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Abstract: Climate change presents numerous challenges for agriculture, including frequent events
of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary
driving factor of climate change, HS threatens global food security and biodiversity. In recent
years, HS events have negatively impacted plant physiology, reducing plant’s ability to maintain
disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward
defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding
and long-term domestication for higher yields have made crop varieties vulnerable to multiple
stressors, making them more susceptible to frequent HS events. Studies on climate change predict
that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially
occurring simultaneously or sequentially. While most studies have focused on singular stress effects
on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence
of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have
explored the interactions between HS and plant–biotic interactions. Here, we aim to shed light on the
physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes,
nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined
impact on crop growth and yields. We also examine recent advances in designing and developing
various strategies to address multi-stress scenarios related to HS and biotic factors.

Keywords: biotic stress; climate change; climate-resilient crops; heat stress; microbiome; plant
immunity; plant stress; plant–biotic interactions

1. Introduction

Climate change, a substantial risk to crop productivity globally, undermines food
security. Rising global temperatures often coincide with droughts, leading to significant
declines in crop yields [1–3]. In addition to agricultural sustainability, biodiversity is at risk
due to global climate change, leading to extreme weather events, which disturb ecosystems
and ultimately give rise to multiple social issues [1,4,5]. On a worldwide scale, the predicted
effects of the combined stressors (biotic and abiotic factors) will result in an annual yield
loss of more than 50% for major agricultural commodities (summarized in Supplementary

Plants 2024, 13, 2022. https://doi.org/10.3390/plants13152022 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants13152022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-0691-560X
https://orcid.org/0009-0003-5668-099X
https://orcid.org/0000-0002-5046-3105
https://orcid.org/0000-0002-2962-1949
https://orcid.org/0000-0002-1180-6232
https://doi.org/10.3390/plants13152022
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants13152022?type=check_update&version=2


Plants 2024, 13, 2022 2 of 40

Table S1) [6]. The frequent occurrence of high temperature-mediated heat stress (HS) chal-
lenges plant survival by reducing water availability. Also, rising temperatures are predicted
to accelerate the incidence and severity of plant diseases and epidemics [7,8]. Particularly,
HS exacerbates plant pathogens, amplifying infections across diverse plant species [9]. Host
biodiversity, spatial organization, and abiotic factors significantly impact biotic diseases
and are rapidly changing due to climate change, habitat loss, and changes in nitrogen
deposition [10]. This effect is most visible in certain parts of the world, predominantly in
Asian and African nations, where various climate-related extremes, such as droughts, heat
waves, unpredictable rainfall, storms, floods, and the emergence of pests, have negatively
impacted the livelihoods of farmers [2,11].

The optimal temperature plays a critical role in plant growth and development, im-
pacting crop productivity and the timing of cropping seasons. Temperatures exceeding the
optimal range are recognized as HS in all living organisms. Climate models predict further
temperature rises and unpredictable rainfall patterns with increased intensity in the coming
days. While current models offer potential weather predictions of the near future, frequent
temperature fluctuations resulting from climate change pose a significant challenge to
their accuracy [12]. Variability in predicting climate extremes and knowledge gaps in our
understanding of how plants defend themselves against combinatorial pressures require
systematic studies to gain molecular and physiological insights, ultimately seeking sus-
tainable solutions for such new-age agricultural issues [13,14]. Novel approaches towards
climate-ready crops are needed to address this climate change scenario.

Meanwhile, crop susceptibility to multiple environmental stresses may result from
extensive domestication and selective breeding, resulting in the loss of alleles associated
with tolerance to abiotic and biotic stresses [15]. Wild cultivars survive under multi-stress
conditions because of their diverse microbiome. Most studies focus on investigating
plant–microbe interactions in controlled environmental conditions like greenhouses or
growth chambers, typically aiming at only one aspect of the study. Such experimental
data provide a limited understanding of the dynamics of plant–pathogen–environment
interactions [16]. Environmental factors are known to drive plant resistance pathways
and influence pathogen virulence. Understanding the HS effect on plant physiology
and associated microbiome and their responses to plant pathogens can be the basis of
developing such climate-resilient crops for a better future.

This review explores the influences of plant HS on interactions with major biotic factors,
including fungi, bacteria, viruses, phytoplasma, nematodes, parasitic weeds, insect pests,
and pollinators. Understanding these interactions is crucial for developing agricultural
strategies to mitigate the impacts of climate change on crop yields, enhance plant resilience,
and ensure global food security. Moreover, there is a pressing need to comprehend the plant
microbiome’s role under concurrent stress conditions. Here, we underscore the imperative
of exploring the interplay between heat and biotic factors, elucidating their effects on plant
molecular and physiological responses. Emphasizing the microbiome’s significance in
coping with combined stressors, we advocate for strategies to develop multi-stress-resilient
crop varieties and sustainable agricultural practices, leveraging beneficial microbes and
modern tools.

2. Heat Stress and Plant–Biotic Interactions

The plant kingdom encompasses species adapted to nearly every ecosystem on Earth,
enduring temperature variations ranging from about −80 ◦C to 70 ◦C [17]. Every plant
species, including cultivated crops, exhibits an optimal temperature range or threshold
that directly influences its growth, development, and yields (Figure 1A). The optimal
temperature range varies depending on several factors, including the plant species, specific
developmental stage, and environmental conditions such as light, humidity, and soil type.
At each growth stage, from germination to flowering and beyond, there exists an ideal
temperature range within which the plant thrives and performs effectively to the best of its



Plants 2024, 13, 2022 3 of 40

genetic makeup [18]. Deviations from this range can result in suboptimal growth, reduced
yield, or adverse effects on the plant’s health and productivity.
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Figure 1. Overview of climate change, heat stress (HS), and biotic stress effects on plant health. This
figure depicts an overview of the interplay between climate change, HS, and biotic stress on plant
health. Climate change leads to rising temperatures, exacerbating both abiotic and biotic stressors
plants face. (A) Optimal temperature ranges for the growth and development of major crop species
are shown. (B) When healthy plants encounter concurrent HS and biotic stresses simultaneously
rather than independently, the effect on plant physiology is more severe, as illustrated in this panel.
Plant susceptibility results from compromised growth and development, weakened immunity, and
reactive oxygen species (ROS)-mediated oxidative damage to cell organelles, ultimately affecting
yield and productivity. A green upward arrow indicates a positive impact, while a red downward
arrow indicates a negative impact of specific stress on plant traits.

Current agriculture faces a threat of combinational stress scenarios exacerbated by
climate change issues. Also, plant breeding efforts have enabled the development of crop
varieties that are tolerant to individual stress factors and have achieved high yield and
vigor capabilities through crop modification via breeding and domestication. However,
changes in recurring patterns of abiotic factors like heat, moisture, drought, and light
can affect plants and pests, altering plant susceptibility to pathogens and the extent of
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damage caused by pests [19–21]. HS and biotic stress are particularly interlinked and
involve several unexplored facets that occur simultaneously or sequentially, reducing crop
yields (Figure 1B). Recent studies have highlighted the dual challenges plants face with
simultaneous biotic stresses, such as pathogens and pests, alongside the HS [19,22].

Systematic studies are necessary to understand the impact of concurrent HS and
biotic stressors on crop productivity [23,24]. Increased temperatures leading to HS directly
correlate with varying (positive or negative) effects on plant defenses, resulting in higher
susceptibility or tolerance to biotic stressors (Figure 1B). These effects depend on the order of
stress occurrence, plant stage, genetic background, and environmental factors [24–26]. Long-
term exposure to HS is generally expected to affect plant health negatively. Thus, a thorough
knowledge of how HS influences the physiological and molecular mechanisms involved in
plant immune responses is essential. This knowledge can enhance crop productivity and aid
in developing climate-resilient crop varieties. However, most research in this domain has
focused on individual stresses, with relatively little exploration of combined stressors [7,27].
Therefore, the effects of HS and biotic stress on plants need to be studied under individual
stress conditions and combined stresses, as elaborated in the subsequent sections. First, we
provide an overview of the individual responses to HS and biotic factors. Subsequently, we
elaborate on plant responses to HS–biotic factor interactions under multi-stress scenarios.

3. Plant Responses to Heat Stress

When subjected to HS, plants face numerous challenges and respond with various
adaptive strategies to minimize damage and ensure survival, as illustrated in Figure 2.
These responses involve adaptations in growth, development, and physiology, coordinated
through chemical and hormonal signaling synchronized with the differential expression of
stress-responsive genes at the molecular level. HS notably affects critical plant processes
such as transpiration, photosynthesis, membrane thermostability, respiration, and osmoreg-
ulation at the subcellular, cellular, and whole-plant levels [28]. As summarized in Figure 2,
the challenges faced by plants ultimately impact growth and significantly reduce plant
productivity [29,30]. Plant morphological changes resulting from temperature deviations
below the HS range and outside the optimal range are collectively termed thermomorpho-
genesis [31,32]. Thermomorphogenesis leads to elongated hypocotyls, elongated petioles,
reduced stomata, and smaller and thinner leaves, facilitating surface cooling [32].

Plants have evolved multiple ways to escape, avoid, or tolerate HS. These mechanisms
involve maintaining water balance, enhancing antioxidant defenses, altering hormonal
signaling, repairing membranes, and balancing ion levels. Additionally, plants make
metabolomic and genomic adjustments to adapt to HS. For example, chloroplasts play
a crucial role in photosynthesis and temperature sensing, thereby initiating retrograde
signaling-mediated suitable physiological responses [33]. HS often reduces photosynthetic
efficiency, primarily due to the impairment of photochemical reactions in the thylakoid
lamellae and carbon metabolism in the chloroplast stroma. Also, the disruption of cell
membranes increases permeability and compromises normal cellular functions [34].

Reactive oxygen species (ROS) production and accumulation increases under HS in
various cell organelles, including chloroplasts, mitochondria, cell walls, peroxisomes, the
plasma membrane, the apoplast, and the endoplasmic reticulum (ER) [30]. Major ROS in-
clude hydroxyl radicals, superoxide, singlet oxygen, and hydrogen peroxide [3]. Excessive
levels of ROS induce oxidative stress, leading to membrane damage, protein degradation,
and enzyme inactivation, thereby reducing plant viability [35,36]. Furthermore, HS alters
plant water status, causing dehydration and impacting growth and development [28,37].
Stomatal regulation is one of the primary HS responses adopted by plants to conserve
water and cool leaves to prevent impairment of photosynthesis processes. Plants close their
stomata to reduce water loss through transpiration while activating antioxidant defense sys-
tems to scavenge harmful ROS produced under HS. However, prolonged exposure to high
temperatures necessitates stomatal opening to cool plant leaves through transpiration [38].
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Figure 2. Heat stress (HS)-driven challenges and responses of plants. Plants face various challenges
during HS and employ multiple physiological, biochemical, and molecular mechanisms to cope with
elevated temperatures. The summarized aspects are discussed in detail in the relevant literature.

To protect plant cells from oxidative damage caused by ROS, plants synthesize various
molecules for ROS detoxification and scavenging. Along with the stimulated production
of secondary messengers or signaling molecules [e.g., Calcium (Ca2+), ROS, nitric oxide,
trace elements, polyamines, lipids, and hydrogen sulfide], phytohormones also emerged as
major contributing factors that activate various metabolic pathways and genetic machinery
governing HS responses (summarized in Figure 2). Phytohormones implicated in plant HS
include gibberellic acid (GA), abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA),
ethylene (ET), brassinosteroids (BR), and cytokinins (CK) [37,39–41]. For instance, ABA
controls stomatal closure and modulates the expression of several stress-responsive genes
to facilitate adaptation to HS [39].

Molecular responses to HS tolerance in plants involve the induction of two ma-
jor groups of proteins: heat shock transcription factors (HSFs) and heat shock proteins
(HSPs) [18]. HSPs act as cellular chaperones, helping to stabilize proteins under stress.
Among the HSFs, HSFA1 plays a central role in regulating the expression of other HSFs,
thereby providing HS tolerance to plants [42]. HSFA2 is also a key HS regulator targeted by
HSFA1 and governs the expression of HSP-mediated HS responses [5]. Recently, Kan and
colleagues [5] systematically summarized the HS-responsive genetic networks in crops and
the model plant Arabidopsis. Their summary highlights the crucial role of HSF and HSP
genes through transcriptional regulation, signaling molecules, non-coding RNAs (ncRNAs),
epigenetic modifications (including chromatin remodeling, histone modification, and DNA
methylation), unfolded protein responses (UPRs) in the ER, and other genetic changes in the
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chloroplast and mitochondrial genomes. These diverse responses underscore the complex
mechanisms plants use to cope with HS, emphasizing the importance of understanding
physiological and molecular aspects for crop improvement.

4. Plant Responses to Biotic Stressors

Plants face constant threats from various biotic agents (summarized in Figure 1B).
To counter these threats, plants have developed a complex immune system consisting
of two interconnected layers: pattern-triggered immunity (PTI) and effector-triggered
immunity (ETI) (Figure 3). Microbe-, pathogen-, nematode-, herbivore-, and parasite-
associated molecular patterns (MAMPs, PAMPs, NAMPs, HAMPs, and ParAMPs) trigger
PTI. Pathogen- and parasite-derived effectors (e.g., bacterial flagellin, lipopolysaccharide,
peptidoglycan, fungal chitin, viral components, and nematode pheromones) are perceived
by host-derived immunogenic molecules in ETI and PTI [43–47].
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Figure 3. Schematic of plant immune responses to biotic stresses. Biotic agents from different classes
(labeled and color-coded) express virulent effectors and specific molecules that are perceived as
pathogen-associated molecular patterns (PAMPs) when they colonize plants (shapes are color-coded
to represent the particular biotic agents). Insects serve as vectors (carriers) that transmit most viruses
and phytoplasmas into host plants. Plant immune aspects are further elaborated in the main text.
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The host plant-derived molecules include pathogenesis-related resistance (PR) pro-
teins, pattern-recognition receptors (PRRs), and their interacting co-receptors (Co-PRRs),
nucleotide-binding domain leucine-rich repeat receptors (NLRs), danger- or damage recog-
nition molecules (damage-associated molecular patterns, DAMPs), R proteins encoded by
R genes, and immunomodulatory phytocytokines [48–51]. The PR protein group includes
plant proteins induced by molecules from defense signaling pathways activated following
a phytopathogenic attack [49]. The accumulation of PR proteins is triggered by SA, JA,
and other defense-related pathways, which helps the plant reduce the pathogenic load
and prevent the spread to non-infected plant parts. There are 19 families of PR proteins
classified as PR-1 to PR-19 based on their biochemical nature [52]. Some of these PR proteins
have enzymatic activity, such as β-glucanases (PR-2), chitinases (PR-3, PR-8, and PR-11),
peroxidases (PR-9), and ribonucleases (PR-10). PR proteins promote innate resistance in
plants by breaking down fungal cell walls, making membranes permeable, suppressing
transcription, and deactivating ribosomes [53]. Recent literature summarizes previous
research highlighting the crucial role of PR proteins in plant resistance to phytopathogens,
making them promising candidates for developing disease-resistant crop varieties [52,53].
Although PR proteins are also implicated in abiotic stress responses, their biochemical basis
is not entirely known and needs further studies.

Phytocytokines are peptides secreted by plants in response to infections, functioning as
secondary signals during both biotic and abiotic stresses and playing roles in plant growth
and development [54]. Accumulating evidence suggests that PTI and ETI trigger a cascade
of pathways involving overlapping signaling modes and immune responses mediated by
phytohormones and secondary messengers. Generally, PRRs, DAMPs, and phytocytokines
activate PTI, while NLRs recognize effectors to activate ETI. However, recent literature
highlights that recognizing extracellular effectors by PRRs blurs the exact distinction
between PTI and ETI. NLR receptors can detect intracellular effector molecules to active
ETI responses in three ways: either through direct interaction, by recognizing changes in a
decoy protein that mimics the structure of an effector, or by perceiving alterations in the
cytosolic domains of PRRs caused by extracellular effectors [55,56] (Figure 3). Receptor-
like kinases (RLKs) and their associated cytoplasmic members, receptor-like cytoplasmic
kinases (RLCKs), and RLK–RLCK modules are the primary PRR components. Together,
they regulate various processes in response to plant growth, development, and biotic and
abiotic stimuli [57]. The recognition of pathogenic signals (elicitors) or effectors by the
plant immune system activates multiple phosphorylation-mediated signaling pathways,
including ROS signaling and Ca2+ channels. Activation of PTI and ETI triggers various
immune responses, such as transcriptional reprogramming, activation of Ca2+-dependent
protein kinases (CDPKs) and mitogen-activated protein kinase (MAPK) cascades, ROS-
mediated oxidative burst, and Ca2+-dependent distant signaling. These responses also
include the regulation of plasmodesmata-mediated cargo movement between adjacent cells
via callose deposition to suppress pathogen spread, phytohormone production to mediate
crosstalk between various signaling components, systemic acquired resistance (SAR) to
activate defense signaling in distant tissues, and programmed cell death accompanied by a
hypersensitive response at infected regions to restrict pathogens and prevent their spread
to non-infected areas [48,49]. Overall, ETI and PTI responses are activated through complex
and overlapping mechanisms. However, it remains unclear whether these mechanisms
follow a specific order and how or where each mechanism triggers particular layers of the
plant immune system.

Additionally, plants have evolved extra layers of immunity to defend against spe-
cific biotic agents. These include the strict regulation of stomatal opening and closure to
prevent water loss or biotic agent entry, physical barriers such as leaf surface wax, cell
wall lignification, thorns, cuticles, and trichomes, as well as the secretion of antimicrobial
peptides (AMPs) and toxic specialized metabolites [49,58,59]. Antimicrobial peptides are
short proteins comprising 15–150 amino acids with anti-oomycete, antifungal, antiviral,
and antibacterial activities. They are found in all eukaryotes. Recently, a significant number
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of AMPs derived from plants and animals and artificially designed AMPs have been docu-
mented [49,58]. In some cases, plant resistance reduces pathogenic infection rather than
providing qualitative and almost complete inhibition, a phenomenon termed quantitative
disease resistance (QDR). Multiple genetic loci control QDR, termed quantitative trait
loci (QTLs), are associated directly or indirectly with plant immunity and disease resis-
tance [60]. RNA silencing is one of the most effective plant defense mechanisms, playing a
central role in combating viral infections. Non-viral pathogens also activate this machinery,
highlighting its importance beyond antiviral responses.

Additionally, most eukaryotes employ RNA silencing as a gene regulation method to
coordinate growth and developmental processes [61]. Significant examples include RNA
interference (RNAi), facilitated by non-coding RNA molecules like small interfering RNAs
(siRNAs) or microRNAs (miRNAs). Consequently, pathogen-triggered RNA silencing can
disrupt other endogenous processes. In the case of insect pest attacks, plants possess a com-
plex and dynamic defense system, which includes structural barriers, toxic chemicals, and
the ability to attract natural enemies of pests. These defense mechanisms can be either con-
stitutive (always present) or inducible (activated after herbivore damage) [59]. Constitutive
barriers include thick cell walls, trichomes, and the production of secondary metabolites
that deter herbivores. Inducible defenses in plants are triggered when herbivores attack,
initiating a series of molecular events. First, plants recognize herbivore-associated molecu-
lar patterns (HAMPs) through specific receptors, which then trigger a defense response
(Figure 3), leading to a cascade of signaling events involving plant hormones such as JA, SA,
and ethylene [58,59]. These signals activate the expression of various defense-related genes,
which encode proteins for direct defenses, such as proteinase inhibitors and secondary
metabolites, as well as indirect defenses like volatile organic compounds. The produced
compounds deter herbivores by inhibiting their digestive enzymes, reducing palatability,
or disrupting their digestion and metabolism. Leaf-eating insect pests, such as caterpillars,
beetles, and grasshoppers, cause significant mechanical damage to plant tissues when they
feed on leaves, reducing the photosynthetic capacity of plants. This also creates entry points
for pathogens, compounding the plant stress. Overall, plants with depleted resources and
weakened defense mechanisms due to HS or other biotic and abiotic stressors are more
susceptible to attacks by biotic agents, owing to shared plant immune mechanisms.

5. Plant Responses to Concurrent Heat Stress and Biotic Interactions

Heat stress can affect biotic stressors and influence their interaction with the host
plant (Figure 4). Therefore, studying and understanding the effects of combined stress
encounters and their interactions concerning plant defense responses is crucial. Recent
studies have shown that temperature changes can positively or negatively impact plant
immune responses during pathogenic and parasitic infections. As discussed in the previous
sections, plants have developed various strategies to cope with individual stresses while
minimizing their impact on fitness. However, managing the trade-off between defense and
growth during physiological and molecular adjustments to combined stresses presents a
significant challenge for plants. Adaptations to one type of stress can make plants more
susceptible to another, as seen in the mechanism of stomatal regulation [62]. For example,
excessive stomatal opening, which occurs as an early adaptation to HS to cool the leaves, can
be exploited by pathogens. Likewise, water loss during combined HS–drought conditions
would be harmful. The genetic basis for plants being more susceptible or tolerant to specific
pathogens under HS is not well understood [63].
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Figure 4. Biochemical and molecular aspects of plant immune responses to biotic stresses overlap with
heat stress (HS) responses. The impact of HS on individual biotic agents and their interactions with
host plants collectively influence plant defense responses by activating or suppressing overlapping
mechanisms. Although some missing or unknown steps exist in the interacting pathways and genes
during concurrent HS–biotic conditions, recent studies are beginning to uncover the layout of plant
immune responses. The dynamics of plant defense responses are discussed in the main text, along
with relevant literature.

Here, we summarized over 80 studies examining the interactions between HS and
specific biotic stresses (Table 1). These reports include model plants and crops such as
Arabidopsis, tomato, wheat, soybean, rice, chili pepper, fruit crops, and others. In the
following sections, we emphasize the role of HS and individual phytopathogenic and
beneficial biotic agents, along with their effects on plant physiology and immune responses,
based on the findings reported in current literature.
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Table 1. Studies investigating plant and significant biotic factor interactions under heat stress (HS) show variable effects on plant health.

Host Plant
(Average Temp.) Biotic Factor Disease/Nature of

Interaction Set Up Temp. (◦C) Genes or Other Explored Factors Effect Details Ref.

Bacteria

Arabidopsis
(22 ◦C)

Pseudomonas syringae pv. tomato
DC3000 (PsPto) Bacterial speck C 22, 28 EDS1, PAD4, RPS2, RPS4, RPM1 (−) HR suppression (ETI) [64]

PsPto Bacterial speck C 42 (1 h), 37 (2 h) FLS2 (−) Reduced tolerance (PTI) [65]

PsPto Bacterial speck C 28, 30 ZAR1, RPS2 (−) HR suppression (ETI) [66]

PsPto Bacterial speck C 28, 30 SR1/CAMTA3 (−) Reduced tolerance through compromised
stomata closing (apoplastic immunity) [67]

Ralstonia solanacearum GMI1000 Bacterial wilt C 27, 30 RPS4/RRS1-R (−) Reduced tolerance (ETI) [68]
SSL4-SSL5 (+) Stable HS resistance

Rice
(21–28 ◦C)

Xanthomonas oryzae pv. oryzae Bacterial blight
C 29, 35 Xa3, Xa4, Xa5,

Xa10 (−) Resistance less effective (QDR) [69]

C, F 29–35 (C)
29–33 (F) Xa7 (+) Lines with Xa7 showed tolerance (ETI) [69,70]

X. oryzae pv. oryzae Bacterial blight C 29, 35 Xa4, Xa7 (+) Line with Xa4 + Xa7 showed tolerance (ETI) [71]

X. oryzae pv. oryzae Bacterial blight C, F ≥35, 42 (60 h) SGS3a/b, ARF3a/b, ARF3la/lb (±)
SGS3a/b: (+HS) and (−Pathogen resistance)
ARF3a/b, ARF3la/lb: (−HS) and (+Pathogen

resistance)
[72]

Tomato
(21–27 ◦C)

Ralstonia solanacearum Bacterial wilt C 24, 32 Polygenic resistance (−) Resistance inhibition [73]

R. solanacearum Bacterial wilt C 28, 34, 37 (high
humidity >80%) ITP5, trans-zeatin (+) Cytokinin-mediated resistance (ETI, PTI) [74]

PsPto Bacterial speck C 26, 31 Increased ABA, JA, spermine
accumulation (+) Showed tolerance under mild HS [75]

Pepper
(28 ◦C)

R. solanacearum Bacterial wilt C 28, 37 AGL8, SWC4 (+) Stable HS resistance (ETI, PTI) [76]

R. solanacearum Bacterial wilt C 28, 37 (high humidity
>80%) ITP5, trans-zeatin (+) Cytokinin-mediated resistance (ETI, PTI) [74]

R. solanacearum Bacterial wilt C 28, 37 (high humidity
>80%) KAN3, HSF8 (+) KAN3-HSF8 form a complex to confer

immunity and HS tolerance (ETI, PTI) [77]

R. solanacearum Bacterial wilt C 28, 37 (high humidity
>80%) MLO1, PUB21 (+)

MLO1-PUB21 form a complex and function
distinctly in a temperature-dependent

manner (stable resistance at 37 ◦C)
[78]

Tobacco (22–28 ◦C) R. solanacearum Bacterial wilt C 28, 37 (high humidity
>80%) ITP5, trans-zeatin (+) Cytokinin-mediated resistance (ETI, PTI) [74]
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Table 1. Cont.

Host Plant
(Average Temp.) Biotic Factor Disease/Nature of

Interaction Set Up Temp. (◦C) Genes or Other Explored Factors Effect Details Ref.

Fungi

Rice
(21–28 ◦C)

Magnaporthe oryzae Blast C 38, 35 Several R gene loci (−) Reduced resistance (QDR) [79]

M. oryzae Blast C 38, 35 Pik-h, Pita2, Pii, Pi9, Piz-t (+) Enhanced tolerance (QDR) [79]

M. oryzae Blast C 38, 35 Pi54 (+) Enhanced tolerance (ETI) [80]

M. oryzae Blast C 14, 22, 28, 33 MYC2, MYC22, CEBiP (−) Suppression of JA signaling [81]

M. oryzae Blast F ≥35, 42 (60 h) SGS3a/b, ARF3a/b, ARF3la/lb (±)
SGS3a/b: (+HS) and (−Pathogen resistance).
ARF3a/b, ARF3la/lb: (−HS) and (−Pathogen

resistance).
[72]

Rhizoctonia solani Sheath blight T-
FACE Ambient and +2 Malondialdehyde (MDA) levels (−) Reduced tolerance [82]

Fusarium fujikuroi Bakanae C 22/18, 26/22, 30/26
(day/night)

prx98, MAPKK, GLP 8-7,
NDR1/HIN1 13 (−) Reduced tolerance [83]

Chickpea
(10–22 ◦C)

Macrophomina phaseolina Dry root rot C 22/10, 35/25
(day/night) - (−) Reduced tolerance [84]

M. phaseolina Dry root rot C 25, 35 Endochitinase, CHI-III (−) Reduced tolerance (PR proteins) [85]

Coffee
(18–21 ◦C) Hemileia vastatrix Leaf rust C 23/18, 27/22

(day/night) Shade and high nitrogen (N) (−) Reduced tolerance under HS; shade and high
N enhanced tolerance [86]

American chestnut
(16–27 ◦C) Phytophthora cinnamomi Root rot F <10, >12 (soil temp.) Process-based Forest landscape

model, biomass (−) Reduced tolerance [87]

Chestnut
(16–27 ◦C) P. cinnamomi Ink disease C 30, 35, 45 Secondary metabolite compounds (−) Reduced resistance (metabolic aspects) [88]

Common wheat
(15–25 ◦C)

Puccinia graminis f. sp. tritici Stem rust C 19, 26 Sr6 (−) Reduced resistance (ETI) [89,90]

Blumeria graminis f. sp. tritici Powdery mildew C 15, 25 Pm1, Pm8, Pm4a, Pm4b (+) Stable or enhanced resistance (QDR) [91]

B. graminis f. sp. tritici Powdery mildew C 15, 18, 22, 26, 30 Sr14, Sr9b (+) Reduced symptoms (ETI) [92]

Puccinia recondita (P. triticina) Leaf rust C 15, 25 Several R gene loci (+) Stable resistance (QDR) [93]

P. recondita (P. triticina) Leaf rust C 18, 22, 25 LrZH22 (+) Enhanced tolerance (QDR) [94]

Puccinia striiformis f. sp. tritici Stripe rust C 4–20, 10–30 (diurnal) Several R gene loci (+) HTAP tolerance (QDR) [95]

P. striiformis f. sp. tritici Stripe rust C 10, 15, 20 TaXa21 (+) HTSP tolerance (PTI, QDR) [96,97]

P. striiformis f. sp. tritici Stripe rust C 4–20, 10–30 (diurnal) Yr79 (+) HTAP tolerance (QDR) [98]

P. striiformis f. sp. tritici Stripe rust C 4–20, 10–30 (diurnal) Yr62 (+) HTAP tolerance (QDR) [99]

P. striiformis f. sp. tritici Stripe rust C 4–20, 10–30 (diurnal) Yr59 (+) HTAP tolerance (QDR) [100]

P. striiformis f. sp. tritici Stripe rust C 4–20, 10–30 (diurnal) Yr52 (+) HTAP tolerance (QDR) [101]

Durum wheat
(15–25 ◦C) P. striiformis f. sp. tritici Stripe rust C, F 10–25, 10–35 (diurnal) Yr36 (+) HTAP tolerance (QDR) [102,103]
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Table 1. Cont.

Host Plant
(Average Temp.) Biotic Factor Disease/Nature of

Interaction Set Up Temp. (◦C) Genes or Other Explored Factors Effect Details Ref.

Fungi

Oat
(20–25 ◦C)

P. striiformis f. sp. tritici Stripe rust C 15, 20, 25, 30 B, E, F, H (−) Reduced resistance (ETI) [104]

P. striiformis f. sp. tritici Stripe rust C 15, 20, 25, 30 A, D (+) Stable resistance (ETI) [104]

Barley
(18–20 ◦C)

Bipolaris sorokiniana
Common root rot,

seedling, and head blight,
black point, leaf spot

C 20, 49 (water bath for
20 s) SOD, BI-1, DHAR Cyt, PR-1b (−) Reduced resistance (ETI) [105]

Blumeria graminis f. sp. hordei Powdery mildew C 28, 35 (30 s to 5 days) BI-1, PR-1b, RBOHF2 (±) (−) Susceptible lines showed severe symptoms.
(+) Resistant line showed stable resistance (ETI) [106]

B. graminis f. sp. hordei Powdery mildew C 35, 49 mlo5, Mlg, Mla12 (−) Reduced resistance (ETI) [107–109]
Oomycetes

Arabidopsis
(22 ◦C)

Peronospora parasitica Downy mildew C 22, 28 SNC1 (−) Compromised resistance (ETI, PTI) [110]

Phytophthora sojae Root and stem rot C 25, 33 Several R gene loci (−) Reduced resistance (QDR) [111]
Soybean

(19–25 ◦C) P. sojae Root and stem rot C 25, 33 Rps1-c, Rps2, Rps5 (+) Stable resistance (QDR) [111]

Pepper P. sojae Blight and fruit rot C 25, 37 Multiple WRKY and HSP genes (−) QDR [112]
Sweet basil
(10–25 ◦C) Peronospora belbahrii Downy mildew C 20, >25, 26–31 - (+) Preheat-treated plants showed stable

thermotolerance [113]

Viruses
Tobacco

(22–28 ◦C) Tobacco mosaic virus Mosaic C 28 Necrosis (N) (−) HR suppression (ETI) [114]

Tobacco
(22–28 ◦C) Potato virus X genes Mosaic C 28, 30 Rx (−) HR suppression (ETI) [64]

Potato
(15–20 ◦C)

Potato virus Y Mosaic C 18, 24 Necrosis y (Ny) (−) HR suppression (ETI) [115]

Potato virus Y Mosaic C 22, 28 PR, HSP genes (±) (−) Susceptible lines showed severe symptoms.
(+) Resistant line showed stable resistance [116]

Rice
(21–28 ◦C) Rice stripe virus Stripe C 35–37, 38 Stvb-i (+) Stable resistance [117]

Tomato
(21–27 ◦C) Tomato yellow leaf curl virus Leaf curl C 42–43 (2 h),

40–45/20–25 (diurnal)
HSFA2, HSFB1, Hsp17, Apx1, Apx2,

Hsp90 (+) Stable resistance [118]

Capsicum
(25 ◦C) Capsicum chlorosis virus Chlorosis C 25, 35 RNA silencing-related genes (+) Recovery (antiviral RNA silencing activation) [119]

Common wheat
(15–25 ◦C)

Wheat streak mosaic virus Streak mosaic C 18, 24 Wsm1, Wsm2, Wsm3 (±) Wsm1/Wsm2: (−) Symptoms observed; Only
Wsm3; (+) Stable resistance [120]

Wheat streak mosaic virus Streak mosaic C 20, 32 Signaling chemical compounds (−) Reduced resistance (metabolic aspects) [121,122]

Triticum mosaic virus Streak mosaic C 18, 24 Wsm3 (+) Stable resistance [120]

Pepper
Paprika mild mottle virus Chlorosis and mottling C 24, 30 L 1a locus resistance gene (−) HR suppression (ETI) [123]

Tobacco mild green mosaic virus Mosaic C 22, 32 L 1- L 2, L 1a (−) L 1- L 2: HR suppression (ETI)
L 1a: Stable resistance (ETI) [123]

Common bean Bean pod mottle virus Bean pod mottle C 20, 25, 30, 35 R-BPMV (±) (−) Susceptible lines showed severe symptoms.
(+) Resistant line showed stable resistance (ETI) [124]
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Table 1. Cont.

Host Plant
(Average Temp.) Biotic Factor Disease/Nature of

Interaction Set Up Temp. (◦C) Genes or Other Explored Factors Effect Details Ref.

Nematodes

Tomato
(21–27 ◦C)

Meloidogyne incognita Roo-knot C, F 22, 26, 32 Mi-1 (−) Reduced resistance (ETI) [125,126]

M. incognita Roo-knot C, F 22, 26, 32 Mi-9 (+) Stable resistance (ETI) [125]

M. incognita Roo-knot C 25, 32 Mi-7, Mi-8 (−) Reduced resistance (ETI) [127]

Meloidogyne javanica, M. incognita,
M. arenaria Roo-knot C 24, 32 Mi-1 (−) HR suppression (ETI) [128]

Pepper
(20–25 ◦C) Meloidogyne spp. Roo-knot C 32, 42 Me1, Me3 (+) Stable resistance (ETI) [129]

Insects
Tomato

(14–25 ◦C) Helicoverpa zia (Corn earworm) Leaf feeding C 25/14, 30/18, 35/22 Insect: GOX
Plant: TPI, PPO (−) Accelerated insect growth, compromised

plant growth, and recovery [130]

Tomato
(18–28 ◦C) Manduca sexta (hornworm) Leaf feeding C 28/18, 38/28, HSP90, COI1 (−) Wound-induced JA signaling inhibited growth [131]

Tomato
(19–26 ◦C)

Spodoptera littoralis (noctuid moth) Leaf feeding C 20, 25 HS impact on Trichoderma sp. and
stress responses of tomato by insects (+)

T. afroharzianum T22 enhanced plant
resistance against insects fed on detached

leaves (no living plant used)
[132]

Macrosiphum euphorbiae (aphid) Phloem feeding C 20, 25
HS impact on Trichoderma sp. and

stress responses of tomato by
insects

(+)
T. afroharzianum T22 enhanced plant

resistance against insects fed on detached
leaves (no living plant used)

[132]

Oregano mint
(18–24 ◦C)

Trialeurodes vaporariorum
(greenhouse whitefly) Phloem feeding C 24/18, 45 (5 min) Volatile compound emissions

(lipoxygenase, terpene, benzenoid) (+) Heat tolerance, quick recovery from
infestation [133]

Maize
(18–22 ◦C)

Diabrotica balteata (banded
cucumber beetle) Root feeding C 17.8, 20.8 (soil temp.) Soluble sugars, soluble proteins,

benzoxazinoids (−) Increased root damage but decreased
herbivore survival depending on soil moisture [134]

Potato
(15–25 ◦C) Macrosiphum euphorbiae (aphid) Phloem feeding C 25/15, 30/20 Stomatal conductance (+) Reduced survival and fecundity of insects [135]

Soybean
(24–26 ◦C) Aphis glycines (aphid) Phloem feeding C 24–26, 35/20 (diurnal) Lifespan and fecundity of insects (+) Insects fed on detached leaves showed

reduced fitness (no living plant used) [136]

ABA, abscisic acid; ETI, effector-triggered immunity; ISR, induced systemic resistance; HR, hypersensitive response; HTAP, high-temperature adult-plant resistance; HTSP, high-temperature
seedling-plant resistance; JA, Jasmonic acid; QDR, quantitative disease resistance; T-FACE system, Temperature by free- air CO2 enrichment system. Genetic loci/gene names- PAD4,
Phytoalexin Deficient 4; EDS1, Enhanced Disease Susceptibility 1; RPS2, Resistance to P. syringae 2; RPS4, Resistance to P. syringae 4; RPM1, Resistance to P. syringae pv Maculicola 1; FLS2, Flagellin
Sensing 2; SSL4-SSL5, Strictosidine synthase-like 4 and 5; MYC2, Myelocytomatosis 2 transcription factor gene; MYC22, Myelocytomatosis 22 transcription factor gene; CEBiP, Chitin–elicitor binding
protein; SGS3a/b, Suppressor of gene silencing 3a and 3b; CaIPT5, Isopentenyl transferase 5; DHAR Cyt; Cytosolic dehydroascorbate reductase; SOD; Superoxide dismutase; BI-1; BAX inhibitor-1; PR-1b;
Pathogenesis related-1b; RBOHF2; Respiratory burst oxidase homologue F2; R-BPMV; Resistance gene for Bean pod mottle virus; mlo5; Mildew locus o 5 locus; Mlg; Molecular linkage group locus; Mla12;
barley powdery mildew resistance locus; CHI-III; PR-3-type chitinase; prx98; Peroxidase 2 precursor; MAPKK; MAP kinase kinase; GLP 8-7; Germin-like 8-7; NDR1/HIN1 13; NDR1/HIN1-like 13; GOX;
Glucose oxidase; TPI; Trypsin protease inhibitor; PPO; Polyphenol oxidase; HSP90; Heat shock protein 90; COI1; Coronatine insensitive1; SR1/CAMTA3; Arabidopsis thaliana signal responsive protein
1/calmodulin-binding transcription activator 3; KAN3; KANADI (KAN) family protein 3; HSF8; Heat shock factor 8; MLO1; Mildew resistance locus O; PUB21; U-box domain-containing protein 21.
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5.1. Plant–Heat Stress–Bacterial Interactions

The interaction between HS and pathogenic or non-pathogenic bacteria is critical for
plant health and climate resilience. Thus, studies about dissecting the intricate effects of
HS on bacteria and plant–bacterial interactions are vital. High temperatures can reshape
the bacterial communities surrounding plant roots (rhizosphere) and influence the types
of chemicals plants release from their roots (root exudation) [137]. Elevated temperatures
can increase or decrease plant immune responses to bacterial infections (ETI and PTI).
For instance, Arabidopsis plants infected with Pseudomonas syringae pv. Tomato DC3000
(PsPto) causing bacterial speck under controlled conditions exhibited ISR activation and HR
suppression simultaneously when subjected to a gradual temperature increase from 22 to
28 ◦C [64]. During this HS–bacterial–plant interaction, the expression of multiple plant
immunity-related genes (EDS1, PAD4, RPS2, RPS4, and RPM1) was modulated. However,
temperature shifts to 42 ◦C for 1 h and 37 ◦C for 2 h reduced plant tolerance mediated by
FLS2 during PsPto infection [63]. Furthermore, elevated temperatures from 22 to 28 ◦C
and 30 ◦C reduced PsPto tolerance due to HR suppression involving the ZAR1 and RPS2
genes [64] and SR1/CAMTA3-mediated compromised stomata closing [67].

In Ralstonia solanacearum infection, Arabidopsis showed reduced tolerance at 27 ◦C and
30 ◦C, mediated by the RPS4/RRS1-R genes [68]. Similarly, higher temperatures (29 ◦C
and 35 ◦C) rendered resistance less effective against Xanthomonas oryzae pv. oryzae in rice,
mediated by QDR-related genes [69]. Conversely, lines with the Xa7 QTL showed tolerance
to X. oryzae pv. oryzae infection under both controlled and field conditions, highlighting
the role of specific QDR genes like Xa7 in conferring resistance [69,70]. Furthermore, a
recent study demonstrated that the line with Xa4+Xa7 exhibited tolerance, indicating the
synergistic effect of these genes in enhancing immunity [71]. Also, temperature variations
influenced the rice responses to X. oryzae at different developmental stages [72].

Other studies involving various plant species such as tomato [73–75], pepper [74,76–78],
and tobacco [74] have also highlighted the intricate relationship between HS (elevated
temperatures), bacterial pathogen resistance, and plant immune responses (Table 1). For
instance, Yang et al. [74] found that Ralstonia solanacearum infection in pepper triggers
SA and JA signaling pathways at different stages under average temperature. Still, these
responses were hindered under HS, making plants susceptible to pathogens. Exogenous
trans-zeatin (cytokinin) treatment enhanced disease resistance against R. solanacearum
under HS conditions in Solanaceae species (tobacco, pepper, and tomato), likely due to
cytokinin-mediated induction of chromatin remodeling and modulation of genes associated
with defense mechanisms.

One overlooked but concerning group of bacterial phytopathogens includes phyto-
plasmas, infecting insects and plants [138]. Phytoplasmas are mycoplasma-like bacteria
restricted to the phloem and transmitted by insects, affecting various plants such as or-
namentals, weeds, fruit trees, vegetables, and other cultivated crops [139]. The impact
of phytoplasma infections has been documented in different crops, including sesame,
maize, tomato, chickpea, vineyards, and chrysanthemum blooms [140–145]. In the past
decade, hundreds of new phytoplasma species have been reported in warmer regions, and
rising temperatures are expected to significantly affect the distribution of phytoplasma-
transmitting insect vectors [146]. High temperatures directly affect plants and modulate
various aspects of the phytoplasma disease cycle. These include replication and movement
within infected plants and the interactions between plants, insects, and phytoplasmas
(host–vector–pathogen). For instance, faster phytoplasma multiplication in the plant hosts
exposed to elevated temperatures increases the chances of vector transmission during
feeding by leafhoppers [147–149].

Overall, HS is a pivotal contributor to the severity and dissemination of plant–bacterial
interactions, warranting detailed investigations. Gaining molecular insights into the in-
tricate interplay between HS, plant–bacterial interactions, and the underlying molecular
mechanisms of plant immunity will help design novel approaches for crop protection.
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Ultimately, understanding these complex interactions will facilitate the development of
climate-resilient crops.

5.2. Plant–Heat Stress–Fungal Interactions

Heat stress significantly impacted plant–fungi interactions, influencing both the eu-
karyotic interaction partners in aboveground and belowground ecosystems. Several studies
have examined how HS affects fungal diseases such as blast, sheath blight, dry root rot,
leaf rust, and root rot in different crops, including rice, chickpea, coffee, American chestnut,
common wheat, durum wheat, oat, and barley (see Table 1). Understanding the effects
of HS is crucial for developing effective strategies to minimize agricultural losses. This
section explores the different responses observed in various plant–fungi interactions under
HS conditions.

One notable example is rice, where the blast disease caused by Magnaporthe oryzae
exhibits diverse responses [79–81]. Different QTLs associated with QDR respond differently
to temperatures ranging from 38 to 35 ◦C. Some investigated QTLs were found to decrease
resistance, while others, such as Pi54, demonstrated enhanced tolerance through QDR
and ETI mechanisms [79,80]. In the case of sheath blight in rice, elevated temperature
studies conducted under semi-field conditions showed reduced tolerance [82]. These
variable plant responses underline the complexity of rice–fungus interactions under HS. In
chickpea cultivation, Macrophomina phaseolina can worsen the threat of dry root rot under
HS conditions [84]. Vital defense proteins such as Endochitinase and CHI-III exhibited
decreased expression, compromising the plant’s ability to fend off fungal attacks [83].

Similarly, coffee plants facing leaf rust caused by Hemileia vastatrix exhibited reduced
tolerance under HS, albeit shading and high nitrogen levels can partially alleviate the
adverse effects of HS [86]. American chestnut trees afflicted by root rot (Phytophthora
cinnamomi) experienced disrupted plant-defense responses, underscoring the critical conse-
quences of HS on plant health [87]. Rising soil temperatures due to climate change-induced
HS were reported to decrease plant tolerance to the fungal pathogen, as evidenced by
models predicting reduced biomass and forest landscape changes, highlighting the urgent
need for adaptive strategies to safeguard chestnut plantations.

Wheat, a staple crop worldwide, is susceptible to various fungal diseases that respond
differently to HS. Some R genes that provide resistance against pathogens, like Puccinia
graminis f. sp. tritici (stem rust), were less effective under elevated temperatures. However,
some studies have shown that certain QTLs and R genes can maintain or even enhance
disease resistance (see Table 1). These include resistance against Blumeria graminis f. sp.
tritici, Puccinia recondita (causing leaf rust), and stripe rust-causing Puccinia striiformis f.
sp. tritici. These studies highlight the complex and nuanced interaction between HS and
fungal diseases in wheat, emphasizing the importance of tailored disease management
strategies. Similar complex responses were observed in oats [104] and barley [105–109],
where fungal diseases pose significant challenges under HS conditions. Some cultivars
exhibited diminished resistance, while others maintained stable or enhanced tolerance.

Symbiotic fungal associations, such as arbuscular mycorrhizal fungi (AMF), can al-
leviate heat and other abiotic stresses in plants [150]. However, the impact of combined
heat and biotic stressors in the presence of AMF associations requires further investigation.
In summary, the effects of HS on plant–fungus interactions have significant implications
for diverse crops, challenging traditional approaches to disease management in the era
of climate change. Heat stress disrupts the delicate balance between plant–fungal stress
interactions, leading to varied outcomes, including reduced tolerance or stable resistance,
depending on the specific pathogen and host interaction. Therefore, it is crucial to con-
sider the effects of HS on plant–fungus interactions to develop effective and sustainable
agricultural practices.
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5.3. Plant–Heat Stress–Viral Interactions

HS has significantly impacts virus and viroid infections in various plant species, influ-
encing plant immunity, the severity of disease symptoms, and stress-response mechanisms.
Elevated temperatures can accelerate virus transmission through insect vectors, increase
viral load, replication, or movement inside infected tissues, and enhance symptom severity
across multiple plant–virus interactions [151–155]. Furthermore, the defense pathways
induced by HS and viral infections overlap with each other and, thus, pose a complex
challenge to the plant system when dealing with concurrent HS and viral infections (sum-
marized in Table 1). Combinatorial HS–viral stress weakens plant immunity that seems to
stem from the potential of HS to inhibit the activation of defense genes, HSP production,
and altered RNA silencing and SA pathways, which are crucial components of the plant
immune system [156,157]. While some HSPs have been found to aid viruses in replication
and spread throughout the plant [155,158], others appear to bolster the plant’s antiviral
defenses [159,160].

Understanding the intricate responses of plants to viral infections under HS conditions
provides valuable insights into plant–HS–viral interactions. For instance, tobacco plants
exposed to HS during infection with the Tobacco mosaic virus exhibit necrosis and ETI-
mediated HR suppression [114]. Similarly, potato plants infected with Potato virus Y (RSV)
under growth chamber conditions experienced HR suppression response when exposed
to elevated temperatures [115]. In rice, exposure to the Rice stripe virus in cell suspension
cultures under gradual temperature increase resulted in the suppression of viral replication
and symptom development [161]. Furthermore, pepper plants infected with Paprika mild
mottle virus displayed similar trends, with HR being less effective and systemic infection
prevalent [123]. In contrast, maintenance of stable viral resistance was also observed in
some scenarios when exposed to variable HS conditions. For example, rice plants infected
with RSV retained stable resistance conferred by the Stvb-I gene [117]. Likewise, tomato
plants infected with Tomato yellow leaf curl virus exhibited enhanced expression of several
HSPs, contributing to stable viral resistance. However, impairment of the HS-responsive
HSF2A protein, caused by interactions with viral components, suppressed the activation of
downstream HS-responsive genes and compromised the HS response [118].

Tobacco plants also showed variable responses depending on the virus and the defense
pathways activated during HS tests. For instance, resistance mediated by the Rx gene
against Potato virus X was suppressed under HS conditions, reducing HR response [64].
Transcriptional studies of PR and HSP genes in potato plants subjected to both Potato virus
Y infection and HS highlighted that PVY infection and high-temperature stress shared
specific regulatory mechanisms with HS, directly affecting the stability of R genes-encoding
proteins and leading to the HR inhibition during viral infection [114]. Wheat crops exhibited
differential resistance to Wheat streak mosaic virus depending on temperature ranges and the
presence of specific R genes and related pathways in different cultivars [121,122,161]. In
pepper plants infected with Tobacco mild green mosaic virus, the HR response was suppressed
when mediated by L1–L2, but L1a-mediated resistance showed stable resistance even at
higher temperatures [123]. Common bean plants exhibited a mixed reaction to HS when
infected with Bean pod mottle virus [124]. Susceptible lines showed severe symptoms under
HS, while resistant lines demonstrated stable inhibition and restricted viral spread. In the
case of Capsicum chlorosis virus, HS initially promoted viral replication in Capsicum. Still, at
a later stage of infection, systemic recovery occurred in newly emerging leaves resulting
from the activation of RNA silencing machinery [119].

Taken together, no plant–viral pathosystem can serve as a universal model to inves-
tigate the effects of HS on plant–virus interactions, pressing the need for multifactorial
and comprehensive studies to map governing factors. Also, plant varieties with natural
resistance against viruses under HS can be used in breeding programs, or resistant cultivars
can be developed through molecular breeding and biotechnology approaches.
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5.4. Plant–Heat Stress–Nematode Interactions

Plant–parasitic nematodes pose a more significant threat to plant health when HS
situations weaken plant defenses. For instance, HS compromises soybean resistance to
the soybean cyst nematode [162,163]. This vulnerability is also observed in tomatoes and
watermelons when facing root-knot nematodes under HS conditions [164]. Constant efforts
have been made to unravel the complex mechanisms behind how HS and other stress agents
affect the JA signaling pathway in plants, which is crucial for warding off nematodes [165].
In soybeans, HS disrupts resistance to nematodes and throws their hormonal balance into
disarray [166,167].

Delving into plant–nematode interactions sheds light on the mechanisms governing
resistance to these pervasive pests. In wheat and other cereal crops, the cereal cyst nematode
Heterodera avenae is an important soil-derived pathogen investigated to gain molecular
insights into resistance mechanisms [168–170]. However, there is a lack of literature on the
plant molecular responses to combined HS and cyst nematode infection, indicating the need
for further research. Tomato plants challenged by Meloidogyne incognita under greenhouse
conditions inhibited ETI-mediated resistance [125]. However, pepper plants facing various
Meloidogyne species under HS displayed stable HS resistance with ETI activation [129]. Most
current practices involve toxic and environmentally damaging chemical nematicides to
control nematodes. Future studies will continue to explore the interactions between HS and
plant–nematode dynamics, providing insights that will influence ecofriendly agricultural
practices and crop management strategies.

5.5. Plant–Heat Stress–Insect Interactions

Plant-interacting insects, including pests and pollinators, are highly susceptible to HS,
which affects their behavior, physiology, and performance [171–173]. Distinct insect species
also act as vectors, transmitting pathogenic bacteria, viruses, and phytoplasmas. Heat
stress can cause insect mortality and reduce agricultural product quality [174,175]. Elevated
temperatures challenge both insects and their symbiotic partners [176,177]. Insects may
exhibit altered behavior and decreased performance [178,179]. Plant–insect interactions
are adversely affected during the HS encounter of plants via altered metabolome, reduced
photosynthesis, and compromised plant growth [171,180–182]. In addition, elevated tem-
peratures are a critical factor in changing insect host preferences [171,172]. Interspecies
competition between two insects was also impacted by HS, as evident in wheat aphid
species Rhopalosiphum padi and Sitobion miscanthi [183]. Overall, insect and plant life cycles
are prone to HS while interacting with each other or during independent phases of their
lifecycles. Further research will provide valuable insights into insect and plant responses
to changing environments, and understanding these dynamics is pivotal for effective pest
control and ecological adaptation to climate shifts.

In tomato plants, exposure to Helicoverpa armigera on an artificial diet under gradual
temperature increase in growth chamber conditions induced robust resistance against
caterpillar feeding [184]. Similarly, in wheat and soybean, aphid infestation by Rhopalosi-
phum padi and Aphis glycines, respectively, on an artificial diet under gradual temperature
increase in growth chamber conditions led to reduced aphid reproduction and population
growth [136,185–189]. Moreover, in rice, exposure to Chilo suppressalis on an artificial diet
under gradually increasing temperatures in growth chamber conditions induced resistance
against insect feeding and reduced larval growth [190,191]. In nature, insects feed on living
plants, and the rearing method can significantly affect their development and reproduction.
Most studies on HS–insect interactions use detached leaves for rearing, which may offer
lower nutritional quality than living plants [136]. This discrepancy can lead to different
conclusions. Therefore, conducting research with insects reared on living plants would
likely yield more accurate results, particularly when evaluating their performance under
HS conditions.

Insects are crucial as pollinators, significantly contributing to plant reproduction
and crop yields. The interaction between plants and pollinating insects is a brief but
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vital engagement, where plants provide food resources to the insects in exchange for
essential pollination services [192]. However, their ephemeral (short-term) interactions with
plants, especially during HS events, require thorough research. Understanding how HS
affects these interactions is essential for developing strategies to mitigate potential negative
impacts on pollination and crop productivity. As HS becomes more frequent, studying
the effects of HS on pollinator behavior and efficiency will be increasingly important for
ensuring sustainable agricultural practices and food security. Heat stress can alter the
pollinator dependency of crops, indicating that insect-mediated pollination might become
increasingly crucial for crop production as the likelihood of heat waves rises. A decrease in
plant and flower visits by pollinating insects during HS limits pollen dispersal, ultimately
negatively impacting crop yields. This effect has been observed in interactions between
buff-tailed bumblebees (Bombus terrestris) and faba bean (Vicia faba L.) [193], as well as
common eastern bumblebees (Bombus impatiens Cresson) and canola (Brassica napus) [194].

In nature, HS and the gradual cooling process led to fluctuating temperatures that
significantly affect specific life parameters of all the insects and host plants compared to
constant temperatures [195]. Overall, HS negatively impacts pollinators and pollination
services [196]. Therefore, it is essential to focus on understanding the potential behavioral
and physiological effects of thermal stress on pollinator insects, both independently and in
conjunction with interacting plant species.

5.6. Plant–Heat Stress–Weed/Parasitic Plant Interactions

Plant–weed interactions, including parasitic plants, can significantly impact crop
productivity, weed management, and overall agricultural sustainability. Typically, weedy
species are more adaptable and resilient in challenging climates, potentially giving them a
competitive advantage over crops. The simultaneous presence of HS and weed competition
significantly influences plant growth, productivity, and quality, especially in crops like
rice [197,198]. Heat stress also affects the interaction of plants with invasive weed-associated
bacteria. For instance, invasive weed-associated bacteria enhance wheat’s tolerance to
HS [199]. Crops facing both HS and weed competition can experience changes in the growth
and reproductive abilities of certain species, as observed in Solanum nigrum [200]. Recent
studies have also reported the harmful effects of simultaneous HS and weed competition on
maize crops [201]. Temperature can impact the competitive ability of different weed species.
Heat stress and weed competition have been found to affect growth, physiological traits,
and yield in cucumbers [202]. Heat stress can also influence the effectiveness of herbicides
in weed control for maize [203]. Heat stress has been observed to influence growth and
development in various weed species [204]. Moreover, HS and weed interference can
impact the yield components of durum wheat [205]. Australian annual and perennial grass
species have shown varied responses to HS [206]. The impact of HS and drought stress on
the growth and yield of Amaranthus species has also been investigated [207].

Parasitic plants have a longer lifespan than microbial invaders. They depend on host
plants for food and have an obligatory nature, which requires close interaction with their
hosts. Many aspects of host–parasitic plant interactions and the competition between main
crops and weedy species, especially in climate change and HS, are still unknown. Future
research will reveal these dynamic interactions among plants. In conclusion, the interactions
between crop plants and weedy species during HS are complex and multifaceted, involving
competition for water, nutrients, and light resources. They also include physiological
adaptations such as stress tolerance and allelopathy and management challenges such as
herbicide effectiveness. Addressing these interactions requires integrated approaches that
consider both the biological and ecological aspects of crops and weeds.

6. Perspectives on Dealing with Combined Heat and Biotic Stresses in Agriculture

Recent research has focused on the molecular interactions between high temperatures
and biotic plant stresses, highlighting the importance of improving plant health to thrive
under stress combinations to enhance crop productivity and sustainability in changing
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environments. Moreover, the importance of plant growth-promoting (PGP) microbes in
alleviating stressful events [208] highlights the potential of beneficial microbes in improving
plant stress resilience. In this section, we explore perspectives based on the following points:
the potential use of microbiomes for multiple-stress alleviation, constructing accurate
regulatory networks for plant responses to combined HS and biotic stresses, creating
reliable stress prediction models, priming plants to activate defense responses before
stress occurs, and developing multi-stress-resilient crop varieties alongside innovative
agricultural practices.

6.1. Potential Use of Plant Microbiome

The microbiome supports plant health in a changing climate [209–211]. Microbes and
their byproducts play a pivotal role in fortifying plants against biotic and abiotic stressors,
enhancing their resilience [212]. These interactions occur through intricate relationships
with their host plants, mediated by the plant microbiome [213]. Plants often confront
harsh environmental conditions that disrupt their biological processes and developmental
pathways [214]. Studies on beneficial microbes that enhance plant tolerance to HS and
mitigate biotic stress effects are summarized in Tables 2 and 3, respectively. Figure 5 depicts
the HS effects on host immune responses and the potential of the microbiome to fight
against combined stresses. It would be interesting to find out how these beneficial microbes
perform and whether they can aid in plant defense during encounters with combined HS
and biotic stress circumstances.
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Table 2. Plant-beneficial microbes involved in heat stress (HS) tolerance are reported in various crops.
AA, amino acids; JA, jasmonic acid; HSP, heat shock protein; HSF, heat shock-responsive transcription
factor; SA, salicylic acid; SMs, secondary metabolites; APX, ascorbate peroxidase; SOD, superoxide
dismutase; GSH, glutathione; PGP, plant growth promotion; ROS, reactive oxygen species; ABA,
abscisic acid, LAX3, like auxin 3; AKT2, potassium channel.

Plant Plant-Beneficial Microbes Details Ref.

Japonica rice Paecilomyces formosus Reduced endogenous JA and AA, enhanced total protein amounts [215]

Wheat

Bacillus amyliliquefaciens,
Pseudomonas fluorescens, Pantoea
agglomerans, Pantoea agglomerans

Several common plant protective SMs notably accumulated during
HS [216]

Klebsiella sp. Protection against salt and HS; reduced ethylene production and
regulation of ion transporters [217]

Bacillus cereus, Pseudomonas putida Increased PGP activity (root, shoot fresh and dry weight,
chlorophyll contents) under HS [218]

Bacillus amyloliquefaciens
UCMB5113 Abd El-

Increased plant growth (root, shoot fresh and dry weight,
chlorophyll contents) under HS [216]

Pseudomonas brassicacearum,
Bacillus thuringiensis,

Bacillus subtilis

Increase HSP26 protein, GABA, and chlorophyll content,
modulated metabolic pathways [219]

Bacillus amyloliquefaciens
UCMB5113, Azospirillum brasilense Augmented antioxidant activities, higher AA and protein content [220]

Bacillus amyloliquefaciens
UCMB5113, Azospirillum brasilense Reduced ROS, higher expression of HSFs and HSPs [218]

Lactobacillus agilis, Lactobacillus
plantarum, Lactobacillus acidophilus

Increased PGP activity, higher chlorophyll content, enhanced
antioxidant levels [221]

Thermotolerant bacterial isolates Increased PGP activity [222]

Tomato

Bacillus cereus Increased number of flowers and fruits, increased chlorophyll,
proline, antioxidants [223]

Paraburkholderia phytofirmans Alleviate the harmful effects of HS by PGP [224]

Bacillus safensis Significantly improved PGP activity and chlorophyll content,
antioxidant enzyme production [225]

PGP bacteria synthetic consortium ACC-deaminase production, ethylene accumulation, PGP [226]

Bacillus cereus Reduced ABA, increased SA and antioxidant enzyme activities, and
increased APX, SOD, and GSH levels [227]

Potato Pseudomonas sp. PsJN Promoted plant growth [228]

Sorghum

Azospirillum brasilense NO40,
Pseudomonas sp. AKM-P6 Enhanced tolerance in seedling stage to HS [229,230]

Bacillus cereus TCR17 Reduced ROS stress via upregulation of CAT, APX1, SOD, and
HSPs [231]

Pseudomonas sp. strain AKM-P6 Induced stress-related protein production, Preserved membrane
integrity, higher levels of sugars, AA, and chlorophyll [232]

Cabbage Bacillus aryabhattai H26-2, Bacillus
siamensis H30-3

Higher ABA in leaf, biocontrol activity against soft rot, reduced
stomatal opening [233]

Soybean

Bradyrhizobium diazoefficiens
USDA110 Survival in starvation [234]

Aeromonas hydrophilla, Serratia
liquefaciens, Serratia proteamaculans Increased yields by genistein (antioxidant isoflavone) [235]

Bacillus cereus SA1 Increased SA, reduced ABA, upregulation of APX, HSP, LAX3, SOD,
and AKT2 genes, elevated GSH AA content, increased K gradients [236]

Legumes Rhizobium sp. HSP of 63–74 kDa [237]

Alfalfa Shinorizobium meliloti Affect symbiosis during HS condition [238]

Legume Rhizobium sp. HSP of 63–74 kDa [215]

Grapevine PGP bacteria synthetic consortium Maintained leaf turgidity, lower osmolyte content, enhanced
antioxidant mechanisms [239]
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Table 2. Cont.

Plant Plant-Beneficial Microbes Details Ref.

Avocado, tomato Pseudomonas-based consortium PGP activity [240]

Arabidopsis
Serendipita indica PGP effect [241]

Paraburkholderia phytofirmans PsJN PGP and HS amelioration [242]

Rapeseed,
camelina Pseudomonas spp. PGP activity through carbon reallocation [243]

Maize Bacillus spp. (AH-08, AH-67,
SH-16), Pseudomonas spp. SH-29 PGP and HS tolerance during seedling/early vegetative growth [244]

Microorganisms, rich in beneficial metabolites, assist plants in coping with these
stresses, fostering a diverse ecosystem characterized by mutualistic interactions [245]. Ex-
tensive research underscores the pivotal role of the microbiome in shaping plant responses
to environmental adversities, particularly abiotic stresses like drought and HS [246,247].
Both drought and HS (elevated temperatures) significantly influence the composition and
abundance of root and soil microbiomes [248]. Induced systemic resistance is vital to the
interactions between plants and their beneficial microbiomes, priming the whole plant
system to fend off phytopathogens and pests more effectively [249,250]. ISR primes the
entire plant system to fend more effectively against phytopathogens and pests [251].

Microbiome engineering enhances plant functions, including resilience to biotic and
abiotic stresses, overall plant fitness, and productivity [252]. By manipulating plant mi-
crobial communities, microbiome engineering holds promise for boosting crop resilience
and long-term agricultural productivity [253,254]. Recent reports suggest the effective-
ness of microbial agents in mitigating various stresses, addressing both biotic and abiotic
threats [255,256]. However, climate change-driven environmental stresses also disrupt
the plant microbiome functioning, impacting plant–microbe interactions and stress re-
sponses. Thus, understanding plant–microbiome communication is critical to unlocking
the potential of beneficial bacteria in combined stress management [257]. By harnessing the
microbiome’s role in plant resilience, microbiome engineering offers innovative pathways
for balanced agriculture and environment [258]. Harnessing the role of microbiomes in
plant resilience through microbiome engineering provides creative ways for environmental
protection and sustainable agriculture. Given the evolving environmental landscape, inte-
grating microbiome expertise into agricultural methods will help enhance plant efficiency
and ensure food and nutrient stability (See Figure 5).

Table 3. Studies investigating the potential use of beneficial microbes to manage phytopathogenic
infections and insect herbivore attacks for sustainable plant health management. ISR, induced
systemic resistance; SAR, systemic acquired resistance; SM, secondary metabolites.

Plant Plant-Beneficial Microbes Pathogen (Disease) Pathogen/Lifestyle Details Ref.

Arabidopsis

Bacillus subtilis PTA-CT2,
Pseudomonas fluorescens

PTA-271

Pseudomonas syringae pv. tomato
DC3000 (Psto)

Bacterial
hemibiotroph

Root-drench, priming
effect on plant
immunity, ISR

[259,260]

Botrytis cinerea (Grey mold) Fungal necrotroph

Bacillus proteolyticus
OSUB18

Psto Bacterial
hemibiotroph

Root-drench, priming
effect on plant
immunity, ISR

[261]

Botrytis cinerea Fungal necrotroph

Soybean

Trichoderma viride GT-8, T.
reesei GT-31, T.

longibrachiatum GT-32

Macrophomina phaseolina
(Charcoal rot), Sclerotinia
sclerotiorum (White mold),

Fusarium sp. (Seedling
damping-off)

Fungal necrotroph
Seed treatment, plant

growth promotion
(PGP), competition

[262]

Trichoderma harzianum, T.
asperellum T00

Pratylenchus brachyurus (Root
lesion) Nematode

Seed treatment,
production of SM,

lytic enzymes
[263,264]
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Table 3. Cont.

Plant Plant-Beneficial Microbes Pathogen (Disease) Pathogen/Lifestyle Details Ref.

Dragon fruit T. viride, T. asperellum, T.
harzianum

Neoscytalidium dimidiate (Brown
spot) Fungal

Added to base soil of
tree, competition, ISR,
antibiosis synthesis

[265]

Kale Pseudomonas fluorescens
SP007S

Pectobacterium carotovorum (Soft
rot disease) Bacterial necrotroph

Soil treatment, SAR,
phenol compounds,

PGP
[266]

Olive
Bacillus sp., Pseudomonas

fluorescens (alone or
combined)

Pseudomonas savastanoi (Knot
disease) Bacterial necrotroph Foliar spray, SM, PGP [267]

Chili pepper
Bacillus thuringiensis

MW740161.1, Pseudomonas
fluorescens, Bacillus subtilis

Leveillula Taurica (Powdery
mildew) Fungal

Foliar spray,
production of SM,
peroxidases, ISR

[268]

Sorghum Trichoderma viride Dickeyadadantii (Stalk rot) Bacterial
Seed treatment,

production of defense
enzymes, PGP

[269]

Potato Trichoderma harzianum,
Pseudomonas fluorescens Alternaria solani (Early Blight) Fungal Tuber treatment, PGP [270]

Cucumber Trichoderma harzianum Fusarium oxysporum Fungal
Seed treatment,

production of defense
enzymes, PGP

[271]

Tomato

Trichoderma asperellum Agroathelia rolfsii (Collar rot) Fungal necrotroph

Root-drench,
production of

hydrolytic enzymes,
SM

[272]

Trichoderma longibrachiatum,
T. atroviride, T. harzianum Alternaria solani (Early Blight) Fungal

Foliar spray,
production of SM,

antioxidant enzymes,
PGP

[273]

Trichoderma asperellum, T.
harzianum, Bacillus subtilis

Verticillium lecanii,
Metarhizium anisopliae,

Meloidogyne spp. (Root-knot
nematode) Nematode

Cavity chamber
method, production

of lytic enzymes
[274]

Cucumber,
tomato

Pseudomonas protegens 1B1,
P. clororaphis 48G9, P.
brassicacearum 93G8

Agrobacterium rhizogenes (Hairy
root disease) Bacterial Root dip method [275]

Wheat

Beauveria bassiana,
Metarhizium anisopliae

Rhopalosiphum rufiabdominalis
(Aphid) Insect

Foliar spray,
penetration of

hyphae through the
insect cuticle

[276]

Beauveria bassiana (Balsamo)
Vuillemin

Tenebrio molitor (Mealworm),
Monochamus alternatus

(Japanese pine sawyer),
Allomyrina dichotoma (Japanese

rhinoceros beetle)

Insects Syringe application,
production of toxins [277]

Sugarcane

Metarhizium anisopliae
Termite (Odontotermes obesus

(Ramb.), Microtermes obesi
(Holgren)

Insect
Soil drenching,

muscle contraction,
flaccid paralysis

[278]

M. anisopliae Holotrichia serrata (White grub) Insect
Soil application,

protease production,
flaccid paralysis

[279]

Walnut
Lecanicillium lecanii,

Metarhizium anisopliae sensu
lato, Beauveria bassiana

Myllocerus fotedari Ahmad
(Weevil) Insect

Foliar spray,
production of toxin
and flaccid paralysis

[280]

Orange and
mandarin

Bacillus thuringiensis,
Metarhizium anisopliae,
Trichoderma harzianum

Monacha obstructa (Land snail) Animal pest

Leaf dipping,
poisonous baiting,

and foliar spray,
hyper parasitism

[281]
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Plants harbor a diverse community of microbes, collectively called the phyto-microbiome,
including bacteria, fungi, viruses, and archaea [282]. Symbiotic microbial communities pro-
mote plant growth, development, and resilience against environmental challenges [283,284].
The plant microbiome facilitates nutrient uptake, synthesizes beneficial hormones, and
protects against detrimental pathogens [285]. Certain microbial inhabitants even produce
stress-responsive compounds that directly stimulate plant growth under harsh environmen-
tal conditions [286]. This intricate web of interactions empowers plants to endure and thrive
under challenging circumstances such as drought, HS, or salinity [287]. Beyond abiotic stres-
sors, the plant microbiome is pivotal in preventing biotic threats such as insect pests and
pathogens [288]. Beneficial microbes residing in both the leaves (phyllosphere) and roots
(rhizosphere) activate innate defense mechanisms, priming them to combat invaders [289]
and protecting the host plants by antagonizing pathogens using synthesized microbial
metabolites [290]. The interaction between innate immunity and the plant microbiota is
crucial in determining the ability of plants to defend against pathogenic attacks [291]. Cer-
tain microbes further augment this defense by producing antimicrobial compounds, acting
as natural biocontrol agents. However, the efficacy of these biocontrol agents depends
on various influencing factors, underscoring the intricacies of plant–microbe–pathogen
interactions [292].

Heat stress significantly shapes the root and soil microbiomes, influencing plant–
microbe interactions [293]. For foliar diseases, direct spraying of microbial agents onto the
infected plant parts has demonstrated efficiency for controlling the disease. Comprehending
these interactions can pave the way for sustainable strategies in crop enhancement and
stress alleviation [294]. Exploring the crosstalk between responses to HS and biotic stresses
will assist in unveiling the intricate modulation of the plant immune system [9].

Various microbial products are available on the market as biocontrol agents (pathogen
and pest control), biostimulants, and biofertilizers. The adequate and predictable use of
these products depends on selecting species and strains that are suited to specific climatic
zones and local environmental conditions due to the strong influence of temperature on
plant–microbe interactions. For instance, the mesophilic fungus Trichoderma spp., known for
its multiple biocontrol capabilities against various pathogens and insect pests [132,295,296],
faces constant threats from HS and other climate change-related stresses. Empowering the
beneficial microbiome with HS-resistant properties through modern genetic approaches can
significantly improve their effectiveness under HS conditions. This has been demonstrated
in Trichoderma viride Tv-1511, overexpressing the HSP protein (TvHSP70) [297]. Molecular
analyses showed that the TvHSP70-overexpressing strain exhibited HS resistance and
significant improvements in growth, antioxidant capacity, and antifungal activity com-
pared to the wild-type strain. Thus, adopting such advanced techniques can ensure the
reliable performance of microbial products for biotic stress management under varying
environmental stresses. By elucidating the molecular mechanisms, we can pave the path
toward enhancing stress tolerance and fostering sustainable agriculture amidst shifting
environmental conditions [298,299]. Diverse microbial resources under heat–bacterial stress
conditions would be instrumental in shaping future experiments and outcomes.

6.2. Building Precise Regulatory Networks of Plant Responses to Combined Heat and
Biotic Stresses

From molecular and physiological perspectives, investigating plant stress tolerance
mechanisms is central to modern plant research. Plants use specific and non-specific
responses to cope with environmental stresses, utilizing various molecular components
(summarized in Figures 2–4). However, the traditional focus on individual stress response
pathways is not sufficient. Biotic and abiotic stress pathways are interconnected within
a broader network, and plants will face challenges from combined stress factors in the
near future [300,301]. Studies have revealed a complex network of molecular interactions
that enable plants to efficiently deal with specific singular stress while balancing resource
distribution for growth and defense.
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Moreover, increasing evidence from field, controlled, and molecular experiments
indicates that plants counter specific combined stresses in a non-additive way. In some
cases, they even elicit opposite responses, resulting in effects that cannot be predicted solely
by investigating singular stresses [62]. Therefore, a key goal of future research should be to
explore plant response mechanisms involved in imparting multi-stress tolerance, which is
crucial given the forecasted climate changes and the emergence of new stress combinations
in agriculture. Identifying genetic factors involved in both HS and biotic stress pathways
will provide potential targets for genetic manipulation, such as master regulatory genes
and specific transcription factor families.

Emerging omics technologies and artificial intelligence (AI)-based applications offer
a powerful toolkit to elucidate molecular mechanisms involved in plant stress [302,303].
Genomics approaches like Genome-wide association studies (GWAS) can pinpoint criti-
cal genes associated with HS tolerance. At the same time, transcriptomics through RNA
sequencing (RNA-seq) reveals how gene expression changes under HS conditions [304].
Proteomics and metabolomics further explore the specific proteins and metabolites pro-
duced or modified in response to HS, providing insights into potential targets for manipu-
lation [305,306]. By integrating data generated from various omics approaches through AI
tools, researchers can understand the intricate interplay between genetic elements, proteins,
and metabolites during combined abiotic stresses [307]. This holistic view will facilitate the
identification of vital regulatory points within the HS and biotic stress response pathways,
which can be targeted for manipulation to enhance plant resilience. These omics tech-
nologies can accelerate breeding programs by identifying specific markers for combined
HS–biotic tolerance and uncovering novel mechanisms [308].

6.3. Developing Reliable Stress Prediction Models and Priming Plants against Combined
HS–Biotic Stresses

Predicting the combined effects of HS and biotic stress on crops is critical to avoiding
crop loss. The exposure timing of HS is critical considering the plant’s developmental
stage, which can result in higher crop loss or stress acclimation [309]. Sophisticated com-
putational models are emerging as powerful tools to address this challenge of predicting
multiple stresses and their severity [310–312]. These models integrate diverse data sets
encompassing plant physiology, pathogen biology, and future climate projections [312,313].
By analyzing these datasets through AI-based machine learning algorithms, the models
can identify patterns and predict the potential impact of HS on plant–biotic interactions
in specific regions [314]. This predictive capability can assist in developing targeted stress
management strategies [315]. Furthermore, these models can guide breeding programs by
identifying existing stress-tolerant varieties and highlighting areas where new cultivars
with enhanced resilience are needed. While challenges like data availability and model
validation need to be dealt with, the potential benefits of predicting combined HS–biotic
stress interactions make this a crucial area of research.

If we can predict stress patterns, we can also prepare plants to fight against them better.
Plants possess a remarkable ability known as stress memory and priming, where exposure
to mild stress can prime them for a more robust response to a subsequent stressor [316–318].
For instance, heat priming has been reported to induce HS tolerance in wheat [319] and
seagrass [320]. Pre-exposure to mild HS can prime plants for enhanced defense against
future biotic stress. By elucidating the underlying molecular mechanisms of stress memory
and priming in combined stress scenarios, this research can pave the way for developing
targeted priming techniques to improve plant resilience [321]. Priming SAR through heat
treatment is a promising and cost-effective approach to fighting pathogens with minimal
environmental impact [113]. Additionally, recent findings suggest that using a combination
of warming treatments and exogenous application of chemical inducers can enhance
plant immunity by activating multiple defense pathways simultaneously [322]. Exploiting
genetic or induced acclimation strategies to changing ambient temperatures in agriculture
can improve multi-stress tolerance in crops.
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6.4. Developing Stress-Resilient Crop Varieties along with Novel Agricultural Practices

One critical aspect of combined stress studies is that experiments must simulate natural
field conditions for meaningful progress. Plant responses can vary significantly under
different experimental setups, as evident in the summarized reports in Table 1. Presently,
available single HS or biotic stress-tolerant crop varieties are ideal candidates to be tested
against a range of stress combinations, intending to improve tolerance to combined HS and
biotic stresses. The strategy of pyramiding stress-related genes, which confer resistance to
various stresses, into elite cultivars would be helpful. Gene pyramiding can be achieved
through molecular breeding, transgenic, and genome editing (GE) approaches [323]. A
shift in focus is needed in plant stress research, considering that plants often trade-offs
between growth and stress tolerance, resulting in yield penalties. Therefore, developing
crop varieties with inherently enhanced abilities for higher photosynthesis, growth, and
yield would serve the purpose better than merely surviving stresses.

Improving plant resilience against the combined stresses of HS and biotic factors is
critical due to the increased incidences amid changing climate conditions [324]. To address
this challenge, scientists are exploring various novel strategies using molecular tools and
techniques. These strategies aim to enhance plant resilience and alleviate the negative
impacts of combined HS and biotic stresses on crop productivity. One such strategy is
the development of resilient crop varieties, which involves breeding and screening crop
varieties for tolerance to both stressors [325]. Combining better-performing crop varieties
with plant-beneficial microbes would enhance plant health and nutrient uptake [326].
Implementing climate-adaptive practices involves deploying farming methods that mitigate
the impact of combined stressors [327–331].

Biotechnology, including omics approaches and AI-based climate prediction platforms,
offers potential solutions for addressing plant stress by developing stress-tolerant crop va-
rieties and providing projections on combined stress scenarios. Heat and disease-resistant
crop varieties can be designed using GE tools like clustered regularly interspaced short
palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system (CRISPR/Cas),
which can withstand combined HS–biotic threats [3,332]. Also, the joint use of designed
varieties and eco-friendly methods will enhance the plant’s resilience to multiple stress sce-
narios, including targeted and biocontrol replacements, for instance, mechanical trapping
approaches, pheromones, antagonistic organisms, and exogenic application of biological
molecules [333].

One of the most significant advancements in crop improvement is the develop-
ment of faster and more effective GE techniques compared to traditional plant breed-
ing methods [334]. CRISPR/Cas-based GE has become the most commonly employed
tool for designing plants with required traits, such as tolerance to abiotic stresses and
diseases [3,323,335–337]. For example, soybean plants with the GmARM gene knocked out
using CRISPR/Cas exhibited tolerance to multiple stresses, such as alkali-salt stress and
nematode root rot disease caused by Phytophthora soya [338]. Although the use of GE is
most effective when the genes or genetic factors (e.g., promoter elements, transcription
factors, RNA molecules, and epigenetic modifications) responsible for combined stress
tolerance are already known, CRISPR/Cas-based tools have immense potential to identify
these targets, which can be achieved through screening and generating mutant libraries
for individual genes or entire gene families, as well as through directed evolution studies
of desired genetic loci [339,340]. Overall, the above-discussed various approaches offer
promising solutions to address the complex challenges presented by combined HS and
biotic stresses and will be forefront areas of research in plant sciences.

7. Conclusions

The impact of combined HS and biotic stresses poses a significant challenge to plant
immunity under changing climates. The current work summarizes different reports empha-
sizing the importance of understanding the complex relationships between host plant–HS–
biotic interactions. Further research is necessary to develop stress-tolerant crop varieties
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and sustainable agricultural practices. Diverse plant-beneficial microbes and modern tools
offer promising solutions to enhance plant immune resilience against biotic stressors while
mitigating the HS effects. It is clear that plant processes that regulate responses to mul-
tiple stresses are not dependent on a single controlling morphological, physiological, or
genetic factor. Integrated regulatory networks determine a specific set of responses to a
particular multi-stress combination. Therefore, it is crucial to identify these regulatory
networks to successfully develop plant varieties with enduring resistance to biotic stresses
in the face of climate change. This identification can be accelerated in the future through
high-throughput (omics) methods, AI-based modeling and analyses, GE, and other genetic
engineering tools.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants13152022/s1, Table S1: Significant yield losses caused by
the impact of combined biotic and abiotic stressors in agriculture [341–349].
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