◦C H KSP

◦C

TKWN1 344 431 462 542 87 0.253 10.63
TKWN2 355 438 463 - 83 0.234 7.61
TKWN3 356 439 464 - 83 0.233 7.58

We found that adding Er2O3 and Tm2O3 to the TKWN glass doped with Ho2O3
improved the value of Tg. This might have been because the bonds were very strong. Thus,
the as-prepared glasses were more rigid and had better glass-forming capabilities after
adding rare-earth oxides [14]. A further explanation for the reported increase in the Tg
with increasing rare-earth oxide concentrations might be the OPD, as shown in Table 1. The
OPD is a measure of the closeness of the oxide network’s packing. As the concentration
of rare-earth oxides increases, it is evident that the OPD increases as well. This suggests
that as the amount of rare-earth oxides grows, the structure becomes more compact. The
presence of rare-earth oxides in the glass system suggests the production of a more compact
macromolecular chain, which in return increases the Tg, since a closer macromolecular
structure requires greater internal energy for chain mobility, which is necessary for the
glass transition [22].
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An estimate for the thermal stability of glass has been calculated utilizing the thermal
stability factor ∆T = (Tc − Tg). To achieve the required large working range, e.g., during
the fabrication process, it is favorable to have ∆T values that are as large as possible [23–26].
Hruby’s equation, namely H = ∆T/Tg, and the glass compositional dependencies of
Hruby’s coefficient were estimated by Sestak [27,28]. Table 2 displays Hruby’s coeffi-
cient (H) and the thermal stability factor (∆T); these are important in evaluating the glass
devitrification process [29,30]. It was observed that the thermal stability of the studied
glasses decreased with increasing rare-earth oxide concentrations. The parameter KSP,
which is related to the stability of glass against crystallization, can be calculated using the
following relationship [31]:

KSP =

(
Tp − Tc

)(
Tp − Tg

)
Tg

(2)

where Tg is the glass transition temperature, Tc is the onset crystallization temperature,
and Tp is the peak crystallization temperature.

Table 2 shows the KSP values for the as-prepared glasses, which lay within the range
of those of tellurite-based glasses, which include alkaline and heavy metal ions, as reported
in Refs. [16,31,32].

3.3. Optical Properties

The optical transmission spectra of the TKWN glasses doped with rare-earth oxides
are illustrated in Figure 3. From this figure, we can see several peaks in the spectrum,
which are due to the presence of rare-earth ions (Ho3+, Er3+, and Tm3+) in the glasses.
Figures 4 and 5 show the optical absorption spectra of the as-prepared glasses. Numerous
peaks are due to the presence of rare-earth ions in the glass. The absorption coefficient (α)
for the as-prepared glasses was calculated using the following equation [33]:

α =
1
d

ln
(

I0

It

)
= 2.303

A
d

(3)

where I0, It, A, and d are the incident intensity, transmitted intensity, absorbance, and
thickness of the film, respectively.
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When designing devices that include glass, the material’s refractive index is an essen-
tial parameter that must be considered. The following equation expresses the relationship
between the reflectance (R) and extinction coefficient (k) using the value of the real compo-
nent of the complex refractive index (n), according to Fresnel’s theory of light reflectivity:

R =
(n − 1)2 + k2

(n + 1)2 + k2
(4)

The value of k can be calculated according to the following equation [34]:

k =
αλ

4π
(5)

where λ is the wavelength in micrometers.
The calculated n and k values of the TKWN glasses doped with rare-earth oxides

are given in Figures 6 and 7, respectively. As shown in Figure 6, the refractive index (n)
decreased when increasing the wavelength of the incident photon.
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The density, the electronic polarizability of the oxide ion, the coordination number,
and the polarizability of the initial neighbor ions coordinated with it (anions) are among
the several important variables that impact the refractive index [21]. The Er2O3 or Tm2O3
added to the TKWN glass doped with Ho2O3 caused a minor increase in the n values. In
addition, we found that the density, ρ, and n had a linear relationship. See Figure 6 for the
highest values of n for the TKWN glass samples doped with both Ho2O3 and Tm2O3.

The Sellmeier dispersion formula is one of the most well-known fitted dispersion
equations that describes the index variation, n, vs. the wavelength, λ. The five coefficients
included in this formula allow it to fit the data perfectly throughout a wide spectrum range,
in agreement with the observations. One means to describe the propagation characteristics
of waveguides constructed from the materials under study is to employ the dispersion
data in the form of fitting Sellmeier coefficients. The following is the Sellmeier dispersion
formula in the spectra of the absorption bands; when (hν) is smaller than (Eopt), the photon
band gap energy is as follows [35,36]:

n2(λ) = A + B/
(

1 − C
λ2

)
+ D/

(
1 − E

λ2

)
(6)
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where λ is the wavelength in micrometers. In this case, the glass materials’ dispersion
characteristics are A, B, C, D, and E. The first and second terms relate to the refractive
index contributions of larger and lower energy gaps from electronic absorption. The last
term indicates how the lattice absorption causes the refractive index to decrease [35,36].
Equation (6) was used to fit the experimental data, yielding the Sellmeier coefficients shown
in Table 3. Figure 6 shows the refractive index behavior for the as-prepared glasses with
the wavelength calculated using Sellmeier’s equations [35].
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Table 3. Values of A, B, C, D, Eopt, Rm, αm, and M for TKWN glasses.

Sellmeier Coefficients Eopt
(eV)

Rm
Mol−1

αm
Å−3 M

Sample Code A B C D

TKWN1 3.185 0.7423 0.2562 0.01403 2.453 20.30 8.05 0.506
TKWN2 3.195 0.7542 0.2604 0.017015 2.481 20.75 8.23 0.504
TKWN3 3.204 0.7771 0.2508 0.009851 2.501 20.84 8.26 0.501

Furthermore, Eg = 1.24/λ is the average absorption band gap, Eg (measured in
electron volts), and it may be used to determine the lattice absorption frequency or Eg [35].
For more information about optically induced transitions and optical band gaps in materials,
it is helpful to investigate their optical absorption edges. The basic idea behind this
processing is the absorption of photons whose energies are higher than the energy of the
band gap. At the basic absorption edge, electromagnetic waves interact with electrons in
the valence band to cause two types of optical transitions: direct and indirect. The Tauc
relation [37] provides the relationship between α and the photon energy of the incoming
radiation, hν.

α hν = b
(
hν − Eopt

)s (7)

where ν is the frequency and h is the Planck constant. While b remains constant, the value
of s varies according to the interband transition process. The parameter s takes the value of
½ in the case of the direct allowed transition, while it is equal to 2 in the case of the indirect
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allowed transition. Equation (7), which is associated with indirect permitted transitions in
most types of glass, shows a straight line for s = 2. The Tauc plot of (αhν)1/2 against (hν)
for the as-prepared glasses is shown in Figure 8. To determine the Eopt of these glasses,
we extrapolated their linear domains at the absorption edge to intersect the hν axis at
(αhν)1/2 = 0. Table 3 lists the Eopt values. Adding Er2O3 or Tm2O3 to the TKWN glass
doped with Ho2O3 slightly increased the Eopt value; it was greatest in the TKWN glass
sample that was co-doped with Ho2O3 and Tm2O3. As mentioned previously regarding
the thermal properties and density of the proposed glass material, the strong bonds are the
expected cause of the increase in the Eopt. values. The results for the present glass material
show that when the amount of rare-earth oxides is increased, the structure becomes more
closely packed, leading to an increase in the Tg, ρ, and OPD. Hence, increasing the number
of rare-earth oxides in the glass system is suggested to form a more rigid macromolecular
chain, which decreases the amount of non-bridging oxygen (NBO) and increases the Eopt.
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By applying the Wemple–DiDomenico (WDD) relationship to the model of a single
oscillator, we may describe the dispersion of n [38].

n2 = 1 +

(
EdEo

E2
o − (hν)2

)
(8)

where Ed is the dispersion energy, which represents the average strength of the interband
optical transitions, and Eo is the energy of the effective dispersion oscillator or the average
energy gap. Figure 9 shows the variation in (n2 − 1)−1 versus (hν)2 for the studied glasses.
The values of Ed and Eo can be directly determined from the slope (EoEd)−1 and the
intercept on the vertical axis (Ed/Eo). The static refractive index (n0) of the as-prepared
glasses is calculated via the extrapolation of the Wemple–DiDomenico dispersion relation,
Equation (8), when hν→0, and this gives the following expression:

n0 =
√

1 + Ed/Eo (9)

where no is the static refractive index. The deduced values of Eo, Ed, and no are listed
in Table 4. It is observed that the value of no for the as-prepared glasses increases with
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an increase in density. Figure 10 shows that n2 is strongly dependent on λ2 according
to Equation (6).
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Table 4. Optical parameters of TKWN glasses.

Dispersion Parameters

Sample Code Eo (eV) Ed (eV) no

TKWN1 8.60 25.25 1.983

TKWN2 8.68 25.69 1.989

TKWN3 9.03 26.98 1.996
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A suitable method for the investigation of the impact of ionic packing on the refractive
index (n) of glass is to calculate its molar refractivity (Rm), which is defined as the total
polarizability of a mole of a material and derived from the following formula [33]:

Rm =

(
n2

o − 1
n2

o + 2

)
Vm (10)

where Vm is the molar volume.
According to the following Clasius–Mosotti relationship, the molar electronic polariz-

ability of a material is proportional to its molar refractivity, which, in effect, corresponds to
the glass’s structure [33].

αm =

(
3

4πNA

)
Rm (11)

where NA is Avogadro’s number. The values of Rm and αm are listed in Table 3. These
values increase with the increase in the rare-earth content. The metallization criterion (M)
gives information about the metallic or non-metallic nature of the glass, and it is calculated
through the following relationship [31]:

M = 1 − Rm

Vm
(12)

If M > 0, the materials demonstrate an insulating nature, but if M < 0, the materials
exhibit a metallic nature. The results of the metallization criterion (M) are listed in Table 3
and are within the range of 0.501–0.506. Therefore, the as-prepared glasses demonstrate an
insulating nature [16,31].

3.4. Absorption Spectra, Judd–Ofelt Analysis, and Radiative Properties

Extrinsic absorption, which is associated with internal electronic transitions, particu-
larly in the 4f shells of rare-earth ions, and intrinsic absorption, which occurs at short and
long wavelengths, are the two processes that lead to the development of the optical spectra
of single-rare-earth-doped or co-doped glasses [39,40].

The room-temperature UV–Vis–NIR absorption spectra recorded in the range of
400–2500 nm for the Ho3+-single-doped, Ho3+/Er3+-co-doped, and Ho3+/Tm3+-co-doped
tellurite glasses (TKWN1, TKWN2, and TKWN3, respectively) and the absorption peaks
related to electronic transitions from the ground states of Ho3+, Er3+, and Tm3+ to their
corresponding excited levels are presented in Figures 4 and 5, respectively. The eight ab-
sorption peaks from the ground state Ho3+ are responsible for the bands at the wavelengths
of 420, 450, 485, 540, 645, 890, 1155, and 1950 nm for Ho3+: 5I8 regarding the degree of
intensity; correspondingly, the resulting values are 5G5, 5F1+5G6, 5F3, 5S2+5F4, 5F5, 5I5, 5I6,
and 5I7. The seven absorption peaks from the ground state Er3+ are Er3+: 4I15/2 to the
excited levels 4F7/2, 2H11/2, 4S3/2, 4F9/2, 4I9/2, 4I11/2, and 4I13/2, respectively. The bands
with peaks at the wavelengths of 450, 645, 685, 795, and 1710 nm are derived from the five
absorption peaks that start the transition of the ground state Tm3+, namely Tm3+: 3H6 to
the excited levels 1G4, 3F2, 3F3, 3H3, 3H5, and 3F4, respectively. These are identical to the
absorption peaks seen in other glasses [41–43].

Figure 4 further confirms that the presence of Er3+ or Tm3+ ions in the matrix causes
absorption bands to form due to the energy-level quantum structures in these ions [44]. In
photoluminescence measurements, the 808 nm commercial laser diode (LD) can be utilized
as a pumping source because although Ho3+ ions do not exhibit any clear absorption peaks
around 808 nm or 980 nm, the 3H4 ground state of Tm3+ and the 4I9/2 ground state of
Er3+ both exhibit an absorption peak at around 800 nm. The locations of the absorption
peaks exhibit no apparent variations when compared to the Ho3+-single-doped sample
(TKWN1). In addition, the two Ho3+/Er3+-co-doped tellurite glasses (TKWN2 and TKWN3,
respectively) match the tellurite glass samples in terms of the forms and peak locations of
each transition [45–47]. In order to investigate the potential spectroscopic parameters of
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the single-doped sample (TKWN1), the Judd–Ofelt (JO) theory is adopted without taking
into account the energy transfer and multiphonon de-excitation probabilities. Detailed
applications of the JO model have been described in other papers [48,49]. We compute the
experimental electric dipole line strength

(
Smes

ed
)

of the Ho3+-single-doped glass sample
(TKWN1) using the absorbance spectra (Figures 4 and 5). Unlike the glasses doped with
other rare-earth ions, such Er3+ and Tm3+, the magnetic dipole transitions in the Ho3+-ion-
doped glass are sufficient to be undetectable [50]. Thus, the magnetic dipole transitions
should be taken into account when we calculate the experimental electric dipole line
strength (S mes

ed
)
. The calculated values are given in Table 5, along with the values of

the magnetic dipole line strength Smd, the three phenomenological intensity parameters

Ωt (t = 2, 4, 6), and the calculated electric dipole line strength (S cal
ed

)
. As shown in Table 5,

good agreement is found between the calculated and the experimental values, and the
lower value of the root mean square deviation between the experimental and the calculated
line strengths of the transitions

(
δrms = 0.5659 × 10−20 cm2) indicates the validity of JO

theory for the prediction of the spectral intensity of Ho3+.

Table 5. Values of average wavelengths, refractive indices, integrated absorption coefficients, and
electric and magnetic dipole line strengths for Ho3+-single-doped tellurite glass (TKWN1).

Transition from 5I8 to λ (nm) n
∫

OD(λ)dλ (nm) Scal
ed (pm2) Smes

ed (pm2) Smd (pm2)
5I7 1950 1.9884 25.9613 1.9518 1.2918 0.9493
5I6 1155 1.9959 5.0289 0.8340 1.0327 0
5I5 895 2.0041 0.52004 0.1202 0.1370 0
5F5 645 2.0226 6.0251 1.4788 2.1687 0

5S2+5F4 540 2.0420 4.65323 1.4749 1.9679 0
5F3 485 2.0609 0.92585 0.3694 0.4291 0

5F1 + 5G6 450 2.0790 9.9929 4.9075 4.9172 0
5G5 420 2.1003 0.89175 1.0969 0.4619 0

Ω2 = 1.993 × 10−20 cm2 Ω4 = 2.055 × 10−20 cm2 Ω6 = 1.066 × 10−20 cm2

δrms = 0.5659 × 10−20cm2

Hypersensitive transitions (HSTs) are transitions associated with all absorptions,
e.g., Ho3+: 5I8→5G5 transitions. These transitions are very sensitive to the surrounding
local environment of the doped ions and follow the selection criteria ∆L ≤ 2, ∆J ≤ 2, and
∆S = 0 [51–53].

It is well known that parameter Ω2 represents HSTs and is dependent on the short-
range effects of rare-earth ions (the covalency and asymmetry in the community). The
ion site is more centro-symmetric and its chemical interaction with the ligand is more
ionic when the value of Ω2 is smaller, both of which contribute to the covalent nature [54].
The massive (bulk) characteristics of the host glass, such as its basicity and strength, are
associated with the constants Ω4 and Ω6. In addition, the vibrational levels related to
the essential rare-earth ions confined to the ligand atoms have a significant impact on
them [55–57]. The host glass’s basicity and hardness increase with increasing values of Ω4
and Ω6. The three Ho3+ intensity parameters follow the trend Ω4 > Ω2 > Ω6, according to
an analysis of the data in Table 5.

The spectroscopic quality factor (χ = Ω4/Ω6) is an important characteristic in pre-
dicting the luminescence efficiency [58]. In the sample TKWN1, the value calculated is 1.93,
which is higher than those of previously reported Ho3+-single-doped samples [59,60].

To predict the emission performance in the studied glass (TKWN1), the radiative prop-
erties, such as the radiative transition probabilities ( Arad(J → J′) = Aed + Amd), branching
ratios (βrad(J J′)), and radiative lifetimes (τrad), for the (J → J′) transitions for spontaneous
emission are calculated through JO intensity parameters. All data computed are tabulated
in Table 6. Compared to fluorophosphate (90.42 s−1) [61], tellurite (165.8 s−1) [60], and
germanate glass (69.2 s−1) [62], the TKWN1 sample examined in this study has Arad in
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which the Ho3+→5I7→5I8 transition was high and equal to 38.7 s−1. This is determined
by the higher refractive index (n = 1.98) of the tellurite glass, because the larger refractive
index of the host glass, the higher the radiative transition probability, which provides a
better likelihood of achieving laser action [63]. Thus, the TKWN1 is possibly a suitable
material that might be able to achieve 2 µm fluorescence via the Ho3+: 5I7 → 5I8 transition.

Table 6. Calculated radiative parameters of different states of Ho3+-single-doped tellurite glass (TKWN1).

Transition ν (cm−1) n Sed (pm2) Smd (pm2) Aed (s−1) Amd (s−1) β (%) τr (ms)
5 I7 → 5I8 5102 1.9884 1.9505 0.8670 195 43.6554 100.0000 4.1983
5 I6 → 5I8 8658 1.9959 0.8305 0 475 0 86.1550

1.81245 I6 → 5I7 3556 1.9874 1.3362 1.2450 52 24.4519 13.8450
5 I5 → 5I8 11148 2.0040 0.1201 0 177 0 40.9162

2.31525 I5 → 5I7 6046 1.9897 0.9896 0 225 0 52.0198
5 I5 → 5I 6 2612 1.9873 1.0679 1.2050 19 11.0797 7.0640
5 I4 → 5I8 13333 2.0124 0.0082 0 26 0 7.6306

2.9607
5 I4 → 5I7 8231 1.9947 0.1720 0 22 0 36.0841
5 I4 → 5I 6 4675 1.9880 1.3163 0 168 0 49.8021
5 I4 → 5I 5 2185 1.9872 1.2959 0.7640 17 5.0263 6.4831
5 F5 → 5I8 15504 2.0226 1.5178 0 6272 0 78.3197

0.1249

5 F5 → 5I7 10402 2.0014 1.2166 0 1446 0 18.0502
5 F5 → 5I 6 6846 1.9913 0.8152 0 270 0 3.3668
5 F5 → 5I 5 4356 1.9877 0.2474 0 21 0 0.2610
5 F5 → 5I4 2171 1.9872 0.0174 0 0 0 0.0023
5 S2 → 5I8 18882 2.0449 0.2202 0 3808 0 55.6069

0.1460

5 S2 → 5I 7 13080 2.0114 0.4431 0 2357 0 34.4197
5 S2 → 5I 6 9524 1.9986 0.2033 0 405 0 5.9170
5 S2 → 5I 5 7034 1.9917 0.1105 0 87 0 1.2745
5 S2 → 5I4 4848 1.9881 0.7365 0 189 0 2.7603
5 S2 → 5F5 2678 1.9873 0.0345 0 1 0 0.0217
5 F4 → 5I8 18868 2.0448 1.2702 0 12173 0 79.3540

0.0652

5 F4 → 5I 7 13766 2.0143 0.4581 0 1589 0 10.3557
5 F4 → 5I 6 10210 2.0008 0.7410 0 1016 0 6.6243
5 F4 → 5I 5 7720 1.9933 0.7804 0 455 0 2.9631
5 F4 → 5I4 5535 1.9889 0.3239 0 69 0 0.4486
5 F4 → 5F5 3364 1.9873 0.6371 0.3620 30 8.6944 0.2541
5 F4 → 5S2 686 1.9872 0.0400 0 0 0 0.0001

0.0740

5 F3 → 5I8 20619 2.0609 0.3649 0 6088 0 45.0747
5 F3 → 5I 7 15517 2.0226 0.7745 0 5043 0 37.3366
5 F3 → 5I 6 11961 2.0070 0.4212 0 1211 0 8.9682
5 F3 → 5I 5 9470 1.9984 0.4917 0 688 0 5.0934
5 F3 → 5I4 7285 1.9923 0.6292 0 395 0 2.9249
5 F4 → 5F5 5115 1.9884 0.3492 0 75 0 0.5567
5 F3 → 5S2 2437 1.9872 0.0153 0 0 0 0.0026
5 F3 → 5F4 1751 1.9872 0.3772 0.5800 3 2.5237 0.0427

As a key parameter influencing the potential laser performance, the absorption (σa)
and emission (σe) cross-sections need to be calculated. The absorption cross-sections
corresponding to the 5I7 → 5I8 transition of Ho3+ are first determined from the measured
absorption spectra using the Beer–Lambert equation [64,65], while the emission cross-
section for the 5I7 → 5I8 transition of Ho3+ is evaluated from the obtained absorption cross-
sections based on McCumber’s theory [66]. The calculated absorption and emission cross-
sections of Ho3+ in the range of 1850–2100 nm are displayed in Figure 11. The absorption
and emission maxima are located at 1950 nm and 2045 nm, according to Figure 11.
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Therefore, the peak value of the stimulated emission cross-section is approximately
8 × 10−21 cm2. It is smaller than the estimated values for bismuth glass
(10.09 × 10−21 cm2) [67] and tellurite glass (10 × 10−21 cm2) [68], but it is far larger than
that of silicate (3.54 × 10−21 cm2) [69], fluoride (2.47 × 10−21 cm2) [70], and germanate
glass (3.13 × 10−21 cm2) [60].

There is a direct correlation between the refractive index of the host glass and the
emission cross-section; a higher refractive index increases the possibility of spontaneous
radiative transitions. The higher spontaneous radiative transition probability and high
refractive index are the primary factors that cause the Ho3+ in the produced glass to have
an extended emission cross-section.

Additionally, the FWHM × σe value is a significant indicator that is often used to
define the gain characteristics; the TKWN1 sample corresponds with larger gain properties
and a wider gain bandwidth with a higher gain quality value. This study computed that
the emission cross-section (σe) and FWHM are 8 × 10−21 cm2 and 150 nm, respectively.
Furthermore, as Table 7 illustrates, the FWHM × σe is 1200 × 10−28 cm3 greater than that
of a variety of glasses [71]. The TKWN1 sample may have promise as a laser material,
according to these findings.

Table 7. Comparison of FWHM, σe, and σe × FWHM values for 5 I7 → 5 I8 transition of TKWN1.

FWHM (nm) σe (cm2) σe×FWHM (cm3) Reference

TKWN1 150 8.0 × 10−21 1200 × 10−28 Present work
Silicate 82 5.5 × 10−21 220 × 10−28 [71]

Phosphate 78 6.4 × 10−21 236.8 × 10−28 [71]
Germanate 84 4.0 × 10−21 336 × 10−21 [71]

The wavelength-dependent gain cross-section, which establishes the gain spectrum
shape and amplification performance, may be computed using the formula given in a
previous article [72] based on the absorption and emission cross-sections of Ho3+. Figure 12
shows the computed gain cross-section spectra of the Ho3+: 5 I7 → 5 I8 radiative transition in
the Ho3+-single-doped tellurite glass, with a population inversion value P ranging from 0 to
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1 and with an interval of 0.2. It is clear from this spectrum that as the inversion population
develops, the gain region moves to longer wavelengths and the gain cross-section improves.
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When compared to germanate glass (0.47 cm−1), tellurite glass (1.2 cm−1), and fluo-
rophosphate glass (0.66 cm−1), the highest gain cross-section at 2045 nm is 6.94 cm−1 [73–75].
A positive gain coefficient indicates a low pump threshold for laser operation when P is
0.6 and λ is greater than 1910 nm [76]. A quasi-three-level system is characterized by an
extended positive gain band that increases with P [77].

4. Conclusions

Systematic investigations have been performed to understand the effects of Ho2O3,
Er2O3, and Tm2O3 doping on the thermal and optical properties of TeO2-K2TeO3-WO3-
Nb2O5 glass. The DSC spectra confirmed the amorphous nature of the as-prepared glasses.
Moreover, the DSC spectra showed that the glass transition temperature increased with
the incorporation of Er2O3 and Tm2O3 into the TeO2-K2TeO3-WO3-Nb2O5 glass doped
with Ho2O3. The thermal stability was investigated through the thermal stability factor ∆T,
Hruby’s coefficient H, and parameter KSP. The data obtained on the transmittance T and
absorbance A for the as-prepared glasses were used to calculate the absorption index α, the
refractive index n, the extinction coefficient k, and the optical band gap Eopt. The optical
band gap Eopt and refractive index n slightly increased with the incorporation of Er2O3
and Tm2O3 into the TeO2-K2TeO3-WO3-Nb2O5 glass doped with Ho2O3. Furthermore, the
TeO2-K2TeO3-WO3-Nb2O5 glass sample doped with both Ho2O3 and Tm2O3 displayed the
highest values for these parameters. The UV–Vis–NIR absorption and emission spectra of
the Ho3+-single-doped, Ho3+/Er3+-co-doped, and Ho3+/Tm3+-co-doped tellurite glasses
(TKWN1, TKWN2, and TKWN3, respectively) were examined at room temperature.

The Judd–Ofelt theory was used to determine the full spectroscopic characteristics,
radiative lifetimes, branching ratios, and radiative transition probabilities of the TKWN1
sample. Furthermore, McCumber’s theory was used to compute the absorption and
emission cross-sections of Ho3+: 5I7 → 5I8. There was a maximum emission cross-section
of 8 × 10−21 cm2. Additionally, the gain coefficient of Ho3+, 5I7 → 5I8, the quality factor
( σe × FWHM), and the FWHM were studied. The FWHM× σe value was 1200× 10−28 cm3,
indicating that alternative glasses have greater gain characteristics. Hence, the TKWN1 sam-
ple has potential to be utilized as a host material for 2 µm mid-infrared solid-state lasers.
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