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Abstract: In this paper, we present the structural, mechanical and electrical properties of composite
cement materials that can be widely used as substituent for cement. We start with the characterization
of a composite cement sample using an analysis of X-ray diffraction (XRD) and nuclear magnetic
resonance (NMR) spectra. The measurements of the Vickers hardness, cyclic and sweep linear
voltammetry and electrochemical impedance spectroscopy (EIS) of composite cement materials were
also recorded. This study compared the effect of the different nanocomposites added to cement on the
mitigation of the alkali–silica reaction, which is responsible for the swelling, cracking and deleterious
behavior of the material. The enhancement in Vickers hardness was more pronounced for composite
cement materials. In contrast, the values of Vickers hardness decreased for the composite cement
containing mortar and the control sample, suggesting that the long-term performance of cement
was compromised. In order to obtain information about the bulk resistance of the composite cement
material, electrochemical impedance spectroscopy (EIS) data were employed. The results suggest
that for composite cement materials, there is an improvement in bulk electrical resistance, which can
be attributed to the lower amounts of cracks and swelling due to lower expansion. In the control
sample, a reduction in the bulk resistance suggests the formation of microcracks, which cause the
aging and degradation of the material. The intersection of arcs in the EIS spectrum of the mixed
composite cement sample gradually increased by an alkaline exposure of up to 21 days and finally
shifted towards a low value of high frequency with an increase in alkaline exposure of up to 28 days.

Keywords: construction and demolition waste; recycling; nanocomposites; cement; XRD; NMR; EIS;
CV; SLV; Vickers

1. Introduction

The fabrication of cement is responsible for carbon dioxide emissions above 8% in the
environment and about 3100 MJ/ton of energy consumption in clinker production [1,2].

The application of supplementary materials such as additives in cementitious materials
has been receiving significant attention nowadays for reducing carbon emissions. Some
examples of supplementary cementitious materials used in the form of nanoparticles
are nano-TiO2, nano-CaCO3, carbon nanotubes, nano-silica, and nano-aluminate [3–5].
These additives can enhance the performance of cement-based materials and promote the
formation of hydration products.

Compared with the abovementioned information, synthetic calcium–silicate–hydrate
(C-S-H) materials have demonstrated a pronounced effect in improving the age perfor-
mance of cement materials [6]. A 5–10% level of silica fume, used as a replacement in
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cement paste, produces high-performance concrete and improves their strength and dura-
bility. Mixes with silica fume can react with Ca(OH)2 to yield an increase in C-S-H chain
length and modify the microstructure of cement paste [7].

In accordance with global directives towards resource conservation, the circular
economy and the development of sustainable concrete structures, recycled fibers were
tested for their capability to maintain their structural performance. Expensive and non-
biodegradable material resources such as steel, glass, carbon polypropylene, polyethylene
and polyvinyl chloride provide concrete with an improved strengthening performance [8].
The implementation of these natural materials in lightweight cement mortar is feasible
because of the preserved mechanical properties and because they have a higher efficiency
in acoustic insulation [9]. Their reuse provides several advantages, including an improve-
ment in the mechanical response of concrete, a decrease in environmental waste and
socioeconomic impact.

Despite the aforementioned advantages, their usefulness in cementitious materials
is limited by their low durability and their degradation in alkaline environments of the
cement matrix [10].

The incorporation of nanomaterials such as nano-silica and graphene oxide in concrete
has drawn great attention because they can significantly enhance early-age properties and
do not compromise the long-term performance of concrete [11].

Fly ash concrete has been used in building construction due to its enhanced dura-
bility and cost-saving and environmental protection qualities [12]. The main disadvan-
tage of the replacement of cement with fly ash is the low early-age strength of concrete
due to a slow pozzolanic reaction [13]. The pozzolanic reaction is defined as the chem-
ical reaction between reactive silica or alumina in fly ash particles and Portlandite (cal-
cium hydroxide) formed during the cement hydration process in the presence of water at
ambient temperature.

The use of calcined clays as a replacement for cement in concrete is a promising
approach because of their high pozzolanic reactivity due to the chemical reaction of amor-
phous aluminosilicate phases with calcium hydroxide to form additional hydrates such as
calcium silicate hydrate [14].

Some studies reported that pozzolanic materials such as waste glass powder and nano-
SiO2 can mitigate the alkali–silica reaction and decrease its expansion [15]. The alkali–silica
reaction is responsible for the deleterious behavior of concrete due to the reactions between
the alkaline pore solution and the amorphous or metastable forms of silica in aggregates.
As a result, cracks in the vicinity of the reactive species can be initiated and developed to
deteriorate the cement material.

The exploitation of construction and demolition waste in industrialized countries
is considered very attractive regarding the environmental and economic benefits from
their reutilization.

The circular economy comprises a novel reformative framework that aids in optimizing
the consumption of raw materials and ensures the value of materials throughout their
lifecycle. It prevents the generation of excess waste, hence preserving natural resources
while demonstrating that everything that is made can be recycled, reprocessed or reused.

Construction and demolition waste represents about half of the total amount of mu-
nicipal solid waste generated in European countries, occupying a large storage space and
causing pollution, which are becoming serious problems. This includes all the waste pro-
duced during the construction, renovation and demolition activities of buildings, roads
and other structures.

The deepening of the recycling and reuse routes of construction and demolition waste
is an attractive challenge accompanied by a reduction in pollution and storage problems
and would allow for an economy of natural resources to become an advantageous solution
from year to year.

Municipal waste contains the following types of construction and demolition waste:
(i) concrete, bricks, ceramic waste; (ii) wood waste, glass, plastic; (iii) asphalt and tar waste;
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(iv) metal scraps; (v) remains of excavations such as soil, stones, gravel; (vi) insulating
material waste; (vii) mixtures of construction and demolition waste.

C&D waste comprises the largest waste stream and high recovery rates, suggesting
that the building sectors are highly circular. The inspection of management practices reveals
the low recovery of the C&D waste that relies on the use of recycled aggregates of road
pavements and sub-base. These actions degrade significantly the technical and economic
value and do not solve the C&D waste problem. Actions inspired by the circular economy
can help the achievement of objectives of waste policy, such as the increase in quantities
and qualities of recycled C&D waste.

The concept of a circular economy is associated with the maintenance of the values
of materials and products over time and reducing the environmental impact of the raw
materials, energy and environmental impacts (resource extraction, emissions and waste
management). Circular waste management implies the redesign of the material cycle
process such that there is economic prosperity and social benefits.

Costs are key for the implementation of waste management systems. The benefit–cost
analysis is important to estimate the economic feasibility of construction waste minimiza-
tion. For the reuse and recycling of C&D waste, a net benefit of 2.5% from the total budget
was reported [16].

In this paper, the effect of adding varied nanocomposites based on construction and
demolition waste in the cement material were investigated by XRD, NMR and Vickers
hardness data. The 1H NMR relaxation data were used to evaluate the water reservoirs in
pore structure. The impact of alkali–silica reactions on composite–cement materials was
evaluated by bulk electric resistances. The use of C&D waste for the production of new
construction products brings benefits for the conservation of resources and the reduction
in the amount of waste. The replacement of Portland cement with composites containing
C&D waste is expected to produce a sustainable construction material.

2. Experimental Procedure
2.1. Preparation of Composites

Used raw materials in this synthesis are construction and demolition (C&D) waste,
such as broken glasses, lime, mortar, plaster, autoclaved aerated concrete and brick.

In a capsule with sodium hydroxide solution of a concentration of 1M, broken glassy
powders were introduced and agitated mechanically at 40 ◦C. After the partial dissolving
of the glassy powders, a solution of chloride acid at a concentration of 1 M was added, in
addition to lime powder. The temperature synthesis was modified to 100 ◦C for 10 min and
then was kept at 350 ◦C for 30–60 min.

The described wet synthesis method was also applied for the preparation of other types
of composites based on varied C&D waste, namely brick, autoclaved aerated concrete, mor-
tar or plaster powder. A composite containing a mix of these five wastes was synthesized.

2.2. Preparation of Composite–Cement

The composite–cement samples were prepared using gray Portland cement, compos-
ites and water. The amounts of composite and water in the cement mass were 2.5 weight %
and 30%, respectively. The composite–cement mixtures were cast in molds with dimensions
of approximatively 30 × 20 × 10 mm and kept in air.

In Table 1 is summarized the compositions of the composites and composite–cement
samples.
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Table 1. Description of prepared samples.

Notation of Prepared
Composites

Raw Materials Powders Used in
Synthesis of Composites

Notation of Prepared
Composite–Cement

Composition of the
Composite–Cement

L Mixture of glassy and lime waste Lime

2.5 weight % of cement
is substituted by

composites containing
C&D waste

L

P Mixture of glassy and
plaster waste Plaster P

M Mixture of glassy and
mortar waste Mortar M

A
Mixture of glassy and

autoclaved aerated
concrete waste

ACC A

B Mixture of glassy and
brick waste Brick B

T
Mixture of glassy, lime, plaster,

autoclaved aerated concrete,
brick, mortar

All T

Control 100% cement

2.3. Methods

X-ray diffractograms were recorded on composite–cement powders using the Regaku
diffractometer with a radiation of 1.54 Å. The Match! Software with Version 1.0 was used
for the identification of the crystalline phases.

FTIR spectra were recorded using the JASCO 6200 FTIR spectrometer (Tokyo, Japan)
using a resolution of 4 cm−1. The powder sample was mixed with KBr at the mass ratio of
1:150 and then pressed with a load of 5 tons/cm2 to produce transparent disks.

The measurements of NMR spectroscopy were realized using a low field Bruker
Minispec NMR spectrometer (Bruker, Karlsruhe, Germany) operating at 19.69 MHz pro-
ton frequency.

The Vickers micro-hardness was determined using a Nova micro-durimeter (InnovaT-
est, Maastricht, The Netherlands) by indentation method having a penetrator which was
operated with a load of 0.3 kgF at an interval of 15 min.

Electrochemical impedance spectroscopy (EIS) was used to characterize the change
in bulk electrical resistance of composite–cement materials during the accelerated alkali–
silicate reaction test at 3, 7, 14 and 28 days. EIS, cyclic voltammetry (CV) and sweep linear
voltammetry (SLV) measurements were conducted by AutoLab PGSTAT 302 N (EcoChemie,
Utrecht, The Netherlands) equipment and software Nova version 1.11. All measurements
were performed in an electrochimic cell with three electrodes using a calomel electrode as
the reference electrode, composite–cement material as the working electrode and platinum
electrode as the contraelectrode.

3. Results and Discussion
3.1. X-ray Diffractograms

The structures of prepared composite–cement materials were observed by analysis of
X-ray diffraction. XRD results of the composite–cement samples are depicted in Figure 1.
All patterns indicate the presence of four crystalline phases, namely tricalcium silicate,
Ca3SiO5 ≡ 3CaO·SiO2, dicalcium silicate, Ca2SiO4 ≡ 2CaO·SiO2, CaCO3 and Ca(OH)2
crystalline phases. The amounts of the di- and tri-calcium silicate crystalline phases increase
in the lime and ACC composite–cement and they were reduced in the brick sample when
compared with their counterparts.
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Figure 1. X-ray patterns of the composite—cement materials in the region between (a) 10–60 degrees 
and (b) 28–35 degrees. The Miller indices are also inserted in the subfigure. 

Figure 1. X-ray patterns of the composite—cement materials in the region between (a) 10–60 degrees
and (b) 28–35 degrees. The Miller indices are also inserted in the subfigure.
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Ca3SiO5 is known in the composition of new Portland cement and has superior
physicochemical and biological properties [17]. The dicalcium silicate was developed
to reduce the clinker agent and the energy consumption during manufacturing of the
cement [18].

It can be found from Figure 2 that the different particles sizes do not change much
and their values are varied between 70 and 155 nm. The characteristic particles sizes
of the cement matrix containing mortar are below 125 nm, and it can be considered a
finer composite.
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3.2. NMR Spectra

The NMR spectra of the composite–cement materials during hydration performed at
3, 7, 14 and 28 days after their preparation are presented in Figure 3. NMR spectra allow us
to unambiguously distinguish the water reservoirs corresponding to the evolution of the
pores. Four water reservoirs are observed, which from the shorter T2 relaxation time, are
labelled bounded water, water in small pores, water in medium pores and water in larger
pores [19,20]. The interpretation of 1H NMR relaxation data in cements is also based on
the observation that the NMR signal can be categorized by their size and can be resolved
into four discrete populations of water. The first two of these components are assigned to
interlayer water within the C-S-H and to C-S-H gel pore water. The last two components
are attributed to water in nanoscale inter-hydrate spaces and to large capillarity pores and
micro-cracks [21]. They are defined as the free water within the paste. The evolution of the
water content at these positions from T2 distributions is first considered because this will
directly influence the hydration reaction and pore structures.
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Figure 3. NMR spectra of the composite–cement samples recorded at (a) 3, (b) 7, (c) 14 and (d) 28 
days after their preparation. The types of water reservoirs are also inserted. 

Figure 3a shows the T2 distribution map of composite–cement pastes after 3 days of 
hydration with initial water/cement ratios of 0.3. In Figure 4, it can be seen that the posi-
tion of the interlayer peak for the ACC and plaster samples shifts to higher T2 relaxation 
times, indicating better mobility of the material components compared with the control 
cement. The position of the peaks assigned to the interlayer and gel pores moves to longer 
T2 times. The capillarity water signal is not evidenced in the T2 distribution map of dif-
ferent pastes. This suggests that the water is consumed from the capillarity pores during 
hydration. 

Figure 3. NMR spectra of the composite–cement samples recorded at (a) 3, (b) 7, (c) 14 and (d) 28
days after their preparation. The types of water reservoirs are also inserted.
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Figure 3a shows the T2 distribution map of composite–cement pastes after 3 days of
hydration with initial water/cement ratios of 0.3. In Figure 4, it can be seen that the position
of the interlayer peak for the ACC and plaster samples shifts to higher T2 relaxation times,
indicating better mobility of the material components compared with the control cement.
The position of the peaks assigned to the interlayer and gel pores moves to longer T2 times.
The capillarity water signal is not evidenced in the T2 distribution map of different pastes.
This suggests that the water is consumed from the capillarity pores during hydration.
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materials at. (a) interlayer peak, (b) gel pore peak, (c) inter-hydrate pore peak, and (d) capillarity
pore peak at 28 days after their preparation.

At 7 and 14 days after preparation, all water reservoirs are well defined (see Figure 3b,c).
The position of the bounded water signal moves slowly towards higher T2 relation times
by adding composites in the cement for comparison with the control sample, indicating the
mobility of the components in the material.

From day 7 to day 14, the water reservoir peaks, corresponding to positions associated
with bounded water and water from small, medium and large pores, are migrated towards
smaller T2 values, indicating that the composite–cement materials become rigid. Higher
amounts of water reservoirs were observed in the brick and ACC samples after 7 days and
in the brick sample at 28 days after preparation.

The T2 distributions measured at 28 days for brick composite–cement indicate that the
water content is drastically increased in all four water reservoirs. Other composite–cement
materials show an increase in the rigidity degree compared to the control sample and its
analogues in varied early stages of hydration because the water content at the top position
is decreased by drying. The position of the interlayer peak for the ACC and plaster samples
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shifts to higher T2 relaxation times, indicating better mobility of the material components
compared with the control cement.

3.3. Vickers Hardness Data

The alkali–silica reaction (ASR) is one of the challenging problems related to the
durability of the composite–cement material. To mitigate the alkali–silica reaction effect,
a portion of cement was replaced with composite. The mitigation effect of composite on
the alkali–silica reaction is related to the dilution of alkalinity, consumption of calcium
hydroxide and alkali fixation by calcium silicate hydrates, C–S–H, which yield to the
decrease in alkalinity in the pore solution.

In order to understand the effects of composites on the alkali–silica reaction in the
composite–cement at advanced ages one year after their preparation, we determined the
Vickers hardness.

The microscopic micrographs after indentation and the compositional evolution of the
Vickers values of composite–cement materials are depicted in Figure 5. The microscopic
analysis indicates heterogeneous regions with microcracks. A good performance of the
microstructure can be observed for the All sample containing five types of C&D waste.
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An increase in the Vickers hardness values was found for all composite–cement
materials when compared with the control sample. For the All sample, the Vickers hardness
had the highest value and the micrograph after indentation is more compact. These results
confirmed that mechanical properties of cement were improved by doping with composites
originating from waste.

3.4. EIS Measurements

It is known that the cement matrix is an ionic conductor [22]. The alkali–silica reactions
occur between hydroxide ions and accompanying soluble alkali ions, such as Na+ and K+

present in the interstitial solution of the concrete and aggregates. These processes generate
swells and cracks, which will affect the concrete because it will initiate a reduction in
the mechanical properties (compressive strength, flexural strength, change in the elastic
module) and the life cycle of the concrete. When the aggregates contain a sufficient amount
of silica (amorphous or poorly crystallized silica), they are vulnerable and can be mostly
modifiable because they react with hydroxide ions in the hyperalkaline interstitial solution
(dominated by KOH and NaOH, pH = 13.5) contained in the porosity of the hardened
cement paste.

The impacts of the alkali–silica reaction on composite–cement and control cement
were also evaluated with electrochemical impedance spectroscopy measurements. The
electrochemical impedance method is a modern study of spectroscopy of the processes that
take place in an electrochemical cell. The EIS analysis measures resistance (R), capacitance
(C) and inductance (L) by monitoring the current response while a voltage (in alternative
current) is applied to an electrochemical cell.

Electrically, the cellules behave as an ohmic resistor in direct current and as an
impedance in alternating current. This consists of the perturbation of the system with an al-
ternating signal superimposed on the direct current feeding the normal cell and measuring
the response. Thus, the cell can be connected in an alternating current bridge that allows
the impedance to be determined.
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The equivalent electric circuit of a cellule can be represented by different schemes. The
cell has an ohmic resistance due to the solution, to which are added those circuit elements
present in the electrical double layer of the electrode interface. The total impedance of
the cell, Z, is the expression of a series of combinations of resistances, R, and capacities, C.
These two elements intervene in the real impedance, ZRe (where ZRe = R), and imaginary
impedance, ZIm (where ZIm = 1/ωC). Regarding the processes in the cellules, the represen-
tation of the imaginary part of the complex impedance, ZIm, can be extracted as a function
of the real part of complex impedance, as well as ZRe for varied values of the frequency, ω.
The bulk resistance, Rb, of the electrolytes is inversely proportional to the conductivity, σ
(Rb = 1/σ), of the materials.

The EIS spectra can separate and quantify the cell resistance of the bulk, Rb, interface
layer, charge transfer reaction and diffusion process (Warburg impedance) with a single
experiment. Two equivalent circuit models and Nyquist plots are depicted in Figure 6. SIE
spectra can show the shape of a nearly perfect semicircle following the Debye response or
incomplete depressed semicircle in the high-frequency region with non-Debye response,
with an inclined spike in the low-frequency region due to the electrode polarization. In the
first case, the Rb value can be determined by finding the intersection point of the semicircle
and x-axis in the low-frequency region. The quantity of the Rb value of the electrical
resistance in the second EIS spectrum can be estimated from the intersection point of the
corrected centered semicircle on the ZRe axis.
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The matrix structure and conductive composition of the cement material have an
influence on the high-frequency arc. The electrochemical reaction of the electrode and/or
the behavior of the electrode–specimen interface can affect the low-frequency arc [23].

The bulk electrical resistance can be associated with the development of micro-cracks
in the structure of the cementitious sample. The value of the bulk electrical resistance is
significantly responsible for the state of health of the material. A decrease in bulk resistance
indicates a rarefied microstructure with the higher amount of microcracks due to the higher
expansion and vice versa [3]. It is known that a large expansion of the alkaline–silica
reaction will cause more cracks [24].

Figure 7 depicts Nyquist plots of the complex impedance obtained in NaOH solution
of 1M concentration and further the compositional evolutions of bulk electric resistance,
Rb, for composite–cement and control cement materials. For the studied samples, the
impedance spectra consist of two components: a semicircle in the high-frequency range
due to the bulk arc and electrode arc (linear shape). The bulk arc at higher frequency is
associated with the electrical properties of the composite–cement material. The electrode
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arc situated at lower frequency corresponds the polarization effect of the electrode/sample
interaction. For the composite–cement materials, the values of the bulk resistance, Rb,
are improved considerably from 28.4% (ACC sample) at 476.4% (lime sample) exception,
making the mortar–cement sample superior compared to the control. There is an increase
in the Rb value of 270% for the All sample compared with the control cement, which
can be linked to the smaller amounts of microcracks and to insignificant alkaline–silica
reaction expansion.
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Moreover, the semicircle diameter of the SIE spectrum shows also the overall resistance
related to the ion transport in cement materials. The increase in impedance of the cement
materials can be assigned to the denser pore structure, which inhibits the ion transport, and
as result, the diameter of the semicircle of the Nyquist plot was increased [25]. In our study,
for ACC, brick, plaster and All samples, the diameter of the high-frequency arc increases,
then reaches the maximum value for the lime sample, and after that, decreases slightly for
the mortar sample.

For the control cement and mortar sample, the bulk resistances were decreased from
97.3 at 48.2 Ω, attributed to cracks and the results of the alkaline–silicate reaction expansion.
The mortar sample exhibits better conductivity than the cement material.

3.5. Cyclic and Sweep Linear Voltammetry

Further, the EIS results are correlated with cyclic voltammograms (CV) and sweep
linear voltammetry (SLV) data. The cyclic voltammograms of the cementitious materials
in the alkaline environment are shown in Figure 8. The shapes of cyclic voltammograms
are consistent with a set of oxidation/reduction peaks. For the adding of composites
such as mortar, ACC, brick and plaster in the cement material, the curves are very broad,
anodic/cathodic peaks can be identified, and the current densities were increased compared
with those of their analogues and the control sample. For example, the electrochemical
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behavior of the mortar–cement sample is characterized by the presence of an oxidation
peak situated at 373 mV (corresponding to the oxidation process from the solution) and
cathodic wave response at 297 mV (∆E = 76 mV). The cyclic voltammogram scan after three
cycles for the control and All samples showed irreversible processes (Figure 8c).

The current response was significantly increased and the waves during oxidation and
reduction processes were improved for the samples Brick, ACC, Mortar, Plaster and All. By
doping with lime in the cement material, there are significant differences between these
two plots, and the current densities are also decreased compared with those obtained with
their analogues.

Figure 9 shows the SLV plots and the composition variation of cementitious mate-
rials as a function of 1/2 half-wave potentials, E½. As expected, in the composite with
lime, the oxidation signal is considerably lower than that recorded with their analogues.
Further, the value of the ½ half-wave potential attains the minimum value for the mortar
composite, indicating the best electrochemical performance and better reversibility of the
voltammogram.
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3.6. Evolution of Bulk Electrical Resistance after 3, 7, 14 and 28 Days in NaOH Solution

In order to understand the effect of the composites on the composition of reaction
products during the alkali–silica reaction, two cement samples, namely the control cement
and composite–cement material, were prepared and immersed in a natrium hydroxide
solution of 1M concentration at room temperature for 3, 7, 14 and 28 days.

In the present study, we explored a novel cell that uses natrum hydroxide elec-
trolyte in a three-electrode configuration consisting of a working electrode, such as the
composite–cement sample, and counter/reference electrodes to evaluate the effect of
alkaline immersion.

The Nyquist data of the impedance can be also used to determine the bulk electrical
resistance, Rb, during the accelerated test of the alkali–silica reaction at 3, 7, 14 and 28 days
in NaOH solution of 1M concentration. The intersections at the higher-frequency arc and
the lower-frequency line correspond to the resistances of cement materials, Rb [25].

The EIS spectra and the change in bulk resistance, Rb, at different days of immersion
of the control cement and all composite–cement materials are depicted in Figure 10. The
Nyquist diagrams are composed of real and imaginary impedances and also consist of bulk
and electrode arc at varied frequencies. At the intersection in the x-axis of the two arcs, the
bulk electrical resistance, Rb, can be determined.
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The impedance spectra in the complex plane indicate random displacements when
comparing the control cement at 3 days with those at 7, 14 and 28 days of alkaline immersion.
A trend was observed of shifting towards the right after 7 days, then towards the left after
21 days, and finally, towards the right after 28 days. The value of bulk resistance is improved
after 7 days, and after that, its values were decreased after more days of immersion. The
reduction in the Rb value is attributed to the formation of more microcracks because the
expansion processes of the alkali–silicate reactions are largely intensified.

For the all composite–cement material, the impedance plots shift gradually to the
right and the values of bulk resistances increase continually with the increase in days up
to 21 days immersed in NaOH solution; after that, there is an opposite trend, as well as a
drastic decrease in the Rb value at 28 days. This decrease in the bulk resistance at 28 days
of immersion is linked to the expansion of the alkali–silica reaction and the formation of
microcracks. The micro-cracks can create discontinuous paths, changing the continuous
structure of the material, which results in the decrease in bulk resistance.

The structure of control cement remains unaffected by alkali–silicate reactions up to 7
days in alkaline immersion, while for the composite–cement material, it was unaffected for
up to 21 days, respectively. For the control sample, all bulk resistance values are smaller
than those of the composite–cement, suggesting the results of expansion of the alkali–silica
reaction. All values of the bulk resistances at 0, 3, 7 and 21 days are more enhanced for
cementitious material containing all composites compared to the control sample, showing
a higher chemical stability of composite–cement material under alkaline attack.

The lime sample has the lowest value for particle size of the CaCO3 crystalline phase.
It is known that calcium carbonate is responsible for the rate of hydration of cement and
strength development in concrete [26]. The resistance value is very high for lime among
the other composite–cement sample due to the presence of CaCO3 crystalline phase with
smaller particle sizes, which improve the pore structure and mechanical resistance under
disturbing external factors.

The Nyquist plots (shape and circuit) can be correlated with the response of other
oxide materials or the electrical double layer of the electrode interface [27,28].

In brief, the cementitious material including different types of mixed composites
behaves without the evolution of the alkali–silica reactions and without cracking for up
to 21 days, while the control material lasts only 7 days. All values of electrical resistances
of the control sample are lower, indicating the acceleration of the alkali–silica process and
the formation of more micro- and macrocracks in the material. The abrupt increase in the
electric resistance from 3 days to 7 days and from 7 days to 21 days, respectively, can be
linked to the continuous hydration of the cementitious materials doped with composites.

3.7. Linear/Circular Economy of C&D Waste

The replacement of natural raw materials can minimize and reduce the effects on the
environment and permit the cement industry to become a major player in C&D waste
recycling. In conclusion, this study evidences the possibility of the circular economy of the
spent materials used in construction.

The construction industry consumes up to 40% of global raw materials, generates over
40% of waste and emits over 25% of carbon dioxide into the atmosphere. In Europe, the
construction industry provides jobs for more than 18 million people. An increase of 60% in
building resource management is expected to generate an additional USD 1.6 trillion annu-
ally. Rapid urbanization and providing a working or living space have major contributions
in this area. The economic benefits will continue only if the construction resources are
consumed efficiently and sustainably [29].

Generally ingrained in the construction industry is the approach “take, make, dispose”,
known as a linear economy, which creates the problem of an unsustainable economic
situation. A linear economy is an approach to capitalization on building materials used
for the purpose of construction, and at the end of life of the building, they are discarded.
They are designed and assembled for a single use without exploring the advantages of
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recycling materials back into the system. Linear economics focuses on the limited lifetime
of resources without considering the end of life of the products.

The cumulative problems of the linear economy have created many concerns among
governments, professionals in construction and decision makers regarding the need to
find a sustainable way to prevent environmental consequences, consumption of natural
resources and generation of waste. Consequently, the circular economy has emerged as a
veritable initiative to promote a sustainable built environment with an increased efficiency
for construction resources and waste minimization. The goal of a circular economy is to
minimize waste, and the materials from which a product is made, at the end of its life, will
be reintegrated into the economy as much as possible.

The circular economy paradigm has awakened public interest around the world as
an innovative and significant attempt to conserve finite resources, to reduce waste and to
abandon the linear economy. Although the circular economy is still in the incipient stages
of the management of construction and demolition waste, the scientific contributions of the
circular economy agenda are growing in the construction industry.

The distribution of the number of publications per year analyzing the C&D waste,
recycling and circular economy of C&D waste in the construction field is presented in
Figure 11. For the publications until 2014, their number does not exceed 100 ISI-quoted
articles per year in all domains. Then follow an almost linear growth until the year 2020,
reaching 350 publications per year on the subject of C&D waste and 280 articles on C&D
waste recycling, respectively. Between the years 2021 and 2023, the number of publications
reaches the highest values, between 450 and 500 publications per year for the C&D waste
topic and nearly 400 articles for C&D waste recycling, respectively.

Regarding the term of circular economy of C&D waste, the first publication appears in
2003, and the second in 2007, and until the year 2015, they are summarized in a maximum
of five articles. An almost linear growth is reflected in the diagram until the year 2019,
and in recent years, an increase of almost 140% is achieved compared to the year 2007.
For example, in the year 2021, the number of publications increased, with 59 ISI articles
compared to the year 2020, and down one publication compared to 2022. From the 648
publications between the years 2003 and 2023, distributed throughout scientific journals,
the concept of the circular economy in the construction field is explained. There is a sudden
upward trend in the study of this topic between the years 2018 and 2023 and a significant
interest in the last three years, over 21%, increasing by almost four times compared with
the annual publication trend of the year 2018 (Figure 11b).

Inspection of these developments indicates an increased interest over the years, and a
major increase in published articles on the topic of C&D waste can be observed. The number
of publications increases continually in the field, so that in the year 2023, the number of
publications is high, with increases of almost 7.24 times (for C&D waste), 8.80 times (for
C&D waste recycling) and 33.35 times (for circular economy of C&D waste), respectively,
compared with 2013. In conclusion, interest related to these topics has grown significantly
in recent years.
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4. Conclusions

This paper provides a systematic review on the use of composites as an alternative for
cement material. Six different types of composites were prepared by the nwet synthesis
method using as raw materials construction and demolition waste and glass powder. The
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effects of varied composites on structure and mechanical/electrical properties of cement
material and on the mitigation of the alkali–silica reaction were also detailed. X-ray
diffractograms show that the structure of nanocomposite–cement materials consists of di-
and tri-calcium silicate, calcium carbonate and smaller amounts of calcium hydroxide.

The NMR data show that the internal water is gradually consumed and the area
of different relaxation peaks tends to gradually change. The T2 relaxation time shifts
from longer relaxation time to shorter relaxation time at 28 days after preparation. This
modification corresponds with the evolution of the cement hydration process. A trend
of shifting of the peak corresponding to bounded water indicates the mobility of the
components of composite–cement material.

The incorporation of composites in the cement material improves the Vickers hardness
after aging for one year after their preparation.

The bulk electrical resistance of composite–cement samples increases compared to the
control, while the value of Rb of the mortar sample was decreased, suggesting the presence
of microcracks.

In the cyclic voltammograms, the intensities of the oxidation and reduction peaks
increase for the mortar and brick samples.

When the composite–cement samples are exposed to the accelerated test of the alkali–
silica reaction, an improvement in the bulk electrical resistances was noticed from 3 days to
21 days, which could be due to the smaller expansion, the continuous hydration process
and the pozzolanic reaction of the cement material. For the control sample, the reduction in
bulk resistance after 7 days could be due to the larger expansion, the formation of more
micro-cracks and the deterioration of the microstructure. Based on our results, we can
conclude that studied nanocomposites play an important role in the deleterious effect of
expansion of the cement material.

This approach can be applied in the future for other types of cementitious materials
which use highly reactive composite as a replacement for higher cement content in concrete
or mortar, respectively.

The success of preparing and using new composites based on construction and demo-
lition waste opens new directions towards the circular economy of spent building materials
for the construction field, in particular, the cement industry.
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