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Abstract: Various substituted D-hexopypyranosides units with nitrogen-containing functionalities are
present in many important natural compounds and pharmaceutical substances. Since their complex
structural diversity contributes to a broad spectrum of biological functions and activities, these
derivatives are frequently studied. This review covers syntheses of D-hexopyranosides with vicinal
nitrogen-containing functionalities since the 1960s, when the first articles emerged. The syntheses
are arranged according to the positions of substitutions, to form a relative configuration of vicinal
functionalities, and synthetic methodologies.

Keywords: D-hexopyranosides; nitrogen-containing functionalities; glucosamine; aminoglycoside
antibiotics; neuraminidase inhibitors; aziridine ring-opening; Michael addition; activated hydroxyl
group

1. Introduction

The presence of nitrogen functionalities in saccharides increases their molecular com-
plexity and diversity. The evolution of living organisms uses amino sugars for various
functions, e.g., as structural components, signaling molecules, transporting molecules, and
post-translational modified proteins.

The most commonly known N-acetylglucosamine is present in chitin as a monomer
unit that forms the polysaccharide chain. Deacetylation of chitin leads to chitosan, which
has practical applications in medicine, agriculture, and industry. Chitin is also processed to
obtain D-glucosamine, which is frequently used as a dietary supplement and intermedi-
ate for biologically relevant molecules. Furthermore, the N-acetylglucosamine units are
essential for the biosynthesis of peptidoglycans and hyaluronic acid.

Epimeric D-galactosamine units are present in glycoprotein hormones such as luteiniz-
ing and follicle-stimulating hormones [1]. D-Mannosamine, which is another epimer, has
been mostly revealed in glycoproteins and gangliosides. The N-acetylated form is a precur-
sor for the biosynthesis of N-acetylneuraminic acid, which is a predominant derivative of
sialic acid in human cells [2]. N-Acetylneuraminic acid is also involved in the development
of influenza virus infections and the biology of pathogenic and symbiotic bacteria [3,4].

The structure of N-acetylneuraminic acid was a starting point for the rational design
of neuraminidase inhibitors. Thus, Zanamivir, which was the first commercially developed
neuraminidase inhibitor, was approved for the treatment and prevention of influenza A
and B. Oseltamivir, which is another commercial inhibitor with a more simplified structure,
preserves two nitrogen functionalities. Recent ongoing development of these inhibitors
relies on the bio-isosteric substitution to replace the carboxylate with a phosphonate or
sulfonate group to increase the total binding energy [5].

The presence of nitrogen functional groups also plays an important role in the binding
of aminoglycoside antibiotics such as Arbekacin, Kanamycin B, or Neomycin B, which
bind to the bacterial ribosomal subunits. The amino saccharides were also used as starting
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materials to synthesize compounds with various biological activities. For example, the
alkaloid (−)-Agelastatin A with anticancer activity and the glycophospholipid ligand of a
lipopolysaccharide receptor were synthesized from D-glucosamine.

Nitrogen-containing functionalities in D-hexopyranosides have an irreplaceable role
in living organisms. Thus, research teams continue to develop synthetic methodologies
to introduce nitrogen-containing functionalities into D-hexopyranosides. This review
focuses on syntheses that lead to D-hexopyranosides with vicinal nitrogen-containing
functionalities.

Figure 1 defines the structures of interest of derivatives with nitrogen-containing func-
tionalities at positions 2 and 3, and the special emphasis is on the most common molecules
that contain gluco- and altro- configurations. These carbohydrates offer many biological
activities and synthetic opportunities for further transformations. Several of them are
discussed herein: (−)-agelastatin A, which has anti-tumor activity [6]; glycophospholipid
PPDm2-B, which interacts with the liposaccharide receptor of macrophages [7]; ligands for
the Mo-catalysed allylic alkylation [8]; half-sandwich metal complexes with comparable
anti-tumor activity to cis-platina [9]; and hybrids of β-D-glucose with benzodiazepine
scaffolds [10].
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functionalities.

Figure 2 shows the main motifs of the 3,4-disubstituted D-hexopyranosides. The
cis-configuration of vicinal nitrogen-containing functionalities is in the derivatives of
Neomycin, Kanamycin, and related compounds. The trans-configuration is incorporated in
the skeleton of Zanamivir and its analogues.
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2. Nitrogen Functionalities at Positions 2 and 3

Several synthetic methodologies provide D-hexopyranosides with nitrogen-containing
functionalities at position 2 and 3. Generally, synthetic routes that lead to cis- and trans-
derivatives are predetermined by the starting material. Both trans- and cis-derivatives are
separately discussed.
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2.1. Trans-Configuration

The derivatives with trans-oriented nitrogen-containing functionalities are synthesized
based on the (a) aziridine formation and subsequent ring-opening reaction, (b) addition of
an activated double bond, and (c) SN2 substitution of an activated hydroxyl group.

2.1.1. Aziridine Formation

Richardson and coworkers described the formation of aziridine 3 with an allo-
configuration from substituted glucopyranosides 1a–d in 1965 (Scheme 1). The crucial
condition for aziridine formation is the trans-diaxial configuration of glucosamine 1. The
cis-configuration (e.g., in mannopyranoside) results in hexopyranosides 5 with an oxazoline
ring (Scheme 2) [11]. A base-catalyzed aziridine formation requires strong nucleophilic
anion of the acylamido group at the C2 carbon, which attacks the C3 carbon with the
activated hydroxyl group to yield the desired aziridines 3a–d. There are many suitable
bases; the method of choice predominantly depends on the N-substitution.
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Richardson inspired other research groups. Later, Richardson [12] extended the
substitution at C2–amine to anisoyl, dinitrophenyl (DNP), and mesyl groups with the
desired activating effect and described the possibilities for ring-opening reactions. The
product of the ring-opening reaction strongly depends on the amine substitution at the C2
carbon and nucleophile. As mentioned (in Scheme 1), a stronger anion favours the aziridine
formation. A weaker anion could not accomplish the substitution of the O-mesyl group,
and oxazoline 5 was obtained as a major side product. The same publication described
the ring-opening reactions of acetylated, benzoylated, or DNP-substituted aziridines 3a–c
with ammonium chloride. Initially, the ring-opening reactions were accomplished with
halogen nucleophiles. When aziridines 3a–c were refluxed in DMF, the aziridine underwent
trans-di-axial and trans-di-equatorial ring-opening reactions and formed gluco- (6a–c) and
altro- (7a–c) products (Scheme 3).
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Scheme 3. Opening of allo-aziridine with ammonium chloride. Conditions: (i) NH4Cl, DMF, reflux.

The treatment of 3a with ammonium chloride provided almost exclusively gluco-
derivative 6a, whereas aziridines 3b and 3c yielded mixtures of 6b,c and 7b,c, respectively.
However, when sodium azide, which is a stronger nucleophile, was added to a reaction
mixture dissolved in DMF in the presence of ammonium chloride, the formation of chloro-
derivatives was suppressed, and azido derivatives 8 and 9 were formed (Scheme 4).
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Scheme 4. Ring-opening reaction of allo-aziridine with sodium azide in the presence of ammonium
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Aziridines 3a and 3d provided unsatisfactory yields of products with a mixture of
ammonium chloride and sodium azide. The formation of side products or degradation of
a starting compound was observed. Therefore, 1d was reacted with sodium azide in the
absence of ammonium chloride to yield more 9d (Scheme 5).
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DMF, reflux, 65%.

The reaction proceeded via in situ formation of aziridine and a trans-diaxial ring-
opening reaction, which exclusively resulted in 9d with the altro-configuration. With
Richardson and coworkers, the Guthrie group [13,14] investigated the ring-opening reac-
tions of manno-aziridine (Scheme 6). The reaction of 10b with sodium azide provided the
highest yields. A similar conclusion was reached also by Meyer zu Reckendorf [15–17],
who described the formation of an additional gluco-derivative.
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The scope of the substitution at positions 2 and 3 was later expanded by ring-opening
reactions of N-4-nosyl Hough–Richardson aziridine with 19 nitrogen nucleophiles
(Scheme 7) [18]. The electron-withdrawing nitro group provided practical advantages.
Aziridine 15 was synthesized under mild conditions with high yields. This aziridine can
also be generated without isolation to furnish product 16 with an altro-configuration due to
the highly regioselective ring-opening reactions. The altro-configuration is preferred over
the gluco-configuration at ratios above 90:10.
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60 ◦C, 16–72 h, 38–91%.

D-hexopyranosides with vicinal trans-oriented nitrogen-containing functionalities
can also be synthesized via aziridinium salts (Scheme 8) [19]. The hydrolysis of 19 with
sodium azide and potassium thiocyanate yielded 20 and 21, which exclusively had altro-
configurations.
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The works of Richardson, Guthrie, and Meyer zu Reckendorf laid the foundations for
further applications in the ring-opening reactions. Charon and co-workers used an aziri-
dine ring-opening reaction to synthesize glycophospholipid ligands of lipopolysaccharide
receptor 26 (Scheme 9) [7]. The ring-opening reaction of 22 afforded gluco-23 as a minor
and altro-24 as a major product.
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25% for 23, 70% for 24; (ii) H2, Pd(OH)2/C, MeOH, (iii) 5 M HCl, 100 ◦C, 68% (three steps); and
(iv) (D)-3-OBn-Myr-O-C4H2NO2, i-Pr2NEt, DMF, 43%.
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Hale used the aziridine-opening reaction to synthesize Agelastatin A 30, which is an
inhibitor of GSK-3ß (Scheme 10) [6]. Aziridine 27 was treated with sodium azide in the
presence of ammonium chloride, and 28 was a major product. No minor product was
separated. Azide 28 was subsequently reduced to give derivative 29 at a very good yield.
The desired Agelastatin A 30 was synthesized in a 17-step process.
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Scheme 10. Ring-opening reaction to synthesize Agelastatin A. Conditions: (i) NaN3, NH4Cl, DMF,
88%; (ii) H2, Pd(OH)2, and MeOH, 95%.

2.1.2. Substitution of the Activated Hydroxyl Group

Nucleophilic substitution, which is associated with the inversion of a configuration,
was performed after the hydroxyl group with mesyl, tosyl, or triflate agents had been
activated. Rejzek and coworkers prepared phospho-derived glucuronic acid 34 using a
double inversion at the C3 carbon (Scheme 11) [20].
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A new strategy to synthesize 2,3-diamino-D-glucuronate was published for the total
synthesis of Plesiomonas shigelloides serotype 51 aminoglycoside trisaccharide [21]. An inter-
esting part of this synthesis was the Lattrel-Dax inversion from gluco- to allo-derivative 36.
The described double inversion at C3 was first used to assemble a complex aminoglycoside
38 with various substitutions (Scheme 12). A trichloroacetamido (TCA) group was selected
to mask the acetamido group of 38 to stereoselectively form the β-glycosidic bond.
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Scheme 12. Synthesis of 2,3-diamino-D-glucuronate 38. Conditions: (i) Tf2O, Py, DCM, −20 ◦C;
(ii) KNO2, DMF, 50 ◦C, 6 h, 71% (two steps); (iii) Tf2O, Py, DCM, −20 ◦C, 4 h; and (iv) NaN3, DMF, rt,
59% (two steps).

A similar approach was used to synthesize cinnamon derivatives [22], 2,3-trans–
diamino–metal-complexes (Mn, Pt, Rh, Ru, Ir, Cu, and Pd) [23–31], muramyl dipeptide
analogues [32], or ß-D-glucose benzodiazepine derivatives 41 [10] (Scheme 13).
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Scheme 13. Formation of the benzodiazepinone scaffold. Conditions: (i) MsCl, TEA, DCM, 91%;
(ii) NaN3, Bu4NHSO4, DMF, 100 ◦C, 92%; and (iii) 5 M KOH, MeOH, reflux, 99%.

2.1.3. Michael Addition: Using Addition to Activated Double Bond

Michael addition to nitroolefins is another method to obtain 2,3–trans-diaminohexo-
pyranosides. Baer reported the formation of olefins followed by the addition of ammonia in
THF (Scheme 14) [33]. In addition to 44, an impurity with a yield below 10% was isolated
but not characterized.
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Scheme 14. Michael addition of ammonia to 3-nitroolefine. Conditions: (i) Ammonia, dry THF, 86%.

Afterwards, the synthesis was extended to anthranilic acid [34] and aminosugars [35].
The configuration of the diamine strongly depends on the pH of the reaction (Scheme 15).
When the reaction occurred under basic conditions, gluco-product 45, which is thermody-
namically more stable, was almost exclusively formed. In contrast, without KOH, manno-
product 47 was isolated as a major isomer. Both 45 and 47 underwent reduction in the
presence of the Kuhn catalyst and yielded diamines 46 and 48.
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Scheme 15. Addition of anthranilic acid to 3-nitroolefine. Conditions: (i) anthranilic acid, KOH, dry
benzene, 83%; (ii) anthranilic acid, dry benzene, 56%; and (iii) H2, Pd, BaSO4, 1 M HCl, 60–70%.

Subsequent publications used nucleosides [36], esters of amino acids [37], or sodium
nitrite [38]. The reaction with 2,6-dichloropurine and amino acids esters (Gly, Ala, Phe, Ser,
Tyr, and Val) exclusively produced 49a (a C–N bond was formed between C2 carbon and
nitrogen at position 9) and 49b, respectively (Scheme 16). However, treating 42 with sodium
nitrite resulted in 3-nitro derivative 49c as a major product and 50c as a minor isomer. The
ratio of 49c to 50c could be slightly increased by adding hexadecyltributylphosphonium
bromide.
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Scheme 16. Addition of various nitrogen nucleophiles to 3-nitro derivative 42. Conditions:
(i) 2,6-dichloropurine, Na2CO3, THF, 78%; (ii) amino acid ester, Et3N, THF/MeOH, 73–88%; and
(iii) NaNO2, Amberlite IRC 50, CAN/water, 70%.
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Sakakibara and Sudoh studied the influence of the solvent and reagent on the substi-
tution with azide or cyanide nucleophiles (Scheme 17) [39]. When sodium azide was used,
52 was isolated in 60% yield. When hydrazoic acid was added to THF, epimeric 54 was
obtained in 79% yield. Therefore, more solvents were examined. Solvents such as DMSO or
THF in the presence of hydrazoic acid favor the formation of 54. Chloroform or acetonitrile
produced a mixture of 52 and 54. The study with hydrogen cyanide and potassium cyanide
obtained the same conclusion. The reaction in DMSO led to major product 55 with the
manno- configuration and the substitution in acetonitrile provided a mixture of 53 and 55.
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uration during substitution, the hydroxyl group in the starting compound must be in the 
trans- position to the amine functional group. Walvoort used altropyranoside (58a) to syn-
thesize mannopyranoside uronates. The number of azide groups was reduced in 59a, and 
the resulting intermediate was transformed into more complex derivatives (Scheme 19) 
[41]. Baer prepared disaccharose of the trehalose type 59b [42]. Finally, 59c was synthe-
tized as a substrate for N-acetylneuraminic acid aldolase [43]. 

Scheme 17. Study of the substitution with azide and cyanide nucleophiles. Conditions: (i) NaN3

ACN/water, 60% (for 52); (ii) HN3, THF/water, 79% (for 54); (iii) HCN, KCN, ACN, 42% (for 54);
and (iv) HCN, DMSO, yield not specified.

The nitro group was also used at the C2 carbon (Scheme 18). Starting compound 56
was readily obtained by oxidizing protected glucosamine with m-CPBA [40]. Product 57c
was further tested as a drug carrier.
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2.2. Cis-Configuration

The cis configuration is commonly introduced by substituting an activated hydroxyl
group with the appropriate configuration. Other less frequently used synthetic methods
include subchapter miscellaneous reactions.

2.2.1. Substitution of Activated Hydroxyl Group

The most common method to prepare vicinal cis-oriented nitrogen-containing deriva-
tives is based on nucleophilic substitution. Due to the inevitable inversion of the configura-
tion during substitution, the hydroxyl group in the starting compound must be in the trans-
position to the amine functional group. Walvoort used altropyranoside (58a) to synthesize
mannopyranoside uronates. The number of azide groups was reduced in 59a, and the
resulting intermediate was transformed into more complex derivatives (Scheme 19) [41].
Baer prepared disaccharose of the trehalose type 59b [42]. Finally, 59c was synthetized as a
substrate for N-acetylneuraminic acid aldolase [43].



Molecules 2024, 29, 3465 11 of 28
Molecules 2024, 29, x FOR PEER REVIEW 11 of 28 
 

 

O
O

O

OPh R2

OTf

i or ii or iii

R1

58a, R1=Me, R2=N3
58b, R1=sugar derivate, R2=N3
58c, R1=Me, R2=NHBoc

O
O

O

OPh R2

N3

R1

59a, R1=Me, R2=N3
59b, R1=sugar derivate, R2=N3
59c, R1=Me, R2=NHBoc

58a-c 59a-c

 
Scheme 19. Nucleophilic substitution of the activated hydroxyl group to yield mannoside deriva-
tives. Conditions: (i) NaN3, NH4Cl, DMF, 75%; (ii) tetramethylguanidinium azide, DCM, 68%; and 
(iii) n-Bu4NN3, pyridine/DCM, 70%. 

In contrast, Posakony prepared allopyranoside carbohydrate 61 from 60, where the 
final product 62 could serve as a catalytic cofactor analogue for glmS Rybozime (Scheme 
20) [44]. The desired change in the configuration was achieved by the reaction of sodium 
azide with the mesylated hydroxyl group. 

 
Scheme 20. Synthesis of catalytic cofactor analogues for glmS Rybozime. Conditions: (i) Ms2O, pyr-
idine; (ii) NaN3, DMF, 52% (two steps). 

Alternatively, Mitsunobu reaction was used instead of the classical nucleophilic sub-
stitution of the activated hydroxyl group. This synthetic tool was applied to synthesize 
carbohydrate-based organocatalysts, where the C3 hydroxyl group was azidated with 
DPPA under Mitsunobu conditions (Scheme 21) [45]. 

 
Scheme 21. Mitsunobu reaction to synthesize new organocatalysts. Conditions: (i) DPPA, TPP, 
DIAD, THF, 60–80%; (ii) TPP, THF/water; and (iii) Phenylisothiocyanate, MeOH, 80% (two steps). 

2.2.2. Miscellaneous Methods 
In addition to the SN2 reactions, the cis-configuration was achieved by other reactions. 

For example, Rank synthesized 69, where the key step was the addition of N-bromo-
acetamide to 3-nitroolefin 66 (Scheme 22) [46]. The reduction of 67 afforded nitro deriva-
tive 68, which was converted to acetylated mannopyranoside 69 in a three-step process. 
Similar results were obtained when talopyranoside was used. 

Scheme 19. Nucleophilic substitution of the activated hydroxyl group to yield mannoside deriva-
tives. Conditions: (i) NaN3, NH4Cl, DMF, 75%; (ii) tetramethylguanidinium azide, DCM, 68%; and
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In contrast, Posakony prepared allopyranoside carbohydrate 61 from 60, where
the final product 62 could serve as a catalytic cofactor analogue for glmS Rybozime
(Scheme 20) [44]. The desired change in the configuration was achieved by the reaction of
sodium azide with the mesylated hydroxyl group.
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Scheme 20. Synthesis of catalytic cofactor analogues for glmS Rybozime. Conditions: (i) Ms2O,
pyridine; (ii) NaN3, DMF, 52% (two steps).

Alternatively, Mitsunobu reaction was used instead of the classical nucleophilic sub-
stitution of the activated hydroxyl group. This synthetic tool was applied to synthesize
carbohydrate-based organocatalysts, where the C3 hydroxyl group was azidated with
DPPA under Mitsunobu conditions (Scheme 21) [45].
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2.2.2. Miscellaneous Methods

In addition to the SN2 reactions, the cis-configuration was achieved by other reac-
tions. For example, Rank synthesized 69, where the key step was the addition of N-
bromoacetamide to 3-nitroolefin 66 (Scheme 22) [46]. The reduction of 67 afforded nitro
derivative 68, which was converted to acetylated mannopyranoside 69 in a three-step
process. Similar results were obtained when talopyranoside was used.
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Scheme 22. Addition of N-bromoacetamide. Conditions: (i) N-bromoacetamide, NaOAc, acetone,
76%; (ii) NaBH4, EtOH, 91%.

Reductive amination at the C3 carbonyl provided another effective route to 3-amino-
glucose (Scheme 23) [47]. Methyl oxime was formed as a mixture of the E and Z isomers,
and subsequent hydrogenation provided the axially-oriented 3-amino group due to the
anomeric isopropyl substituent. Furthermore, 2,3-dideoxy-2,3-diaminoallose 72 was used
as a building block to synthesize imidazole derivative 73.
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Scheme 23. Synthesis of diaminoallose and the corresponding imidazole-fused derivative. Con-
ditions: (i) MeONH2.HCl, NaHCO3, MeOH, 96%; (ii) H2, PtO2, AcOH, 80%; (iii) 1 M NaOH,
MW 150 ◦C, 85%; (iv) 4-bromobenzaldehyde, N-iodosuccinimide, t-BuOH, 51%; and (v) PdI(OAc)2,
K2CO3, DMSO, 42%.
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Another alternative method includes the formation of an imidazoline ring and its sub-
sequent basic hydrolysis (Scheme 24). Baker et al. prepared 2,3–diamino allo-pyranosides 76
from the corresponding imidazolines 75, where phenyl could be attached to the imidazoline
nitrogen instead of benzyl [48–51]. The long reaction time (up to 5 days) in each step was
the main disadvantage of these synthetic routes.
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Scheme 24. Synthesis of allopyranoside. Conditions: (i) NH3/EtOH, 72%; (ii) KOH, glacial
CH3COOH, Ac2O, 34%.

Then, Baker et al. suggested the use of tosyl instead of benzyl groups, but the long
reaction time and low yields unfortunately remained. Recently, allo- or manno-pyranosides
were applied in the chemistry of complexes, where carbohydrates were used as ligands 77
and exhibited comparable anti-tumor activity comparable to cis-platina (Figure 3) [29].
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Figure 3. Structure of the platinum complex.

3. Nitrogen Functionalities at Positions 3 and 4

The first part focuses on the synthesis of trans-diaminohexopyranoses, which are
mainly incorporated into the skeleton of Zanamivir and its analogues. The second section
discusses cis-dinitrogen-containing D-hexopyranoses, particularly derivatives of Neomycin,
Kanamycin and related compounds. The final part discusses the reactions that lead to cis-
and trans- products, where the configuration depends on the reaction conditions.

3.1. Trans-Configuration

A trans configuration with nitrogen-containing functionalities at positions 3 and 4 was
introduced, particularly in the compounds derived from Neuraminic acid 78 (Figure 4);
however, the trans configuration was found in other structures. Some neuraminidase
inhibitors, such as Zanamivir 79 or Oseltamivir 80 are commercially available. These
derivatives exhibit antiviral properties; therefore, their substitution is a topic of many
research studies. There are several synthetic approaches to obtain the trans configuration:
(a) oxazoline ring formation, (b) cyclization of acyclic intermediates with vicinal dinitrogen-
containing functionalities, (c) Michael addition, and (d) aziridine ring formation.
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3.1.1. Oxazoline Ring Formation

The formation and ring-opening of the oxazoline ring constitute a proven route to
synthesize trans-3,4–diamino carbohydrates. Von Itzstein et al. prepared oxazoline 82 from
O-acetylated derivative 81 (Scheme 25) [52]. The oxazoline ring is vulnerable to nucleophilic
attacks at the C-O bond. Treating 82 with lithium azide forms 83.

Molecules 2024, 29, x FOR PEER REVIEW 14 of 28 
 

 

3.1.1. Oxazoline Ring Formation 
The formation and ring-opening of the oxazoline ring constitute a proven route to 

synthesize trans-3,4–diamino carbohydrates. Von Itzstein et al. prepared oxazoline 82 
from O-acetylated derivative 81 (Scheme 25) [52]. The oxazoline ring is vulnerable to nu-
cleophilic attacks at the C-O bond. Treating 82 with lithium azide forms 83. 

 
Scheme 25. Formation and ring-opening reaction of the oxazoline ring. Conditions: (i) BF3.Et2O, 
DCM, MeOH, 99%; and (ii) LiN3, Dowex 50W, DMF, 96%. 

The ring-opening reaction of the oxazoline ring with an azidation reagent was used 
to synthesize many derivatives. The substitution of deprotected primary hydroxyl group 
and a subsequent oxazoline ring-opening reaction with TMSN3 and azide reduction af-
forded carbohydrate 84 (Figure 5) [53]. The click reaction of azide with various acetylenes 
yielded triazole derivatives 85 [54]. Moreover, azide was reduced and converted to guan-
idine 86 [54–57]. The substitution at the anomeric hydroxyl group afforded product 87 
[56]. The second sugar unit could be connected with the thioether bond and produced 88 
[58]. A protocol to synthesize fluoro diastereomers 89 was described [59]. The reduction 
of the azide moiety of 83 and further insertion of the sulfonic acid group at position 1 
yielded sialosyl α-sulfonate derivatives 90, which significantly inhibited the influenza vi-
rus sialidase activity [60]. 

 
Figure 5. Synthesis of Zanamivir derivatives by forming an oxazoline ring and modifications. 

Scheme 25. Formation and ring-opening reaction of the oxazoline ring. Conditions: (i) BF3.Et2O,
DCM, MeOH, 99%; and (ii) LiN3, Dowex 50W, DMF, 96%.

The ring-opening reaction of the oxazoline ring with an azidation reagent was used
to synthesize many derivatives. The substitution of deprotected primary hydroxyl group
and a subsequent oxazoline ring-opening reaction with TMSN3 and azide reduction af-
forded carbohydrate 84 (Figure 5) [53]. The click reaction of azide with various acetylenes
yielded triazole derivatives 85 [54]. Moreover, azide was reduced and converted to
guanidine 86 [54–57]. The substitution at the anomeric hydroxyl group afforded product
87 [56]. The second sugar unit could be connected with the thioether bond and produced
88 [58]. A protocol to synthesize fluoro diastereomers 89 was described [59]. The reduction
of the azide moiety of 83 and further insertion of the sulfonic acid group at position 1
yielded sialosyl α-sulfonate derivatives 90, which significantly inhibited the influenza virus
sialidase activity [60].

In addition to the most commonly used azide reagents, the oxazoline ring can be
opened by other nucleophiles. Ye et al. published a protocol to introduce morpholine,
piperazine, piperidine, pyrrolidine, or primary and secondary amino moieties to obtain
derivative 92 (Scheme 26) [61–63]. The protocol included an in situ formation of an oxazo-
line ring, which immediately proceeded to nucleophilically attack morpholine. The acetoxy
group at position 6 also participates in the ring-opening reaction and undergoes selective
deacetylation. This methodology was expanded by Bozzola et al. with various substituted
N-aryl and N-heteroaryl piperazine derivatives [64].
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This method was later used to synthesize other Zanamivir derivatives. Rota et al.
(Figure 6) prepared Zanamivir derivatives 93 in a four-step synthesis [65], Further substitu-
tion was performed at the anomeric carbon of 94 [66], where various alcohols were used
as nucleophiles. Then, 95 was synthesized via double ring-opening reactions to connect
two carbohydrate units through the piperazine linker [63]. The linker can be extended with
further substitution at piperazine.
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3.1.2. Cyclization of Acyclic Intermediates with Vicinal Dinitrogen-Containing
Functionalities

An alternative to the oxazoline ring-opening reaction is the cyclization of 100 (Scheme 27).
The reaction sequence begins with lactone 96, where a five-step synthesis results in imine
97 [67]. Then, imine 97 is converted to aziridine 98 in a four-step synthesis [68]. Intermediate
99 is synthesized through an aziridine ring-opening reaction. The acidic cyclization of
ketoester 100 yields 101.
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(vi) Ac2O, Et3N, DMAP, DCM, 88%; (vii) OsO4, NMO, acetone/water, 96%; (viii) KBr, TEMPO, TBAB,
Ca(ClO)2, DMF; (ix) MeI, K2CO3, DMF, 80%, (2 steps); (x) DMP, DCM; and (xi) 40%HF in MeCN 52%
(two steps).

Yao and co-workers developed an alternative synthesis of the similar derivative
107. Air-stabilized nitrone 104 was prepared by adding hydroxylamine derivative 103 to
aldehyde 102 (Scheme 28) [69,70]. Heating 104 with methyl acrylate yielded isoxazolidine
105, which was hydrolyzed, and the N-O bond was subsequently cleaved to obtain alcohol
106. Dess-Martin oxidation afforded the keto intermediate, which was cyclized under acidic
conditions to obtain 107.
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DCM, 53%; (ii) methyl acrylate, toluene, 90%; (iii) NH2OH, NaOAc, MeOH/water, 59%; (iv) Pd(OH)2,
then Boc2O, 100%, (v) DMP, DCM; and (vi) 4 M HCl, THF, then Et3N, 70% (two steps).

Another method to construct a reactive intermediate suitable for ring closure is the
Henry reaction (Scheme 29) [71]. An anti-selective Henry reaction in the presence of ligand
112 yielded the cyclic intermediate, which is dehydrated by thionyl chloride and pyridine
to produce 110. Nitro derivative 110 was used as the starting material for the six-step
synthesis of Zanamivir derivative 111. This synthesis can be conducted on a large scale.
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Scheme 29. Synthesis of Zanamivir derivative 111 from key intermediate 110. Conditions: (i) CuBr2,
ligand, Cs2CO3, THF, 0 ◦C; and (ii) SOCl2, pyridine/DCM, 0 ◦C, 76% (two steps).

The final example of cyclization is based on the key alkylation step (Scheme 30) [72].
Mannitol derivative 114 was prepared from arabinose 113 in a five-step synthesis. Subse-
quent protection and alkylation with ethyl α-(bromomethyl)acrylate formed acyclic interme-
diate 115, which produced 116 after ozonolysis and subsequent reductive deprotection.
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Scheme 30. Cyclization resulting in 116 after ozonolysis and deprotection. Conditions: (i) acetone,
CuSO4, H2SO4, 74%; (ii) ethyl α-(bromomethyl)acrylate, NaOH, water, 81%; (iii) O3, MeOH/DCM;
and (iv) dimethylsulfide, 55% (two steps).

3.1.3. Michael Addition

A primary amine was introduced by Michael addition to a D-glucosamine deriva-
tive [73]. The key step to synthesize 120 (Scheme 31) involves eliminating acetic acid and
subsequent Michael addition of benzylamine.
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Scheme 31. Substitution of –OAc with a primary amine. Conditions: (i) BnOH, Et3N, toluene, 64%;
(ii) 90% AcOH, 60%; (iii) Ac2O, pyridine, 72%; and (iv) BnNH2, THF, 77%.

3.1.4. Aziridine Ring Formation

In several cases, trans 3,4-diaminocarbohydrates were synthesized through the aziri-
dine salt intermediate. Chen et al. prepared a mixture of azido modified desosamines 124
and 125 (Scheme 32) [74]. The synthesis began with 4-O-benzyl mycaminose 121, which was
converted into reactive 4-mesyl intermediate 122 in two steps. Treatment of 122 with NaN3
produced two isomers 124 and 125, which indicates the in situ formation of aziridinium
intermediate 123 and inevitable nucleophilic ring opening.
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Scheme 32. Synthesis of two azido-modified desosamine derivatives 124 and 125. Conditions:
(i) Pd(OH)2/C, H2, 1 atm, AcOH (1%), MeOH, 82%; (ii) MsCl, Py, RT, 90%; and (iii) NaN3, DMF,
100 ◦C, 52% for 124, 31% for 125.

Similar results were reported to synthesize unsaturated josamycin derivatives
(Scheme 33) [75]. The key mesylated intermediate 127 was prepared in three steps from
josamycin 126. Sodium azide reacts with 127 through azirium salt 128 to produce a mixture
of isomers 129 and 130.
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Scheme 33. Synthesis of josamycin derivatives 129 and 130. Conditions: (i) NaN3, DMF, 80 ◦C, 35%
for 129, 53% for 130.

3.2. Cis-Configuration

Glycoside antibiotics were derivatized by introducing nitrogen functionalities in the cis-
configuration. Arbekacin, kanamycin B, and neomycin B are the most important antibiotics.
For example, Arbekacin strongly inhibits methicillin resistant Staphylococcus aureus [76],
kanamycin shows activity against the gram-negative bacteria E. coli and Klebsiella pneu-
monia [77], and neomycin B can be used to cure liver encephalopathy [78]. Subsequent
derivatization of these glycoside antibiotics is highlighted in red (Figure 7).
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Figure 7. Structures of Neomycin B, Arbekacin, and Kanamycin.

Sasaki et al. activated the hydroxyl group of Arbekacin by mesylation and subsequent
substitution with sodium azide to obtain 135, which was further converted in five steps to
the final product 136 (Scheme 34) [76]. 136 has lower biological activity than Arbekacin
132. This paper confirmed the results of Hiariwa et al., where substituting the hydroxyl
group with a nitrogen-containing functional group resulted in a derivative with decreased
biological activity [79].
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Scheme 34. Activation and subsequent substitution in Arbekacin. Conditions: (i) MsCl, pyridine,
(ii) Tf2O, and (iii) NaN3, 74% (two steps).

An alternative strategy using O-glycosylation can be used for the aza analogue
kanamycin B (Scheme 35). The cis- configuration was introduced by O-glycosylation
with 3,4-dinitrogen-containing carbohydrate. However, 139 exhibited lower minimum
inhibitory concentration (MIC) than the original Kanamycin B [80].
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Scheme 35. Glycosylation using an anomeric thioether group to produce Kanamycin B derivative
139. Conditions: (i) NIS, TfOH, Et2O/DCM, and then, MeONa, MeOH/THF, 45%.

A similar approach was used to synthesize neomycin B derivatives, where tolyl was
used instead of phenyl in the anomeric thioether group (Scheme 36) [81,82]. The furanose
hydroxyl group was derivatized. Biological testing was performed after the azide reduction
and deacetylation to show lower activity against bacterial strains.
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3.3. Methods Resulting in Cis- and Trans-Configurations

Some methods provide a mixture of trans- and cis-stereoisomers with nitrogen func-
tionalities at positions 3 and 4. The formation of a major product usually depends on the
reaction conditions. Zbiral and coworkers incorporated the azide functionality into the
Neu5Ac molecule [83–85]. Substituting the hydroxyl group with an azide in 143 under
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Mitsunobu conditions produces two isomers 144 and 145 (Scheme 37). The ratio of isomers
depends on the solvent. Toluene facilitates the SN2 reaction and predominantly produces
144 (ratio of 144:145 = 3:1), whereas THF favors the 3,3-rearrangement and produces 145
(ratio of 144:145 = 2:3) as the major product. Both 144 and 145 were subsequently reduced
by the Staudinger protocol to the corresponding amines.
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Scheme 37. Introduction of the azide functionality into the Neu5Ac molecule. Conditions: (i) CF3SO3-
Si(CH3)3, ACN, 82%; (ii) TFA, ACN/water, 77%; (iii) HN3, TPP, DEAD, toluene, 67% for 144, 34% for
145; and (iv) HN3, TPP, DEAD, THF 17% for 144, 52% for 145.

Another example is the reduction of the oxime functionality (Scheme 38) [86]. The
catalytic hydrogenation of 146 produces two isomers: 147 and 149. Stereoisomer 147 is
unstable due to syn-diaxial interactions, which immediately undergoes a ring-opening
reaction and subsequently reduces the keto group to afford 148.
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4. Nitrogen Functionalities at Positions 2, 3, and 4

The study of glycoside antibiotics containing polyaminated pyranoses motivated the
development to synthesize 2,3,4-tri- or 2,3,4,6-tetra-substituted D-hexopyranosides with
nitrogen functionalities. Derivatives of D-hexopyranosides containing nitrogen function-
ality at positions 2, 3, and 4 are rare in comparison to disubstituted derivatives. The first
synthesis is based on the aziridine ring-opening reaction. Bailliez and coworkers published
a synthesis (Scheme 39), where levoglucosan 150 was converted to diazide 151 [87]. Subse-



Molecules 2024, 29, 3465 23 of 28

quent reduction and benzoylation produced a mixture of isomers 152 and 153. The mixture
was treated with lithium azide and TFA to produce hexopyranoside 154 with three nitrogen
functionalities without further purification.
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Scheme 39. Synthesis of hexopyranoside 154 with three nitrogen functionalities using the aziri-
dine ring-opening reaction. Conditions: (i) H2, Pd/C, HCl, EtOAc/EtOH; (ii) Bz2O, DMAP, pyri-
dine/DCM, 83% (2 steps); (iii) LiN3, Al2O3, DMF/toluene; and (iv) TFA, Ac2O, 79% (two steps).

Another synthesis used sequential acetoxy group elimination with a subsequent
Michael addition with ammonia or benzylamine (Scheme 40) [88–90]. The substitution at
C2 and C4 carbons provided 156 and 157, which was transformed into the corresponding
triamine derivative 158.
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functionalities at positions 2, 3, and 4. Conditions: (i) NH3/MeOH, then Ac2O, 57%; (ii) H2, Pd/C,
MeOH, (87–90%); and (iii) BnNH2, CHCl3, 35%.

Tetra-substituted hexopyranosides with nitrogen functionalities were synthesized via
trisubstituted precursors. The C-N bond at position 6 was introduced in the last step or
simultaneously through substitution at other positions. The first procedure was published
by Baer and coworkers [91]. The primary hydroxyl group of 159 was mesylated and
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substituted with the azide anion, and the azide was subsequently reduced to give 160
(Scheme 41). A similar protocol was used by Cleophax [87] and Meyer zu Reckendorf [92].
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(ii) NaN3, water, (51%); and (iii) H2, PtO2, HCl, water, 67%.

Ali and coworkers synthesized 162 from glucopyranoside 161, where the galacto-
configuration arose from the in-situ formed oxazoline ring and its ring-opening reaction
with the azide anion and a simultaneous two-fold mesylate substitution (Scheme 42) [93].
A similar procedure was used for galactopyranoside or idopyranoside [94,95].
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Scheme 42. Synthesis of galactopyranoside with nitrogen functionalities at positions 2, 3, 4, and 6.
Conditions: (i) NaN3, hexamethylphosphoric triamide, water, (10–15%).

5. Conclusions

The nitrogen functionalities of D-hexopyranosides increase their structural diversity,
which results in numerous derivatives with interesting biological activities. With ongoing
basic research on the use of these compounds for advanced biological studies and the
identification of other nitrogen-containing hexopyranosides with improved biological ef-
fects and selectivity, synthetic methods that introduce various nitrogen functionalities were
developed. The first methods to synthesize derivatives with vicinal nitrogen-containing
functionalities emerged in the 1960s. These methods use the ring-opening reactions of
aziridine and oxazoline intermediates. In addition to conventional substitution reactions
of tosylated or mesylated hydroxyl groups, the Michael addition reaction is frequently
studied with nitrogen nucleophiles to produce Michael adducts from nitro-olefins. Other
methods such as oxime reduction and ring-opening reactions of imidazoline derivatives
further supplement the synthetic methodology. Moreover, the developed synthetic methods
introduce nitrogen functionalities in various oriented configurations. Finally, considering
the substantial expansion of photoredox catalysis, we can expect the development of novel
methods using highly reactive radical intermediates.
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