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Abstract: The rational design, activity prediction, and adaptive application of biological elements
(bio-elements) are crucial research fields in synthetic biology. Currently, a major challenge in the
field is efficiently designing desired bio-elements and accurately predicting their activity using
vast datasets. The advancement of artificial intelligence (AI) technology has enabled machine
learning and deep learning algorithms to excel in uncovering patterns in bio-element data and
predicting their performance. This review explores the application of AI algorithms in the rational
design of bio-elements, activity prediction, and the regulation of transcription-factor-based biosensor
response performance using AI-designed elements. We discuss the advantages, adaptability, and
biological challenges addressed by the AI algorithms in various applications, highlighting their
powerful potential in analyzing biological data. Furthermore, we propose innovative solutions to the
challenges faced by AI algorithms in the field and suggest future research directions. By consolidating
current research and demonstrating the practical applications and future potential of AI in synthetic
biology, this review provides valuable insights for advancing both academic research and practical
applications in biotechnology.

Keywords: synthetic biology; biological elements; transcription-factor-based biosensor; artificial
intelligence; machine learning; deep learning

1. Introduction

Biological elements (bio-elements) are the fundamental building blocks of synthetic
biological systems, consisting of molecular sequences with specific functions. These bio-
elements include nucleic acids, such as promoters, enhancers, and ribosome binding sites
(RBS), as well as proteins, such as transcription factors (TF) and enzymes. The rapid
development of synthetic biology has made the rational design of bio-elements and the
precise prediction of their activity key areas of research [1–5]. However, the sequences and
functions of bio-elements are complex, and their intrinsic relationships remain unclear. Tra-
ditional methods for designing bio-elements and predicting their activity often suffer from
being time-consuming, costly, unreliable, lacking clear optimization directions, and having
insufficient relevant biological theories. Fortunately, the rapid development of machine
learning algorithms in artificial intelligence (AI), such as support vector machines, logistic
regression, and decision trees, combined with big data, has shown excellent performance
in various fields [6–10]. Machine learning possesses strong capabilities to understand
biological data and make autonomous decisions, enabling the extraction of hidden features
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within biological data that are difficult to obtain through experimental methods [11,12].
Deep learning [13], a new branch of machine learning, can efficiently learn latent patterns
in data [14,15]. For example, convolutional neural networks (CNNs, a type of feed-forward
neural network that incorporates convolutional calculations and has a deep architecture)
and recurrent neural networks (RNNs, a type of neural network designed to take sequence
data as input and recursively process it in the order of the sequence) can achieve precise
predictions of bio-element activity by learning sequence features [16–20]. Generative ad-
versarial networks (GANs, a type of generative deep learning model that consists of two
competing components, a generator and a discriminator, which are trained simultaneously
to generate realistic synthetic data) can achieve de novo design of bio-elements through
adversarial training between generators and discriminators [21–24]. Therefore, AI-guided
de novo design and precise activity prediction of bio-elements present new opportunities
for bio-element research.

The rational design and activity prediction of bio-elements are crucial steps in synthetic
biology research. Activity prediction results provide reference standards and optimization
directions for designing bio-elements with ideal performance. Simultaneously, bio-elements
obtained through rational design must be evaluated for reliability by predicting and verify-
ing their performance. Therefore, the rational design and activity prediction of bio-elements
are often complementary in the development of synthetic biological systems. However, the
design of bio-elements based on the “Design–Build–Test–Learn” (DBTL) cycle often relies
on extensive experimental trial and error and still lacks efficient characterization methods.
In addition, traditional methods for predicting the activity of bio-elements, which explore
the “genotype–phenotype” relationship, are often complex, low in accuracy, and highly
dependent on relevant biological mechanisms and theories such as thermodynamics and
molecular dynamics [3,25,26]. To address these challenges, AI algorithms have garnered
widespread attention from researchers [27–30]. For example, Wang et al. achieved the de
novo design of E. coli promoters using a GAN model [31]. Jores et al. employed a CNN
model to accurately predict promoter activity and rationally designed plant promoters
with the desired activity [32]. In these studies, AI algorithms effectively simplified the
DBTL exploration process, reduced experimental costs, and provided new directions for
the design and optimization of nucleic acid elements. Additionally, deep-learning-based
models such as AlphaFold have been used to predict protein structures and characteristics,
offering new references for the rational design of protein elements [33,34].

One significant application of de novo-designed bio-elements is their efficient and pre-
cise adaptation for optimal response performance in transcription factor-based biosensors
(TFBs) [35,36]. TFBs can convert target metabolite concentration signals into fluorescence
or expression-level signals of metabolic pathways [37]. They have been widely used in
target metabolite concentration detection [38], high-throughput screening [39], direction
evolution [40], and dynamic regulation [41,42]. To enhance the robustness and reliability of
TFB applications, it is necessary to design TFBs with excellent response performance. The
evaluation metrics for TFB response performance include dynamic range, detection range,
specificity, and sensitivity. However, bio-elements designed using traditional “DBTL”
methods often fail to achieve optimal TFBs, commonly exhibiting issues such as inap-
propriate dynamic range, low sensitivity, and low specificity [35,43] (Figure 1A). Thus,
designing bio-elements that are highly compatible with TFBs to optimize their response
performance remains a significant challenge. Previous studies have utilized the rational
design of bio-elements, such as promoters, RBS, and TFs, to regulate TFB response per-
formance. For instance, d’Oelsnitz et al. constructed a TFB with two CamR binding sites,
doubling its dynamic range [44]. Gong et al. introduced mutations to modify the structure
of the transcription factor TrpR, increasing the specificity of TFB for tryptophan by over
threefold compared with 5-hydroxytryptophan [45]. However, designing bio-elements
using traditional experimental methods is not only time-consuming and labor-intensive
but also limits further optimization of TFB response performance. AI algorithms, with
their ability to uncover underlying rules, are promising technologies for regulating TFB
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response performance (Figure 1B). For example, Ding et al. trained a CNN on large datasets
associating RBS and TFB dynamic range, constructing a classification model CLM-RDR
to achieve intelligent regulation of TFB dynamic range [46]. This demonstrates that AI
algorithms can bypass some complex biological mechanisms to quickly and accurately
optimize TFB response performance. Therefore, AI-designed bio-elements can be adapted
to achieve TFBs with excellent response performance.
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Figure 1. Design of biological elements to regulate the TFB response performance: (A) The low adapt-
ability of “DBTL”-designed biological elements results in poor TFB response performances. (B) The
high adaptability of AI-designed biological elements results in superior TFB response performances.

In this review, we highlight the recent applications and challenges of machine learning
and deep learning models in the rational design and activity prediction of bio-elements.
We also explore how AI-designed bio-elements can regulate the TFB response performance.
By outlining the advantages, adaptability, and biological challenges addressed by AI al-
gorithms, we aim to assist researchers in leveraging AI for bio-element-related research.
Furthermore, we propose innovative solutions to overcome these challenges and suggest
future research directions. Detailed comparisons of traditional and AI-based methods, their
accuracy, and the challenges they address are summarized in Table 1, providing a compre-
hensive understanding of the current state and future potential of AI in synthetic biology.
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Table 1. Challenges and strategies in traditional and AI-based bio-element design and activity
prediction.

Bio-Element Function Challenge
Strategy Accuracy

References
Traditional AI Traditional AI

Promoter

Rational design and
activity prediction

Small library, vast
sequence space

Experimental
method

GAN, CNN

ns

0.7 [31]
DeepSEED (GAN,

LSTM) 0.78 [47]

Activity prediction High prediction cost and low
accuracy

CHIP-seq,
RNA-seq XGBoost 0.88 [48]

CHIP-seq,
RNA-seq iPro-GAN 0.92 [49]

Enhancer

Rational design and
activity prediction

Unclear motif syntax
relationships, inadequate

compatibility between motifs,
and limited applicability

Experimental
method

DeepSTARR
(CNN), GAN

ns

0.74 [50]

Activity prediction CHIP-seq,
RNA-seq

iEnhancer-DCLA
(CNN, BiLSTM,

Attention)
0.83 [51]

RBS Activity prediction

Demand for larger libraries,
cumbersome experimental
procedures, and complex

thermodynamic analysis data

Experimental
method GPR, Bandit

ns

34% high TIR [52]

Ribosome loading,
DNA methylation,

NGS
CNN 0.927 [53]

Protein

Rational design Limited sequence space ns ProteinGAN (GAN)

ns

0.88 [54]
Rational design and
activity prediction

Limited protein structure types
and vast sequence space

Experimental
method

WGAN, Rosetta TM > 0.5 [55]

Activity prediction
Low accuracy AlphaFold 2 TM > 0.78 [56]

and limited accuracy for
complex interactions AlphaFold 3 >0.8 [57]

Enzyme catalytic
constant prediction Low accuracy

DLKcat (CNN,
GNN) 0.71 (kcat) [58]

UniKP (pretrained
language models)

0.85 (kcat),
0.73 (km),

0.81
(kcat/km)

[59]

Enzyme function
prediction Small and imbalanced datasets

CLEAN
(contrastive

learning
framework)

0.86 [60]

ns, not specified.

2. AI-Based Rational Design and Activity Prediction of Bio-Elements

The rational design and activity prediction of bio-elements are crucial research areas
in synthetic biology. AI algorithms have been widely applied to the rational design and
precise activity prediction of genetic regulatory elements such as promoters and RBSs
(Figure 2), as well as the intelligent design of protein sequences and structures. Combining
AI models with traditional biological experiments will enhance the depth of research into
bio-elements.

2.1. AI-Assisted Rational Design and Activity Prediction of Promoters

Promoters are short DNA sequences located near gene transcription sites specifically
recognized and bound by RNA polymerase to initiate transcription, playing a crucial
role in regulating gene expression levels [61]. The rational design and activity prediction
of promoters are playing a crucial role in synthetic biology and metabolic engineering.
However, promoter design faces challenges such as a small library and a vast potential
sequence space [31,62]. To address these challenges, AI models have been employed [63].
For example, Wang et al. achieved the de novo design of E. coli promoter sequences using
a GAN model (Figure 3A) [31]. They first employed adversarial training between the
generator and discriminator in a GAN model to learn and extract the latent features of
natural promoters, generating a large number of novel artificial promoter sequences [31].
Finally, they predicted the activity of these artificial promoters based on a CNN model,
achieving a prediction accuracy of 0.7, demonstrating the excellent performance of AI-
designed artificial promoters [31]. Moreover, Zhang et al. developed the DeepSEED
framework based on GAN (generator) and Long Short-Term Memory (LSTM, a predictor,
is a specialized type of recurrent neural network designed to effectively capture long-term
dependencies in sequential data) models, improving the prediction accuracy of promoter
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activity to 0.78 by considering the influence of flanking sequences during the design process
(Figure 3B) [47].
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evaluating the training process and testing process of the model; Val and Train auc: an index used to
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ROC and Fit curve: indicators for evaluating the performance of the classification and regression
model, respectively.

Predicting promoter activity also faces challenges such as high costs and low accuracy.
To address these issues, Zhao et al. proposed a promoter strength prediction method
based on the eXtreme Gradient Boosting model (XGBoost, a powerful machine learning
algorithm based on decision trees, optimized for efficiency, accuracy, and handling large
datasets through gradient boosting techniques) (Figure 3C) [48]. By constructing a gradient
transcription intensity Trc promoter (Ptrc) mutant library dataset based on the mutation–
construction–screening–characterization (MCSC) cycle, the XGBoost model was trained,
achieving a prediction accuracy of 0.88 [48]. Similarly, Qiao et al. developed the iPro-GAN
model, which used spatial data analysis to extract the sequence features based on the
Moran model and employed the deep convolutional GAN model to achieve high-precision
predictions of promoter transcription intensity, ultimately reaching a prediction accuracy
of 0.92 [49]. These examples demonstrate AI algorithms’ potential in the rational design
and precise activity prediction of promoters.
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2.2. AI-Assisted Rational Design and Activity Prediction of Enhancers

Enhancers, typically containing multiple motifs such as transcription factor binding
sites (TFBS), are short regions within eukaryotic sequences that can bind to proteins and
enhance gene transcription, playing a crucial role in regulating gene expression [64,65].
However, the de novo design and activity prediction of enhancers is challenging due
to the unclear relationship between motif syntax and enhancer activity, the inadequate
compatibility between motifs, and the limited applicability [66]. To solve these challenges,
Almeida et al. developed DeepSTARR, a CNN-based deep learning framework, achieving
efficient prediction of enhancer activity in Drosophila S2 cells with a Pearson Correlation
Coefficient (PCC, a statistical measure that evaluates the strength and direction of the linear
relationship between two variables, often used to assess the performance of a model by
comparing predicted values to actual outcomes) of 0.74 [50]. Experimental validation based
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on the prediction results revealed some motif syntax rules. Using these rules, they designed
novel enhancer sequences with gradient activities ranging from 0.8 to 630 [50]. Taskiran
et al. further realized the de novo design of synthetic enhancers based on cell types using
various AI algorithms (Figure 4A) [67]. First, they used AI algorithms for directed sequence
optimization and the insertion of TFBS into enhancers, analyzing the impact of changes
in repressive sites and TFBS on enhancer activity [67]. Then, they compared Drosophila
enhancers designed using these strategies with human enhancers generated by a GAN
model, demonstrating the applicability of these design strategies to different biological
systems [67]. In addition, Liao et al. developed iEnhancer-DCLA, a novel deep learning
framework, to predict enhancer activity (Figure 4B) [51]. First, they encoded sequences
using data encoding methods such as word embedding, one-hot encoding, and k-mers to
determine the most suitable approach for enhancer sequences [51]. Then, they combined
algorithms like CNN, LSTM, and attention mechanisms to thoroughly extract sequence
features [51]. The model achieved an accuracy of 0.83 in predicting enhancer activity. Thus,
AI algorithms have shown significant potential in the rational design and precise activity
prediction of enhancers [68,69].
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Figure 4. AI-derived enhancer design and activity prediction: (A) The overview of enhancer design
strategies based on deep learning. (B) The model structure of enhancer activity prediction based on
iEnhancer-DCLA. It includes feature representation based on the dna2vec method, two convolutional
and maxpooling layers, a bidirectional LSTM network layer, an attention layer, and two fully con-
nected layers. A represents the feature vector after passing through the attention mechanism layer;
α represents the importance of the output of the bidirectional LSTM layer.
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2.3. AI-Assisted Rational Design and Activity Prediction of RBS

RBS is an untranslated region upstream of the mRNA start codon, recognized and
bound by the ribosome to initiate translation. RBS is crucial for translation initiation and
gene expression. The rational design of RBS faces challenges due to the increasing demand
for larger libraries, cumbersome experimental procedures, and complex thermodynamic
analyses [25,70,71]. To address these challenges, Zhang et al. proposed a machine learning-
guided DBTL cycle method for designing bacterial RBS, using the Bandit algorithm to
design RBS and the Gaussian process regression (GPR, a nonparametric Bayesian regression
method that provides probabilistic predictions of the output by assuming a Gaussian
process prior over functions, allows it to capture uncertainty and make predictions with
confidence intervals) algorithm to predict the translation initiation rate (TIR) of the designed
RBS [52]. The method showed that 34% of the designed RBSs had TIR values not lower
than the standard RBS, demonstrating AI algorithms’ potential in RBS sequence design [52].
Subsequently, Simon et al. used the DNA phenotyping method uASPIre (ultra-deep
Sequence-Phenotype Interrelationship acquisition) and Next Generation Sequencing (NGS)
technology to obtain large datasets of sequence-activity associations [53]. They then trained
a CNN model based on these datasets to achieve a precise prediction of RBS activity with
an accuracy of 0.927 [53]. This provided an efficient new approach for the precise prediction
of RBS activity.

2.4. AI-Assisted Design of Protein Sequences and Structures and Prediction of Functional Activity

The de novo design of proteins based on deep learning algorithms can generate novel
proteins with expected functions and has been widely applied in protein engineering and
synthetic biology [72–75]. AI-based protein design can be categorized into structure-based
design [76,77] and direct sequence design [57,78–80]. Despite the rapid accumulation of
protein sequence and structure data, the limited number of protein structure types and
the vast sequence space remain significant challenges. Using limited data to understand
protein folding principles and optimize sequences is a key bottleneck. To overcome these
challenges, Karimi et al. used a WGAN (an improved version of GAN by using the
Wasserstein distance as a loss function, which enhances training stability and generates
higher-quality data) model to obtain low-dimensional representations of the protein folding
space [55]. Then, they predicted the structures of the generated sequences based on the
Rosetta predictor, achieving high TM scores (TM > 0.5), and indicating accurate folding of
AI-designed proteins [55]. Recent studies also focus on using AI to explore sequence space
and design proteins directly [72,78]. ProteinGAN, developed by Donata et al., explored
the complex multidimensional amino acid sequence space and learned the diversity of
natural sequences, generating new sequences with natural physical characteristics [54].
Experimental validation showed high matrix similarity (88%) between the generated
and natural sequences, with 24% functionality, indicating that ProteinGAN successfully
captured the local amino acid relationships in protein sequences [54]. This demonstrates
the potential of AI algorithms to rapidly design diverse functional proteins within a limited
sequence space.

AlphaFold has revolutionized protein structure prediction based on amino acid se-
quences [56,78,79,81]. For example, AlphaFold 2, developed by Jumper et al., combines
multiple sequence alignments (MSA) and neural networks to achieve near-experimental
accuracy in predicting 3D protein structures (Figure 5A) [56]. The model integrates evolu-
tionary, physical, and geometric information, resulting in significantly improved median
backbone accuracy as demonstrated in the 14th Critical Assessment of Protein Structure
Prediction (CASP14) [82]. AlphaFold 2 achieved a high TM-score of over 0.78 [56]. Despite
its advancements, AlphaFold 2 faced challenges such as limited accuracy in predicting com-
plex biomolecular interactions and computational efficiency. To address these challenges,
Abramson et al. developed AlphaFold 3, which integrates a diffusion-based architecture
to predict the joint structure of complexes, including proteins, nucleic acids, and small
molecules, improving accuracy by reducing the complexity of MSA processing and directly
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predicting raw atom coordinates through a diffusion module (Figure 5B) [57]. AlphaFold
3 achieved an unprecedented accuracy of over 0.8 across various benchmarks, such as
protein–ligand and protein–nucleic acid interactions [57]. Thus, AI algorithms provide a
crucial direction for the de novo design of proteins.
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Figure 5. The model architecture of AlphaFold 2 and 3: (A) AlphaFold 2 achieves end-to-end
prediction of protein 3D structures from protein sequences. The model’s framework is divided into
three main steps. First, the protein sequence is input into the model and searched against gene and
structure databases to obtain homologous sequences and template structures through MSA. Next,
the predicted sequence, MSA sequences, and template structures are embedded and processed by
the Evoformer module to generate MSA representation and pair representation. Finally, the first
row of the MSA representation and the pair representation are used as inputs for the structure
module to predict the 3D structure of the protein sequence. repr., representation. (B) Accurate
structure prediction of biomolecular interactions based on AlphaFold 3. The AlphaFold 3 model
consists of three main steps: data processing, condition extraction, and diffusion generation. First, the
required structural prediction information is inputted. Based on this input, the system searches and
generates data from databases, deriving information from genetic searches, template searches, and
conformer generation. The input information and derived reference information are then fed into the
Input Embedder, which performs initial encoding to obtain inputs, single representations, and pair
representations. Then, a condition extractor with a recycling mechanism is used to integrate template
and MSA information into the pair representation through the Template and MSA Module. The
Pairformer then merges and refines the single representation and pair representation information. The
inputs, single representations, and pair representations are used as conditions for the diffusion model,
which constrains and controls the denoising process to generate refined results. Finally, the predicted
results are fed into the Confidence Head to predict the confidence level of the structural prediction.
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AI algorithms also enhance enzyme activity and function prediction. For enzyme
activity prediction, Li et al. developed DLKcat based on CNN and Graph Neural Network
(GNN, a deep learning model designed to process and analyze data structured as graphs,
consisting of nodes and edges), achieving 0.71 accuracy in predicting the catalytic constant
kcat [58]. Yu et al. developed the UniKP framework based on pretrained language models,
improving the prediction accuracy of kcat to 0.85 and achieving 0.73 and 0.81 accuracy in
predicting the km and kcat/km, respectively (Figure 6A) [59]. For enzyme function prediction,
previous methods often relied on sequence similarity and homology, and some model-
based prediction methods were limited by small and imbalanced datasets. To address this
problem, Yu et al. developed the CLEAN model using a contrastive learning framework to
predict the catalytic functions of different enzymes (Figure 6B) [60]. This model treats the
four-digit code of known enzymes as a matrix and uses Euclidean distance to represent
functional similarity between different enzymes, ultimately outputting a ranked list of
enzyme functions by probability [60]. This approach achieved a precise prediction accuracy
of enzyme functions, with a prediction accuracy of over 0.86 [60]. Therefore, AI models
provide a new direction for high-precision prediction of enzyme activity and function.
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Figure 6. AI-derived prediction of enzyme activity and function: (A) The overview of UniKP to
predict the enzyme kinetic parameters. First, the pretrained language model, ProtT5-XL-UniRef50,
is used to encode enzyme information. Each amino acid is transformed into a 1024-dimensional
vector in the last hidden layer. These vectors are then averaged using mean pooling to generate a
1024-dimensional vector representing the enzyme. Next, the pretrained language model, the SMILES
transformer, is used to encode substrate information. The substrate structure is converted into a
Simplified Molecular Input Line Entry System (SMILES) representation and fed into the SMILES
transformer to generate a 1024-dimensional vector. This vector is created by concatenating the average
and max pooling of the last layer and the first outputs of the last and penultimate layers. Finally,
an interpretable Extra Trees model based on machine learning uses the concatenated representation
vectors of the enzyme and substrate as input to predict the kcat, km, or kcat/km values. (B) The
overview of CLEAN for the prediction of enzyme function. During training, positive and negative
samples are selected based on EC numbers. The input sequences are embedded and processed
through a neural network. The warm-colored grid series represents the embeddings of the input
sequences from ESM-1b. Similarly, the embeddings obtained from the supervised contrastive learning
neural network are depicted in cool colors.
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3. Optimizing the TFB Response Performance Based on AI-Designed
Biological Elements

The optimization of TFB response performance based on the rational design of bio-
elements is a key direction in current research. Bio-elements such as promoters, RBS, and
transcription factors are crucial regulatory targets in the study of TFB response perfor-
mance [35,83,84]. AI algorithms have emerged as a novel method for the rational design of
bio-elements to achieve optimal TFB response performance.

3.1. AI-Designed Promoters for Regulating TFB Response Performance

Promoters can regulate TFB response performance by controlling the transcription
rate of transcription factors and reporter proteins [36,85]. Promoter engineering has been
widely used to regulate the dynamic range and sensitivity of TFBs [44,86,87]. Strategies
for fine-tuning TFB response performance include modifying specific sites of transcription
factor-responsive promoters and performing site-directed mutation on promoters [44,86,88].
However, traditional promoter engineering to optimize TFB response performance is often
time-consuming, labor-intensive, costly, and limited TFB application scope. In addition,
the numerous combinations of promoter motifs can affect TFB response performance due
to various factors such as the bio-element activity, the metabolism, and the growth of host
cells. Thus, traditional trial-and-error methods face significant challenges in regulating TFB
response performance.

To address these challenges, Zhou et al. synthesized a large dataset of gradient inten-
sity promoters based on DNA barcode technology to construct a TFB library (Figure 7A) [89].
They characterized the TFB response curves using fluorescence-activated cell sorting (FACS)
and NGS sequencing (FACS-seq) technologies [89]. Subsequently, they used the XGBoost
machine learning model to achieve accurate genotype-to-phenotype predictions [89]. Fi-
nally, they experimentally validated the sequences with superior performance based on the
prediction results, obtaining a malonyl-CoA biosensor with a maximum dynamic range
of 6.38 [89]. This provides an efficient and cost-effective new approach for regulating and
optimizing TFB response performance.

3.2. AI-Designed RBS for Regulating TFB Response Performance

RBS can regulate the TFB dynamic range by modulating the translation levels of
transcription factors and reporter genes as well as protein folding [36,46]. Although
RBS engineering has been widely applied in research on regulating the TFB dynamic
range [44,90,91], obtaining the corresponding TFB dynamic range for different RBSs still
relies on time-consuming and costly experimental studies. Moreover, there is a lack of
precise prediction techniques to explore the relationship between RBS sequences and
TFB dynamic range. To solve these problems, Ding et al. developed a platform using a
deep learning model, CNN, for intelligent prediction of TFB dynamic range based on RBS
sequences (Figure 7B) [46]. They first obtained large datasets of glucarate biosensor dynamic
range and RBS associations using DNA microarray and FACS-seq technology [46,92]. Then,
they built the CLM-RDR platform based on a CNN model to accurately predict the glucarate
biosensor dynamic range from RBS sequences, achieving a prediction accuracy of 0.86 [46].
The CLM-RDR platform simplified the workload of the DBTL cycle and enabled precise
regulation of TFB dynamic range based on AI-screened RBS sequences.
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of the cerulenin biosensor response curve based on the XGBoost model. (B) The forward–reverse
prediction platform to fine-tune the TFB dynamic range. The forward engineering platform to
precisely predict the TFB dynamic range based on the CNN model. The reverse engineering platform
to rationally design the RBS with the desired TFB dynamic range based on the BAGAN-GP model.

Furthermore, to rationally design RBS with a desired TFB dynamic range, Ding
et al. developed a forward and reverse engineering platform for TFB intelligent design
based on CNN and GAN-derived models (Figure 7B) [93]. The forward engineering used
the Wasserstein GAN model with gradient penalty (WGAN-GP, an improved version of
the Wasserstein GAN that incorporates a gradient penalty term to enforce the Lipschitz
constraint, leading to more stable training and better quality generated data compared
with the original WGAN) to generate a large functional RBS dataset and predicted the
TFB dynamic range from the generated RBS using a CNN model, achieving a prediction
accuracy of 0.98 [93]. The reverse engineering used the balanced GAN model (BAGAN-GP,
a GAN model designed to restore data balance from unbalanced data sets, incorporating
a gradient penalty to improve training stability and the quality of generated data) to de
novo design RBS sequences based on a given TFB dynamic range, with a design accuracy
of 0.82 [93]. These results indicate that deep learning algorithms have become a crucial tool
for the rational design of RBS to optimize TFB dynamic range by exploring the relationship
between genotype and phenotype.
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3.3. AI-Optimized Transcription Factor Regulating the Dynamic Range of TFB

Transcription factors (TFs) are protein molecules that regulate the expression of target
genes. Research has shown that the expression levels of TFs and their binding affinity to
ligands or target sequences are critical factors affecting TFB response performance. Low
TF expression levels can reduce TFB sensitivity and dynamic range, while excessively
high TF expression levels can permanently activate or inhibit target gene expression [94].
Additionally, the binding ability of TFs to ligands or DNA affects TFB fluorescence output
and dynamic range [85]. Moreover, the regulatory patterns of TFs and metabolites within
cells are key factors affecting TFB response performance [35]. Trabelsi et al. constructed
a TFB library that included gradient concentrations of the FdeR, the number of binding
sites for the activation complex, and plasmid copy numbers [95]. Using a Hill function
fitting model, they analyzed the impact of FdeR expression levels and FdeR-ligand binding
affinity on TFB response performance, successfully increasing the dynamic range of a
naringenin TFB to 60 [95]. This provided new insights for TF design and TFB response
performance regulation.

Currently, research on rationally designed TF to regulate TFB response performance
has not fully integrated AI algorithms. However, deep learning models have shown
excellent performance in analyzing TF characteristics and TFBS interactions [96–98]. Simul-
taneously, AI algorithms like AlphaFold for designing functional proteins have created
new opportunities for constructing desired TF. Thus, using AI algorithms to optimize and
design TFs provides new possibilities for regulating TFB response performance.

4. Applications of Optimized TFB

In recent years, TFBs have gained significant attention in the production of compounds
within microbial cell factories [35]. The primary applications of TFBs in metabolic engineering
include (Figure 8): (1) detection of metabolite concentrations [99]; (2) high-throughput screen-
ing of high-yield strains for target metabolites [37,43,100]; (3) directed evolution [37,100,101];
and (4) dynamic regulation of microbial intracellular metabolism [37,102–104]. Optimized
TFBs with superior response performance are crucial for enhancing the robustness and
reliability of these applications.

4.1. Real-Time Detection of Target Metabolite Concentrations

Real-time detection of intracellular metabolite concentrations is crucial for optimiz-
ing cellular biosynthetic processes. Recently, TFBs have been utilized for this purpose
(Figure 8A). For example, Baumann et al. developed a TFB in Saccharomyces cerevisiae
(S. cerevisiae) based on the transcription factor War1p, the PDR12 promoter responsive to
short-chain and medium-chain fatty acid (SMCFA), and the reporter gene gfp [99]. This
system allows for easy and rapid detection of SMCFA, serving as an alternative to tradi-
tional gas chromatography methods [99]. The TFB exhibited linear responses to hexanoic,
heptanoic, and octanoic acids within the concentration ranges of 0.01–2.00 mM (R2 = 0.98),
0.01–1.50 mM (R2 = 0.99), and 0.01–0.75 mM (R2 = 0.99), respectively [99]. Consequently,
this TFB has the potential to significantly accelerate the engineering of cell factories for the
production of various SMCFAs. However, current detection systems often have limited
detection ranges and fail to show concentration-dependent fluorescence changes when
target metabolite concentrations exceed millimolar levels, thus restricting their further
application in metabolic engineering and synthetic biology [105,106]. Therefore, designing
TFBs with the desired performance is crucial for detecting higher metabolite concentrations.
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Figure 8. The applications of TFB in metabolic engineering and synthetic biology: (A) TFB–derived
metabolite concentration detection in real time. The pink stars represent metabolites. (B) TFB–derived
high-throughput screening of high-titer strain. (C) TFB–derived direction evolution of high producer.
(I) Schematic diagram of using a selection plasmid (SP) as a synthetic biosensor to achieve Adaptive
Laboratory Evolution (ALE). The plasmid includes an expression module for the transcription factor
C4–LysR and a functional module containing the selection marker tetA; (II) The design principle of
PopQC. PopQC endows nongenetic high–performance cells with a growth advantage, increasing their
proportion within the overall population. A metabolite–responsive transcription factor regulates the
expression of the tetracycline efflux protein (encoded by tetA). In the presence of tetracycline, high–
performance cells outcompete low–performance cells and dominate the population. (D) TFB–derived
dynamic regulation of microbial intracellular metabolism. (I) The schematic diagram of antisense
transcription and construction of pyruvate–inhibited gene circuit. The blue and pink irregular
patterns represent RNA polymerase initiating transcription from the sense and antisense promoter,
respectively. The constitutive promoter (red) at the 3′ end of eGFP suppresses gene expression by
triggering RNA polymerase at the sense promoter Pgrac100 (blue). Pgrac100, an IPTG–inducible
promoter; LacI, a transcriptional regulator in the E. coli lactose metabolism pathway; blue box,
the core region of the sense promoter; red box, the core region of the antisense promoter; PdhR,
a pyruvate–responsive transcriptional regulator. (II) Dynamic control of pfkA in EP–bifido strain
using a glycolytic flux biosensor for high MVA production. (III) The architecture of the genetic
circuit based on EQCi. The EQCi genetic circuit is constructed using pSET as the backbone, with the
expression of dCas9 driven by the srbAp promoter and the transcription of sgRNA targeting the gene
of interest (GOI) driven by the strong synthetic promoter J23119 from E. coli.
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4.2. High-Throughput Screening of High-Titer Strains for Target Metabolites

TFBs are not only used to detect intracellular metabolite concentrations but are also
widely applied in the screening of high-titer strains for target metabolites [36,100,107]. TFBs
can be used in conjunction with FACS to rapidly screen high-titer strains from extensive
libraries by detecting the output signal of fluorescent reporter genes (Figure 8B) [37,83,100].
For example, Kortmann et al. constructed a TFB responsive to L-lysine based on LysG
and used it with a FACS screening system to identify pyruvate carboxylase mutants in
C. glutamicum [108]. This approach improved the ability of C. glutamicum to produce L-
lysine from glucose [108]. When C. glutamicum produces high levels of L-lysine, LysG
senses the L-lysine concentration and activates the expression of a fluorescent protein,
generating a fluorescence signal [108]. By screening the pyruvate carboxylase mutant
library, two mutants that significantly increased L-lysine production in host cells were
identified, leading to L-lysine levels increasing by 6% and 14%, respectively [108]. Similarly,
Ding et al. developed a TFB responsive to glucaric acid (GA) based on CdaR and used it
with FACS to screen for myo-inositol oxygenase (MIOX) mutants with high stability and
activity, a key rate-limiting enzyme in the GA biosynthesis pathway [92]. This approach
increased GA titer to 5.52 g/L in 5 L fermenter cultures, the highest titer reported in E. coli
to date [92]. These successful cases demonstrate that TFBs can be effectively integrated with
mainstream high-throughput screening methods. However, the expression of fluorescent
proteins often imposes a metabolic burden on cells, affecting cell growth and potentially
leading to bias in FACS screening [109]. Therefore, using antibiotic-resistant genes instead
of fluorescent proteins for screening high-titer strains may alleviate this issue.

4.3. Directed Evolution

TFB-mediated directed evolution is a powerful strategy for the efficient production
of target metabolites [40,110,111]. Optimized TFBs can enrich high-titer strains by re-
sponding to target metabolites and activating or inhibiting downstream gene expres-
sion [101,112–114]. For example, Seok et al. developed a synthetic biosensor responsive to
3-hydroxypropionic acid (3-HP) based on the C4-LysR biosensor and the TetA bioselector
(Figure 8C(I)) [101]. Using a glycerol-dependent 3-HP production pathway as a model
system, they performed adaptive laboratory evolution (ALE) to identify the optimal flux
redistribution between the 3-HP biosynthesis pathway and the central carbon metabolism
pathway, increasing the 3-HP titer and reducing acetate accumulation by alleviating over-
flow metabolism [101]. These results demonstrate that whole-genome evolution using
synthetic biosensors can lead to effective carbon flux rewiring. Additionally, Shen et al.
used a 4-hydroxyphenylacetic acid (4HPAA) biosensor combined with atmospheric and
room temperature plasma (ARTP) mutagenesis and ALE to successfully obtain strains
with high 4HPAA titer and tolerance [115]. The strains maintained genetic stability after
25 generations of genome shuffling [115]. Ultimately, strain GS-2-4 produced 25.42 g/L
4HPAA in a 2 L fed-batch culture bioreactor [115]. These results indicate that the strain
has long-term genetic stability and high production levels, making it a potential candi-
date for industrial applications. Moreover, Tong et al. constructed a TFB responsive to
(2S)-naringenin in E. coli based on TtgR [116]. Through directed evolution and saturation
mutagenesis, they identified a chalcone synthase (CHS) mutant, SjCHS1S208N, with 2.34-
fold increased catalytic activity [116]. Fermentation in a 5 L bioreactor increased the de
novo (2S)-naringenin concentration to 2513 ± 105 mg/L, the highest concentration reported
in a stirred batch bioreactor to date [116]. Overall, these directed evolution strategies can
be broadly applied to engineer biochemical production pathways without the need for
labor-intensive procedures.

In addition, natural heterogeneity caused by nongenetic factors exists between cells at
the protein and metabolite concentration levels [117]. Previous studies have shown that
genetic heterogeneity in industrial fermentation processes can lead to production burdens
due to metabolic load and toxicity, which negatively impact titers [117]. To mitigate the
effects of fermentation heterogeneity on metabolite production, Xiao et al. developed
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a Population Quality Control (PopQC) system based on the FadR biosensor and TetA
bioselector (Figure 8C(II)) [118]. This system continuously enriches high-producing cells
and eliminates inefficient ones, resulting in a threefold increase in fatty acid production
titer [118]. Similarly, Ding et al. constructed a PopQC system for GA production based on
the CdaR biosensor and TetA [92]. High intracellular GA levels trigger the GA biosensor to
express TetA, providing a growth advantage to high GA-producing cells under tetracycline
selective pressure, ultimately increasing the GA production titer to 5.52 g/L in a 5 L
fermenter [92]. Therefore, TFBs are invaluable for studying and controlling metabolic
heterogeneity.

4.4. Dynamic Regulation of Microbial Intracellular Metabolism

Using TFBs to dynamically regulate intracellular gene metabolism levels in response
to intracellular metabolic states can simulate the naturally occurring metabolic regulatory
networks of microbes. This approach can prevent the excessive accumulation of toxic
metabolic intermediates and balance the supply of precursors needed for cell growth with
the biosynthesis of target metabolites [103,104,119,120]. For example, Zhou et al. designed
a TFB based on FdeR and PadR that responds simultaneously to (2S)-naringenin and p-
coumaric acid [121]. They used this biosensor to control the synthesis and consumption of
malonyl-CoA [121]. Low concentrations of (2S)-naringenin direct malonyl-CoA towards the
fatty acid biosynthesis pathway, promoting cell growth [121]. High concentrations of (2S)-
naringenin inhibit the fatty acid biosynthesis pathway, slowing cell growth and increasing
the availability of malonyl-CoA for producing more (2S)-naringenin [121]. Ultimately, this
multilayer dynamic regulatory network increased the titer of naringenin by 8.7-fold [121].
This indicates that dynamic regulation is a promising strategy for fine-tuning metabolic
flux in microbial cell factories. However, these synthetic regulatory systems are rarely
developed for central carbon metabolites and can only activate or inhibit the expression of
target genes, failing to achieve dual-functional dynamic regulation of metabolic pathways.
To enable dynamic dual control (activation and inhibition) for central metabolism, Xu et al.
constructed a bifunctional pyruvate-responsive biosensor using the PdhR from E. coli and
an antisense transcription-based “NOT” gate for signal conversion (Figure 8D(I)) [102]. By
dynamically upregulating the ino1 gene and downregulating the zwf and pgi genes, they
increased glucaric acid production from 207 mg/L to 527 mg/L [102]. Additionally, Zhu
et al. designed and constructed a bifunctional glycolytic flux biosensor (Figure 8D(II)) [122].
They modified promoters and transcriptional regulators to obtain highly responsive acti-
vation and inhibition biosensors for dynamic control of glycolytic flux [122]. Using this
biosensor, they upregulated the expression of zwf, encoding glucose-6-phosphate dehy-
drogenase, and downregulated pfkA, encoding phosphofructokinase (Figure 8D(II)) [122].
This ultimately increased the mevalonate production titer in E. coli to 111.3 g/L in a 1 L fer-
menter [122]. Thus, bifunctional biosensors are effective tools for dynamically controlling
central metabolism in microbial cell factories.

However, the currently available dynamic regulatory elements are very limited, and
many metabolites lack specific responsive transcription factors. Therefore, developing
convenient, universal, and self-driven dynamic control systems is of great significance for
the efficient biosynthesis of target metabolites in microbes. For example, Tian et al. devel-
oped a novel dynamic regulation system, EQCi (Endogenous Quorum-sensing (QS) system
with Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi)),
in Streptomyces (Figure 8D(III)) [123]. This system uses a γ-butyrolactone (GBL) signal
molecule-responsive promoter to drive the expression of the dCas9, coupling the QS system
with gene transcription inhibition technology (CRISPRi) [123]. It allows for fully automated
and precise dynamic control of multiple genes in the metabolic pathway [123]. Using the
EQCi system, they constructed a rapamycin-producing recombinant strain [123]. By down-
regulating key genes in the tricarboxylic acid cycle, fatty acid biosynthesis, and shikimate
pathways, they increased the precursor supply for rapamycin biosynthesis, improving
the production titer [123]. They then used the EQCi system for combined intervention in
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the metabolic flux of the three pathways and fine-tuning of control strength at each node,
resulting in an optimized engineered strain with a rapamycin titer of 1836 ± 191 mg/L,
approximately 6.6 times higher than the natural strain [123]. This indicates that the EQCi
system effectively balanced the metabolic flux distribution between primary metabolism
and product biosynthesis (secondary metabolism), providing an efficient and universal
optimization strategy for constructing cell factories of important secondary metabolites
derived from Streptomyces.

5. Conclusions and Perspective

To deepen our understanding of how bio-elements regulate cellular metabolism and
apply these insights to metabolic engineering and synthetic biology, researchers have
increasingly focused on the rational design and activity prediction of bio-elements, as
well as the optimization of TFB response performance using rationally designed bio-
elements. The integration of AI technology with bio-element engineering has matured,
leading to the widespread application of machine learning and deep learning algorithms
in bio-element research. AI algorithms have shown excellent performance in the high-
quality design and precise prediction of nucleic acid and protein elements, as well as the
efficient optimization of TFB response performance [124,125]. Deep generative models,
such as GANs, have emerged as important tools in designing expected nucleic acid and
protein sequences due to their ability to de novo generate novel sequences [126]. The
remarkable application of AI in the field of bio-elements demonstrates its powerful potential
in uncovering biological characteristics and designing biological systems. This paves the
way for scalable, automated, engineered, and end-to-end intelligent prediction and design.

AI model training often depends on substantial high-quality, standardized biological
data, especially for deep learning models [127]. For example, extensive datasets that asso-
ciate bio-element sequences with their activity or structure are indispensable in predicting
the activity or structure of bio-elements. However, obtaining large amounts of novel high-
quality biological data is often costly, and the data frequently contain indistinct features
and significant noise, which complicates model performance optimization. Therefore,
the lack of high-quality biological data is a significant challenge that must be addressed
for the effective application of AI in bio-element research. Future deep learning models
may need to extract features deeply and achieve precise predictions and high-quality
bio-element generation from relatively small datasets. Additionally, AI algorithms face
diverse challenges in model construction and optimization across biological problems and
researchers. On one hand, the functionalities and characteristics of the selected models
need to match the specific data structures and research objectives. For example, RNN
and Transformer models can handle sequence data [128,129], while GCN models excel
at processing topological graph structures [130,131]. CNN models are adept at handling
prediction tasks, and GAN models are proficient in de novo design of bio-elements. On
the other hand, high-performing AI models often rely on the selection of the optimal
evaluation metrics and fine-tuning of model parameters. Thus, the deep integration of AI
algorithms with bio-element research requires researchers to have a solid understanding of
interdisciplinary knowledge.

Due to the high complexity of cellular systems, data feature extraction techniques
must be capable of precisely capturing highly ambiguous and low-precision features. AI
models must not only achieve high performance in actual prediction and design tasks but
also possess sufficient generalization ability and interpretability to handle diverse and
challenging tasks. However, many models with strong predictive or generative capabilities
still have problems with the biological interpretability of their computational processes and
outputs. Therefore, future applications require the integration of AI model mechanisms
and biological theories to enhance model performance while improving interpretability. In
terms of model interpretability, Zheng et al. developed the NeuronMotif neural network
interpretation algorithm, which can learn and summarize gene regulatory sequence coding
rules from neurons, providing a method to interpret the pattern recognition of CNN
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models [132]. As interdisciplinary fields continue to develop, an increasing number of
standardized databases are becoming available on shared platforms. The future emergence
of the World Wide Web will further reduce the difficulty of acquiring high-quality data.
The advent of deep learning models such as EfficientNet [133], Swin-Transformer [134],
and LLMs [135] will further enhance the performance and efficiency of AI algorithms in
the design and prediction of bio-elements.

In the future, several key areas will shape the field of AI-assisted rational design and
activity prediction of bio-elements for optimizing TFB. Emerging AI technologies, such as
deep reinforcement learning [136–138], unsupervised learning techniques [139], and advanced
neural network architectures [140], will provide powerful tools for bio-element design. Inte-
grating AI with other scientific disciplines, such as systems biology and bioinformatics, will
enhance our understanding of complex biological systems and improve the precision and
effectiveness of bio-element design. Potential applications in medicine [141–146], agricul-
ture [147], and environmental science [148,149] will expand as AI-designed enzymes and
metabolic pathways revolutionize drug discovery [150] and biomanufacturing processes.
Addressing challenges in data acquisition, model interpretability, and ethical considerations
will be crucial. Future research should focus on developing standardized data-sharing
protocols, enhancing model transparency, and establishing ethical guidelines for AI applica-
tions in biology. Generating high-quality data and refining AI models to handle biological
complexity will be essential for advancing AI-assisted bio-element design. This includes
optimizing TFB, enhancing the robustness and reliability of TFB applications, and ensuring
that AI-driven solutions meet the diverse needs of synthetic biology. By tackling these
challenges and leveraging the full potential of AI, researchers can significantly advance the
field, making AI an indispensable tool in bio-element research and applications.

In conclusion, AI algorithms have already made significant contributions to the field
of bio-elements. Although challenges remain in data acquisition, model construction, and
optimization, execution of diverse tasks, and model interpretability, machine learning
and deep learning methods based on AI algorithms remain indispensable tools. These
tools are crucial not only for the rational design and activity prediction of bio-elements
but also for optimizing TFB response performance and enhancing the robustness and
reliability of TFB applications. By consolidating current research, highlighting innovative
AI-driven solutions, and addressing existing challenges, this review demonstrates how
AI can transform synthetic biology by improving precision, efficiency, and practicality
in bio-element design. These insights offer significant advancements for both academic
research and practical applications in biotechnology. Future developments in AI models will
continue to drive progress in synthetic biology, ensuring more robust and reliable outcomes.
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