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Abstract: Chimonanthus praecox, a member of the Calycanthaceae family, is a unique, traditional, and
famous flowering economic tree species in China. Despite the existence of several varieties, only
a few cultivars have been formally named. Currently, expression sequence tag–simple sequence
repeat (EST-SSR) markers are extensively used to identify different species and varieties; a large
number of microsatellites can be identified from transcriptome databases. A total of 162,638 unigenes
were assembled using RNA-seq; 82,778 unigenes were annotated using the Nr, Nt, Swiss-Prot, Pfam,
GO, KOG, and KEGG databases. In total, 13,556 SSR loci were detected from 11,691 unigenes, with
trinucleotide repeat motifs being the most abundant among the six repeat motifs. To develop the
markers, 64,440 pairs of SSR primers with polymorphism potential were designed, and 75 pairs of
primers were randomly selected for amplification. Among these markers, seven pairs produced
amplified fragments of the expected size with high polymorphism. Using these markers, 12 C. prae-
cox varieties were clustered into two monophyletic clades. Microsatellites in the transcriptome of
C. praecox exhibit rich types, strong specificity, and great polymorphism potential. These EST-SSR
markers serve as molecular technical methods for identifying different varieties of C. praecox and
facilitate the exploration of a large number of candidate genes associated with important traits.

Keywords: RNA-seq; EST-SSR; clusterization; polymorphism; identification

1. Introduction

Chimonanthus praecox is commonly known as wintersweet (2n = 22); its unique flow-
ering time and extended blooming period (from November to March) make it a popular
perennial ornamental plant in China. Notably, it has a cultivation history of over a thousand
years [1,2]. It is native to China, extensively used for cut flowers and as a garden plant,
and has been cultivated in the United States, Japan, South Korea, and other countries [3,4].
C. praecox detoxifies and treats cough, dizziness, nausea, fever, and rheumatoid arthri-
tis [3,5,6]. There are several cultivated species of C. praecox; these species are named and
identified based on morphological characteristics, such as petal color or morphology [7–9].
However, due to the limited number of morphological features and their susceptibility to
environmental factors, employing morphological features to evaluate genetic and phyloge-
netic relationships may be limited [9].

Molecular markers are powerful tools that can reveal genetic relationships at the
DNA level, which is unaffected by environmental factors and exhibits high heritability
and easy detection [10]. Various molecular markers have extensively been used in C. prae-
cox source conservation and genetic breeding, including random amplified polymorphic
DNA (RAPD) [11,12], amplified restriction fragment length polymorphism (AFLP) [13,14],
sequence-related amplified polymorphism (SRAP), inter simple sequence repeat (ISSR), and
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simple sequence repeat (SSR) [4,9,11–19]. SSR markers, also known as microsatellites, are
co-dominant markers that mainly use tandem repeat sequences of two to five nucleotides
as basic repeating units; they can distinguish homozygotes from heterozygotes and de-
tect multiple alleles. In addition, they exhibit rich polymorphisms, are easy to operate,
produce reliable results, and exhibit good repeatability. Therefore, they are usually the
preferred choice [20]. SSR markers can be developed from genomic and transcriptome
databases and are divided into genomic simple sequence repeat (gSSR) and expression
sequence tag–simple sequence repeat (EST-SSR) based on the type of data used for their
development. The developmental cost of gSSR is relatively high, while EST-SSR markers
are relatively cost-effective and exhibit higher cross-species transferability owing to their
origin in conserved coding regions [21].

The SSR reaction system for C. praecox was established in 2012, marking a significant
milestone in the genetic study of this species [14]. Building on this foundation, researchers
in 2013 developed SSR molecular markers from the transcriptome database of C. praecox,
successfully amplifying 17 primer pairs [22]. This breakthrough was complemented by
the screening and establishment of 31 EST-SSR markers from C. praecox EST sequences,
with 8 polymorphic markers selected to analyze genetic diversity and structure across
10 natural populations [23]. The momentum continued in 2014, with an in-depth analysis
of SSR distribution characteristics within the C. praecox transcriptome database, providing
valuable insights into the species’ genetic makeup [9]. By 2018, SSR markers had become
instrumental in the authenticity identification of C. praecox hybrid progeny, underscoring
their practical applications [24]. In 2023, researchers further advanced the field by analyzing
the genetic diversity and structure of 69 C. praecox samples using 33 SSR molecular markers,
revealing crucial data on population genetics [4]. Most recently, in 2024, the genetic
diversity of 175 C. praecox germplasms was comprehensively analyzed, culminating in the
construction of a fingerprint map based on SSR molecular markers. This map represents a
pivotal tool for future research and conservation efforts [19]. These advancements provide
a robust foundation for the next phase of research, which will focus on translating these
genetic insights into practical applications for the breeding and conservation of C. praecox.
Furthermore, compared with the traditional methods of developing SSR markers, the
use of high-throughput sequencing technology enables the efficient development of a
large number of microsatellites at a lower cost and effort [25]. Consequently, employing
SSR markers represents an efficient approach to identifying C. praecox germplasms at the
molecular level and genotyping its cultivars.

In the present study, we sequenced the transcriptome of C. praecox using the BGIseq500
platform and assembled 162,638 unigenes. Additionally, we identified SSR loci, designed
primer pairs based on these data, and developed and characterized seven novel EST-SSR
markers. Furthermore, effective EST-SSR markers were developed from transcriptome se-
quences to investigate the diversity of different varieties of C. praecox and classify varieties.

2. Results
2.1. Transcriptome Sequencing and Assembly

A total of 114.73 Gb of clean data were obtained (Table S1), and 162,638 unigenes were
assembled. The total length of the unigenes was 170,847,856 bp, and the average length was
1050 bp. Additionally, the GC content was 40.98%, and the N50 was 2059 bp, indicating a
high-quality assembly (Table 1). Among them, 80,351 (58.74%) unigenes had a length of
200–1000 bp, 29,042 (21.2%) unigenes had a length of 1–2 kb, 16,654 (12.2%) unigenes had a
length of 2–3 kb, and 5449 (4.0%) unigenes had lengths >3 kb (Figure 1).
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Table 1. Overall data quality and assembly information.

Item Number

Total clean data (Gb) 114.73
Total unigenes 162,638

Total length of unigenes (bp) 170,847,856
Average length of unigenes (bp) 1050

N50 of unigenes (bp) 2059
GC content 40.98%
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2.2. Functional Annotation

To annotate the unigenes of C. praecox, 162,638 single gene sequences were queried
against various universal databases. In total, 55,460 (34.10%) were aligned to sequences in
the Nt database, 55,465 (34.10%) in the Swiss-Prot database, and 57,638 (35.44%) in the Pfam
database (Figure 2). The annotation of 82,778 (50.90%) unigenes was achieved in at least
one database, and the annotation of 24,879 (15.30%) unigenes was achieved in all databases
(Table 2). A total of 62,480 (38.42%) unigenes were aligned to the sequences in the GO
database, which could be divided to three functional categories: biological processes, cellu-
lar components, and molecular functions (Figures 2 and 3A). The largest class in biological
processes was “cellular processes” (41,021, 25.22%), followed by “metabolic processes”
(32,947, 20.26%) and “biological regulation” (9619, 5.91%). The categories of “cellular com-
ponent” only include “cellular anatomical entity” (60,574, 37.24%) and “protein-containing
complex” (7534, 4.63%). Among the molecular functional categories, the largest cate-
gory was “binding” (46,184, 28.40%), followed by “catalytic activity” (40,653, 25.00%) and
“transporter activity” (4150, 2.55%). A total of 77,914 (47.91%) unigenes were aligned
to sequences in the Nr database (Figures 2 and 3B). A total of 47,180 (29.01%) unigenes
were aligned to sequences in the KOG database, which were categorized into 25 func-
tional groups (Figures 2 and 3C); among them, 12,024 (7.39%) were annotated as “general
function prediction only”, followed by “signal transduction mechanisms” (5297, 3.26%),
and “posttranslational modification, protein turnover, chaperones” (4421, 2.72%). In total,
56,185 (34.55%) unigenes were aligned to sequences in the KEGG database, which could
be categorized into five groups: cellular processes, environmental information processing,
genetic information processing, metabolism, and organismal systems (Figures 2 and 3D).
Among the 19 biological pathways, the most frequently observed functional pathways
were “global and overview maps” (14,053, 8.64%), followed by “carbohydrate metabolism”
(5259, 3.23%), and “folding, sorting, and degradation” (4330, 2.66%).
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Table 2. Unigenes annotation of C. praecox.

Annotation Database Number of Unigenes Percentage (%)

NR 77,914 47.91%
NT 55,460 34.10%

Swiss-Prot 55,465 34.10%
KEGG 57,525 35.37%
KOG 47,180 29.01%
Pfam 57,638 35.44%
GO 62,480 38.42%

Intersection 24,879 15.30%
Overall 82,778 50.90%

Total 162,638 100.00%

2.3. Frequency and Distribution of SSRs in the Transcriptome

Using the MISA-2.1 software, 13,556 unigenes with a total length of 170,847,856 bp
were selected from 162,638 unigenes; 1515 unigenes containing >1 SSR and 11,691 SSR
loci were detected (Table 3). Six types of microsatellites were identified from transcrip-
tome data, including mono-, di-, tri-, tetra-, penta-, and hexanucleotide repeat motifs,
with significant differences observed among different types of repeat motifs; the trinu-
cleotide repeats exhibited the highest frequency of occurrence (7984, 58.90%), followed by
dinucleotides (4613, 34.03%), tetranucleotides (355, 2.62%), hexanucleotides (260, 1.92%),
mononucleotides (222, 1.64%), and pentanucleotides (122, 0.90%) (Table 3). The AG/CT
(4053) repeats were the most frequent dinucleotide repeats, accounting for 29.90% of the
total SSRs. Of the trinucleotide repeats, AAG/CTT (3117, 22.99%) was the most abundant
motif, followed by ATC/ATG (1446, 10.67%) and AGC/CTG (1021, 7.53%). The most
abundant mononucleotide, tetranucleotide, pentanucleotide, and hexanucleotide repeats
were A/T (222, 1.64%), AAAT/ATTT (91, 0.67%), AAAGG/CCTTT or AGCCC/CTGGG
(29, 0.21%), and AAGAGG/CCTCTT (33, 0.24%), respectively. The quantities of different
dinucleotide and trinucleotide types are shown in Figure 4.
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Table 3. Prediction of SSRs from the transcript datasets of C. praecox.

Item Number

Total number of sequences examined 162,638
Total size of examined sequences (bp) 170,847,856

Total number of identified SSRs 13,556
Number of SSR-containing sequences 11,691

Number of sequences containing more than 1 SSR 1515
Number of SSRs present in compound formation 667

Mononucleotide 222
Dinucleotide 4613
Trinucleotide 7984

Tetranucleotide 355
Pentanucleotide 122
Hexanucleotide 260

2.4. Development of Polymorphic EST-SSR Markers

In total, 75 potential EST-SSR marker primers were designed and validated for poly-
morphisms in C. praecox; 20 of these primers were not amplified, while 55 were successfully
amplified, producing amplicons of the expected size. Of the 55 EST-SSR markers, 7 showed
high levels of polymorphism and good transferability in different varieties. Genetic varia-
tion analysis of the seven loci showed twenty-eight alleles, ranging from two to six, with an
average of four alleles per locus. The number of effective alleles (Ne) ranged from 1.492 to
4.235; the total Ne was 20.61, with an average of 2.944. The Shannon’s information index (I)
value ranged from 0.512 to 1.585, with an average of 1.122. The observed heterozygosity
(Ho) ranged from 0.250 to 1.000. Gene diversity (He) ranged from 0.330 to 0.764, with an
average of 0.603. These results indicated that the seven EST-SSR markers had relatively
high levels of genetic polymorphisms (Table 4).

Table 4. Sequence and genetic diversity information of the seven SSR markers.

Locus Motif Forward Primer (5′-3′) Reverse Primer (5′-3′) GenBank
Accession Number Na Ne I Ho He

CP14 (CTT)7 CGCTCTCTCCTTAACGCGAT ACTTCTTGCTTTTGCCGCTG PP532794 2.000 1.492 0.512 0.417 0.330
CP20 (TC)25 CCATCTGCGACTGTCCCTTT CGGATCTCTCCCGGATTTCG PP532795 4.000 3.646 1.332 0.500 0.726
CP22 (CT)18 AGAACATGTCCAATTCCCATGGA GCATGCTCGCTCTCTCTCTC PP532796 6.000 4.235 1.585 0.333 0.764
CP33 (AT)10 CAGTCAGGTCCACGTGTTGA ATCTCGATCTGCTGCCACTG PP532797 6.000 3.176 1.426 0.444 0.685
CP43 (GA)14 TGCCCAGTTGCCTCTTTTCA CGACTTCTTCTCCTTCGCCA PP532798 2.000 1.492 0.512 0.250 0.330
CP44 (TCG)7 CCGGAAGTAGCCATCGGATC GCATGGAGAGTCCTCGCTAC PP532799 3.000 2.969 1.093 0.750 0.663
CP67 (AG)22 CACGAAGCCCTCCAGAAAGT CTTGCAGGGGAGCATGTACA PP532800 5.000 3.600 1.393 1.000 0.722

2.5. UPGMA Cluster Analysis of Different Varieties of C. praecox Based on the EST-SSR Markers

A topology tree based on the unweighted pair-group method analysis (UPMGA) was
used to display the relationship between the 12 different varieties of C. praecox (Figure 5).
The r-value of the matrix correlation of the topological tree was 0.808, and the approximate
value of the Mantel t-test was 6.13. UPGMA cluster analysis revealed that the 12 varieties
of C. praecox were clustered into two monophyletic clades; S12, S17, SX, S16, and S24 were
clustered in Clade I, and S1, S6, S5, S15, S14, S7, and SHA were clustered in Clade II,
indicating close genetic relationships.
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Figure 5. Phylogenetic tree of 12 C. praecox varieties generated through UPMGA cluster analysis
using the NTSYS-pc 2.0 program. Information on the sample collection of 12 C.praecox varieties
(S1, S5, S6, S7, S12, S14, S15, S16, S17, S24, SX, and SHA) can be found in Table S2.

3. Discussion

C. praecox, as an ornamental plant, has been cultivated for more than a thousand years.
It originated in China, was introduced in South Korea in the 17th century, and has subse-
quently been cultivated in other parts of the world such as Japan, Europe, the United States,
and Australia [3,4]. After a long history of cultivation, several C. praecox varieties have been
developed; however, only a few cultivars have been officially named. Notably, among these
varieties, there are some homonyms and synonyms [8,26]. Incorrect naming during cultiva-
tion has led to difficulties in accurately distinguishing between cultivars [27]. Molecular
markers play crucial roles in identifying and characterizing varieties and have been used
for variety identification. SSRs, also known as microsatellites, are essential marker systems
employed in plant genetic analysis, gene mapping, quantitative trait locus (QTL) mapping,
and marker-assisted selection (MAS) breeding due to their high mutation rates, widespread
distribution, and high density in a multitude of genomes [28,29]. Notably, their homolo-
gous character across related species in DNA coding regions and ample polymorphisms in
DNA non-coding regions [28,30] significantly contribute to the large variations observed.
SSR markers have been specifically utilized in various identification procedures in several
plants, such as Prunus persica [31], Morella rubra [32], Punica granatum [33], and sympodial
bamboo [34]. Traditional SSR development methods are difficult, expensive, and labor-
intensive; however, next-generation sequencing technology can effectively identify a large
number of SSRs at a lower cost with less labor [9,22,23]. Its main advantage lies in its ability
to generate a large amount of sequence data, facilitating the isolation and development of a
large number of whole genomes and gene-based SSR loci [29,35]. With the advancement in
next-generation sequencing (NGS) techniques, new methods of SSR marker development
have been discovered; these are grouped into gSSRs distributed throughout the whole
genome sequence and EST-SSRs embedded in transcriptional sequences [36,37]. EST-SSRs
are more economical compared with gSSRs. Additionally, EST-SSRs demonstrate more
efficient amplification, are highly transferable among plant species, and are less susceptible
to invalid alleles [10,38]. Transcriptome sequencing has seen recent advancement and
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is efficient; it enables the discovery of new genes, the identification of gene expression
patterns, and the facilitation of the development of molecular markers [39]. In this study,
162,638 unigenes were assembled; the average length of the unigenes was 1050 bp, and the
N50 was 2059 bp, indicating the high-quality assembly of transcriptome sequencing data.
Transcriptome data provide abundant resources for the SSR sites, which could contribute
to the identification and characterization of C. praecox varieties. Furthermore, our newly
developed microsatellite markers will be useful in the discrimination and identification of
C. praecox varieties and cultivars.

EST-SSRs are associated with targeted traits that are useful for directing allele selection,
detecting functional variations, and analyzing gene-associated genetics [40]. Notably,
changes, including replication slippage and other mutational mechanisms affecting SSR,
may lead to the gain or loss of function, gene silencing, and the induction of novel proteins,
bacterial pathogenesis, or virulence [41]. To obtain a comprehensive functional classification
of unigenes in the C. praecox transcriptome data, we performed gene function annotations
using the public databases of Nr, Nt, Swiss-Prot, Pfam, GO, KOG, and KEGG and found
that 50.90% of unigenes were functionally annotated in at least one database, with 15.30%
of unigenes functionally annotated across all databases. Additionally, 62,480 (38.42%),
47,180 (29.01%), and 56,185 (34.55%) unigenes were classified into GO, KOG and KEGG
categories, respectively; the largest categories in GO, KOG, and KEGG were “cellular
processes”, “general function prediction only”, and “global and overview maps” which
are valuable for developing functional EST-SSR markers. With the advent of faster and
cheaper next-generation DNA sequencing, large amounts of sequence data from different
plant species are generated exponentially, and consequently, transcriptome data are being
increasingly employed to develop EST-SSR markers [42].

In this study, EST-SSR markers for C. praecox were developed using NGS technology.
We detected 13,556 EST-SSR loci distributed among 11,691 of 162,638 unigenes. Among the
EST-SSR loci, trinucleotide repeat motifs were the most abundant, followed by dinucleotide
repeat motifs; this was not consistent with the results of previous research [9,22], which
reported that dinucleotide repeat motifs were the most abundant, followed by trinucleotide
repeat motifs. However, the controversy associated with C. praecox is similar to that reported
for Allium sativum. Furthermore, Li et al. [21] reported that dinucleotide repeat motifs were
the most abundant, which differed from the results of Liu et al. [43], which indicated that
trinucleotide repeat motifs were the most abundant. In addition, several plants, including
Elymus sibiricus [44], Pueraria thomsonii [45], Dolichos bean [46], Elymus breviaristatus [37],
and 14 tree species [47], demonstrate a similar pattern, where the trinucleotide repeat is the
most abundant in SSR. Variations in previous findings may be attributed to the SSR search
criteria, the size of the dataset, and the database mining tools [21].

Microsatellite markers have been extensively used in species and cultivar identification
to check the effectiveness of newly developed EST-SSR markers [4,19,24]. Seventy-five pairs
of SSR primers were randomly selected to assess the genetic diversity of the genotypes of
12 C. praecox varieties. In total, 66.7% of markers successfully amplified target bands, with
9.3% of markers showing high polymorphism. In addition, 33.7% of the markers failed
to amplify any fragments, potentially because the primers designed spanned splice sites
or large introns within the target amplicon [48]. Using cluster analysis, twelve varieties
of C. praecox were clustered into two monophyletic clades; seven varieties were clustered
in Clade I and five varieties were clustered in Clade II. In most cases, C. praecox cultivars
were categorized into three groups based on the color of the inner tepals: the Patens,
Intermedius, and Concolor groups [2,7,49]. Two varieties of the Intermedius group and
two varieties of the Patens group could be classified into one group, and the two Concolor
varieties in Clade I demonstrated a close relationship. The two Concolor varieties and one
Intermedius variety classified into one group in Clade II showed a close relationship. The
results indicated that EST-SSR markers significantly distinguished different varieties based
on the inner tepal color. This suggests that the EST-SSR markers may be associated with the
flower color phenotype. Notably, SSR may be related to targeted traits and play important
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roles in development, gene regulation, and evolution [50]. The results of the present study
demonstrated that phylogenetic analysis based on EST-SSR markers can provide valuable
references for variety identification and reveal a potential connection with the color of inner
tepals, providing a premise for the breeding of new varieties of C. praecox.

4. Materials and Methods
4.1. Plant Materials and DNA/RNA Extraction

Twelve different varieties of C. praecox plant materials were collected from the re-
source nursery at the Key Laboratory of Agricultural Biosafety and Green Production
of the Upper Yangtze River (Ministry of Education) of Southwest University in Beibei
District, Chongqing, in 2023 and used for transcriptome sequencing and the identification
of polymorphisms (Table S2). Fresh leaf tissues were cleaned and immediately preserved
in liquid nitrogen until DNA and RNA were extracted. Total genomic DNA was extracted
from leaves using the CTAB method [51]. Furthermore, two varieties (SHA and SX) were
selected for RNA extraction; the RNArep Pure kit (Tiangen Biotechnology, Beijing, China)
was used to extract total RNA. To ensure the quality and quantity of the DNA/RNA, 1%
agarose gel electrophoresis was used to observe the DNA/RNA extract, and a NanoDrop
ND-1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, MA, USA) was used
for quantitative detection.

4.2. Transcriptome Sequencing De Novo Assembly

Total RNA samples of acceptable purity and concentration were obtained. Next, library
construction was performed, mRNA was enriched using oligo (dT)-attached magnetic
beads, and the purified mRNAs were fragmented. First-strand cDNA was synthesized
using reverse transcriptase. Furthermore, double-stranded cDNA, synthesized using the
first-strand cDNA as a template, was subjected to end-repair of the double-stranded cDNA
fragments. Next, a single ‘A’ nucleotide was added to the 3′ ends of the blunt fragments,
and adaptor ligation was subsequently configured and set up to ligate adaptors with the
cDNAs. The final library was amplified using phi29 DNA polymerase to create DNA
nanoballs (DNBs) with over 300 copies of molecules and to check the quality of library
construction. The DNBs were loaded into a patterned nanoarray, and a counter terminal
reading of 100 base pairs on the BGIseq500 platform (BGIseq500, Shenzhen, China) was
generated. Measurement was conducted in triplicate.

4.3. Raw Data Analysis and Function Annotation

The raw data were filtered using SOAPnuke (v1.5.2) [52] by first removing reads
containing adapters (adapter contamination), reads with an unknown base (‘N’ base) ratio
>10%, and reads with a low-quality base ratio (base mass ≤ 15) > 50%; the clean reads
stored were stored in FASTA format. After obtaining clean reads and downloading genome
data of C. praecox (684 Mb in size) from published databases, we used HISAT to align them
with the reference genome sequence. Furthermore, the assembled unigenes were annotated
with seven major functional databases, including KEGG (Kyoto Encyclopedia of Genes
and Genomes), GO (Gene Ontology), NR (National Center for Biotechnology Informa-
tion nonredundant protein sequences), NT (Nucleotide Sequence Database), Swiss-Prot
(Swiss-Prot Sequence Database), Pfam (Protein Families Database), and KOG (EuKaryotic
Orthologous Groups of proteins), and the transcription factors were predicted [53–59].

4.4. Microsatellite Identification, PCR Amplification, and Data Analysis

MISA [60] was used to detect microsatellite loci according to the following criteria:
mono-nucleotide repeat motif repeat count ≥20, dinucleotide repeat motif repeat count
≥10, and other types of repeat motif repeat counts ≥5. Using Primer3-2.4.0 [61] software
to design primers, 75 pairs of primers with target product sizes between 100 and 300 bp
were randomly selected. Twelve C. praecox varieties were amplified to investigate poly-
morphisms in the SSR loci. PCR products were visualized using 8% polyacrylamide gel
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electrophoresis, and SSR was selected to amplify the expected product size to evaluate
polymorphisms. The products were placed in gel with 1×Tris-borate-EDTA (TBE) buffer
solution and run for 1.5 h at 200 V with 2000 bp molecular size ladder (Tiangen Biotech Co.,
Ltd., Beijing, China) (Figure S1). Next, the bands were observed using silver staining. For
SSR data analysis, alleles were manually scored based on size, with the absence of bands
interpreted as “0”, and the presence of bands interpreted as “1”. Genetic information such
as the number of alleles (Na), the effective number of alleles (Ne), Shannon’s information
index (I), and the Fixed index (F) of each locus was calculated using GenALEX 6.5 [62].
UPMGA cluster analysis was conducted using the NTSYS-pc 2.0 program [63].

5. Conclusions

A large number of SSR loci were identified using transcriptome data, and highly poly-
morphic microsatellite markers were developed and employed to differentiate C. praecox
varieties. Twelve varieties were categorized into two monophyletic clades. The molecular
markers developed in this study will contribute to the identification of C. praecox varieties
and provide a premise for conducting functional genomic, population genetic, and phy-
logenetic analyses of C. praecox. The above results can provide reference and guidance
for functional research on horticultural plants, the identification of different varieties, and
molecular breeding.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants13152131/s1, Figure S1. Amplified profile of markers (Samples were
listed in Table S2; L: 2000 bp ladder). (A). Amplified profile of marker CP14 and CP20. (B). Amplified
profile of marker CP22 and CP33. (C). Amplified profile of marker CP43 and CP44. (D). Amplified
profile of marker CP67. Table S1. Statistical information on the quality of transcriptome sequencing data.
Table S2. Sample collection of 12 Chimonanthus praecox varieties.
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