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Abstract: Identifying the catalytic regioselectivity of enzymes remains a challenge. Compared to
experimental trial-and-error approaches, computational methods like molecular dynamics simula-
tions provide valuable insights into enzyme characteristics. However, the massive data generated by
these simulations hinder the extraction of knowledge about enzyme catalytic mechanisms without
adequate modeling techniques. Here, we propose a computational framework utilizing graph-based
active learning from molecular dynamics to identify the regioselectivity of ginsenoside hydrolases
(GHs), which selectively catalyze C6 or C20 positions to obtain rare deglycosylated bioactive com-
pounds from Panax plants. Experimental results reveal that the dynamic-aware graph model can
excellently distinguish GH regioselectivity with accuracy as high as 96–98% even when different
enzyme–substrate systems exhibit similar dynamic behaviors. The active learning strategy equips our
model to work robustly while reducing the reliance on dynamic data, indicating its capacity to mine
sufficient knowledge from short multi-replica simulations. Moreover, the model’s interpretability
identified crucial residues and features associated with regioselectivity. Our findings contribute to
the understanding of GH catalytic mechanisms and provide direct assistance for rational design to
improve regioselectivity. We presented a general computational framework for modeling enzyme
catalytic specificity from simulation data, paving the way for further integration of experimental and
computational approaches in enzyme optimization and design.

Keywords: ginsenoside hydrolase; regioselectivity; active learning; graph neural networks; molecular
dynamics

1. Introduction

Plants of the genus Panax, belonging to the Araliaceae family, hold a prominent place
in traditional Chinese herbal medicine due to their various pharmacological activities and
therapeutic effects including anti-inflammatory, antioxidant, anticancer, neuroprotective,
and immune regulation [1]. As the primary bioactive compound in the perennial plant
Panax, ginsenosides have attracted widespread attention from both traditional medicine
and modern pharmacology. More than 80% of naturally derived ginsenosides are glyco-
sylated, involving numerous sites and types of glycosylation [2]. Clinical experiments
have demonstrated that deglycosylated ginsenosides exhibit stronger pharmacological
activities [3,4]. To promote molecular diversity and obtain rare deglycosylated bioactive
compounds, many methods such as heating, acid hydrolysis, and enzymatic transforma-
tions have been developed to facilitate deglycosylation reactions.

Considering its remarkable catalytic specificity, mild reaction conditions, and sus-
tainable resources, enzymatic hydrolysis stands out as the most effective approach for
achieving rare ginsenosides [5]. In this enzymatic conversion, glycoside hydrolases (GHs),
an enzyme family responsible for selectively eliminating sugar groups at specific positions
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within ginsenoside molecules, play a central role (Figure 1). With the advancement of bio-
chemical technology and metagenomic sequencing, a series of GHs have been successively
discovered, remaining a research hotspot in the field of biological resources. As early as
2007, a β-glucosidase was unveiled from Thermus Caldophilus, named Tcabgl1. This enzyme
can hydrolyze glucose, arabinopyranose, and arabinofurose glycosyl located outside the
C20 position of ginsenosides [6]. In 2013, Oh et al. discovered another β-glucosidase, called
Pfubgl1, isolated from Pyrococcus Furiosus, and characterized its capability to hydrolyze
almost all common sugar groups at the C6 position of ginsenoside [7]. In 2019, a novel
β-glucosidase (Tpebgl1) that can hydrolyze external glucose and arabinopyranose at the
C20 position of ginsenosides was derived from Thermotoga Petrophlia [8].
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senosides [12]. In particular, these enzymes complicate production applications due to 
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terns of allosteric inhibitor-bound and inhibitor-free TRAP1 [16]. Chuan Li et al. converted 
the MD trajectory into color images and used the convolutional neural networks to iden-
tify the different activity states of G proteins [17]. These studies demonstrate that ML 
models trained on simulated trajectories can achieve effective and accurate predictions at 
low cost. 

Figure 1. Regioselectivity of ginsenoside hydrolases. Ginsenoside hydrolases (Pfu, Tpe, Tca) with
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of ginsenosides.

Current research primarily focuses on discovering and characterizing GHs directly
from natural living organisms. However, traditional enzyme discovery methods are hap-
hazard, labor-intensive, and restricted by biological resources [9–11]. Naturally found GHs
often fail to meet industrial requirements for the conversion of specific and rare ginseno-
sides [12]. In particular, these enzymes complicate production applications due to issues
such as insufficient catalytic selectivity [13]. Furthermore, understanding the molecular
basis behind the regioselectivity of GHs remains a significant challenge.

Compared to trial-and-error experimental methods, structure-based computational
techniques, such as molecular docking, molecular dynamics (MD) simulations, and quan-
tum mechanical calculations, can elucidate the regioselectivity of enzymes from the poten-
tial molecular mechanism and provide an in-depth understanding of structure–function
relationships, enzyme–substrate interactions, and catalytic mechanisms. As the system size
and time scale increase, MD simulations generate a large number of structural trajectories.
For example, ligand dissociated from the receptor pocket and receptor conformation change
need millisecond-long MD simulations that will generate a large amount of simulation data.
However, it is difficult to use structure-based computational techniques to analyze such a
large amount of data. Fortunately, machine learning (ML) can reduce the high-dimensional
structure space to a low-dimensional feature space, improving the efficiency and speed
of MD simulation data analysis [14]. For example, Plante et al. used ML methods to
process a large amount of MD trajectory data to classify full agonist, partial agonist, and
inverse agonist of GPCRs with high accuracy [15]. Ferraro et al. analyzed the MD ensemble
through ML and successfully detected the dynamic patterns of allosteric inhibitor-bound
and inhibitor-free TRAP1 [16]. Chuan Li et al. converted the MD trajectory into color im-
ages and used the convolutional neural networks to identify the different activity states of G
proteins [17]. These studies demonstrate that ML models trained on simulated trajectories
can achieve effective and accurate predictions at low cost.

In this study, we propose a graph-based active learning computational framework to
identify regioselective residues of GHs from MD. Graph neural networks (GNNs) have been
widely used for modeling relational data. The active learning strategy has been employed
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to systematically evaluate ML’s modeling ability on MD data. The key interaction residues
between enzymes and substrates identified from MD trajectories are considered highly
relevant to the regioselectivity of GHs, elucidating the molecular mechanisms underlying
the broad substrate selectivity and regioselectivity of GHs. It is of great significance to
develop regionally specific GHs for industrial applications. Our findings will contribute to
a better understanding of the catalytic mechanisms of GHs and provide direct assistance for
the rational design of GHs to enhance their regioselectivity. We demonstrate a general ML-
driven computational framework for modeling enzyme catalytic specificity based on MD
simulation data, paving the way for further coupling of experimental and computational
approaches in enzyme optimization and design.

2. Materials and Methods
2.1. Experimental Data Collection and Structure Acquisition

To preserve consistency in the genetic background, GHs with distinct regioselectivity
while belonging to the same structural architecture, i.e., the (β/α)8-barrel structural archi-
tecture in glycoside hydrolase family 1, were screened based on literature reports [6–8].
To balance the regioselectivity and glycosyl type, three GHs were finally selected: Pfubgl1
(Pfu), Tpebgl1 (Tpe), and Tcabgl1 (Tca). Among these GHs, Pfu (GenBank ID: AAC25555.1)
stands out for its specificity in catalyzing the C6 outer sugar group, exhibiting insensitivity
to various glycan types such as glucose (glu), xylose (xyl), and rhamnose (rha). There are
two GHs, Tpe and Tca, both targeting sugar groups located outside C20. The GenBank IDs
of Tpe and Tca are ABQ46970.1 and AAO15361.1, respectively. Tpe hydrolyzes glu and
arabinopyranose (arap) sugar groups, whereas Tca demonstrates catalytic activity towards
three type sugar groups, i.e., glu, arap, and arabinofurose (araf).

The amino acid sequences (Supplementary Figure S1) of Pfu, Tpe, and Tca were ob-
tained from the UniProt database [18] with IDs Q51723, A5IL97, and Q8GHE5, respectively.
Based on the catalytic annotation provided by the UniProt, the catalytic residues of Tpe
are E166 and E351, while those residues in Tca consist of E164 and E338. By structurally
aligning with Tpe and Tca, the catalytic residues of Pfu were inferred as E207 and E372.
Three-dimensional structures of Pfu, Tpe, and Tca predicted by the AlphaFold2 were
accessed from the AlphaFold Protein Structure Database [19].

Structures of glycosylated ginsenosides were obtained from the PubChem database [20],
with accession numbers as follows: R1 (80418-24-2), R2 (80418-25-3), Re (52286-59-6), Rf
(52286-58-5), Rg2 (52286-74-5), Rb1 (41753-43-9), Rb2 (11021-13-9), and Rc (11021-14-0). The
RDKit software (version 2023.3.2) package (https://www.rdkit.org, accessed on 1 Febru-
ary 2024) was employed to handle molecular structures. The structures of all substrate
molecules are shown in Supplementary Figure S2.

Sequences of Pfu, Tpe, and Tca were aligned using the MAFFT online tool [21], and
the results were visualized using ESPript (version 3.0) [22]. For structural superimposition
and display, Pymol (version 2.5.4) software (https://pymol.org, accessed on 1 February
2024) was employed.

2.2. Molecular Docking and Validation

Complexed structures of ginsenoside hydrolase and its corresponding glycosylated
ginsenoside were constructed through molecular docking and validation. The docking
process was implemented using AutoDock Vina 1.1.2 [23]. The grid center coordinates of a
cubic simulation box were placed at the geometric center of the catalytic residues for each
enzyme. The box size of 40 × 40 × 40 Å was designed to encompass all substrates with
various glycosyl types. Proteins and ligands were prepared using prepare_receptor4.py
and prepare_ligand4.py in MGLtools (Version 1.5.6) (https://ccsb.scripps.edu/mgltools,
accessed on 1 February 2024), respectively. For each enzyme–substrate pair, 5000 docking
poses were generated employing an exhaustiveness of 25, an energy_range of 10, and a
num_modes of 20, while other parameters remained at their default values. Following the
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docking procedure, docking results were meticulously analyzed and selected regarding the
crystal structure of the glycoside hydrolase family.

2.3. Molecular Dynamics Simulations

All MD simulations were performed by GPU-accelerated programs in Amber 22 [24].
Structural refinements of the enzyme and parameterizations of the substrate were accom-
plished by ‘pdb4amber’ and ‘reduce’ commands in Amber tools, respectively. Each system
was individually solvated using TIP3P water molecules [25] in an octahedral box, ensuring
a minimum distance of 10 Å between the box wall and any solute atom. The ‘addIons2’ com-
mand in ‘tleap’ automatically adds the corresponding number of Na+ or Cl− atoms to make
the system in a charge-balanced state. The solvated system was minimized using 500 steps
of steepest descent followed by 1500 steps of conjugated gradient methods. The bonded
and nonbonded parameters of the enzyme and substrate were treated with the AMBER
ff14SB force field [26] and the generalized AMBER force field version 2 [27], respectively.

For each enzyme–substrate system, three replicas (r1–r3) of 100 ns production MD
simulations were carried out following a standardized protocol. Atomic velocities gener-
ated by the Maxwell distribution at 310 K were initialized for each replica. The SHAKE
algorithm was applied to constrain all covalent bonds involving hydrogen atoms [28]. The
van der Waals and short-range electrostatics were cut off at 12.0 Å with a switch at 10.0 Å.
The particle mesh Ewald summation method was employed for long-range electrostatic
interaction [29]. Protein and non-protein components were independently coupled to
a 310 K and 1 atm with an external bath. The whole system was simulated under the
isothermal–isobaric ensemble with a time step of 2 fs until reaching 100 ns. The system
coordinates were saved as a snapshot every 10 ps for the following analysis. All simulation
systems are shown in Table 1.

Table 1. Simulation systems for the regioselectivity of ginsenoside hydrolase.

Regioselectivity Ginsenoside Hydrolase Substrate

C-6 Pfubgl1 (pfu) R1, R2, Re, Rf, Rg2

C-20
Tpebgl1 (Tpe) Rb1, Rb2
Tcabgl1 (Tca) Rb1, Rb2, Rc

2.4. Trajectory Analysis Methods

The trajectory was analyzed by Amber’s tool ‘cpptraj’ and the Prody package [30].
All results were presented using custom Python scripts based on the matplotlib [31] and
seaborn (https://seaborn.pydata.org, accessed on 1 February 2024) libraries. The solvent-
accessible surface area (SASA) was computed using cpptraj’s ‘surf’ command. RMSD (root-
mean-square deviation) and RMSF (root-mean-square fluctuation) values were conducted
utilizing the ‘rmsd’ and ‘atomicfluct’ commands in ‘cpptraj’, respectively. Before RMSD
and RMSF calculation, all trajectories were aligned to their respective initial structure to
reduce the impact of overall translation and rotation. Only Cα atoms were involved in
computing RMSD and RMSF.

The formula of RMSD is:

RMSD =

√
1
N ∑N

i=1(xi − yi)
2

where N is the number of Cα atoms, and xi and yi denote the coordinate vectors of the i th
Cα atom in the snapshot and initial structure, respectively.

For the i th Cα atom, its RMSF is calculated by:

RMSFi =

√
1
T ∑T

t=0

(
xt

i − ⟨xi⟩
)2

https://seaborn.pydata.org
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where T is the total number of snapshots in a trajectory, xi denote the position vectors of
the i th Cα atom in the snapshot t, and ⟨xi⟩ is the average position vector of the i th Cα

atom over all snapshots.
The ‘cluster’ command in ‘cpptraj’ was used for clustering, with the algorithm set to

DBSCAN algorithm, min points set to 25, and epsilon set to 0.9. The binding modes of the
representative structures were analyzed using LigPlot software (version 2.2.8) [32].

2.5. Graph Neural Network

A heterogeneous graph involving two types of nodes, substrate and enzyme residue,
was employed to model the molecule interaction between ginsenoside hydrolase and
glycosylated substrates. The entire substrate molecule was abstracted as a substrate node.
All residues whose Ca atom is located less than 5 Å away from any atom of the substrate
in the initial structure were modeled as residue nodes. In this heterogeneous graph, there
are two types of edges to describe interactions between the substrate and enzyme residues
and interactions among enzyme residues. For the first type of edge, the substrate node was
connected to each residue node. Residues that interact with each other were connected
by edges between residue nodes based on a typical distance between their Ca atom pairs
smaller than 7 Å.

Each snapshot in every trajectory was modeled as a heterogeneous graph. Substrate
node was characterized by the one-hot encoding based on regioselectivity and glycan
type. Residue node features include covalent interactions (bond energy, angle, dihedral
angle) and non-covalent interactions (van der Waals, electrostatic interactions), which were
calculated by the energy command in ‘cpptraj’.

The learning process was implemented using the PyTorch Geometric [33] library and
the PyTorch [34] framework. A GNN model comprising three SageConv layers [35], one
dropout layer, and one linear layer was constructed to classify the regioselectivity, i.e., C6
or C20, of GHs. The loss function adopted the cross-entropy. The optimization for learning
utilized Adam. To fine-tune the learning rate effectively, 40 rounds of Bayesian optimization
followed by 10 rounds of random search were employed to iteratively refine it within the
hyperparameter space ranging from 0.01 to 0.0001.

In the GNN model, the message-passing process in the l-th layer is shown in the following:

hl
v =

⊕
r ∈ R

f (l,r)θ

(
hl−1

v ,
{

hl−1
w : w ∈ Nr(v)

})
where f (l,r)θ represents the relation instance, Nr(v) represents all neighboring nodes of
vertex v under relation r, and ⊕ represents the aggregation function.

The first-replica trajectories of Pfu complexed with R2, Re, or Rf, Tpe complexed with
Rb2, and Tca complexed with Rb1 or Rc were selected as the training set. The GNN model
was trained by 5-fold cross-validation. The trajectories of the second and third replicas
were used as the replica test set. The first-replica trajectories of Pfu complexed with R1
and Rg2, Tpe complexed with Rb1, and Tca complexed with Rb2 are selected as the glycan
test set.

2.6. Uncertainty Calculation

The epistemic uncertainty was used to assess the uncertainty caused by the fact that the
parameters and structure of the model may not be completely accurate [36]. Using Monte
Carlo dropout, the model generates slightly different predictions for the same sample over
multiple iterations. The model’s uncertainty is determined by calculating the variance of
these predictions.

2.7. Evaluation Metrics

To evaluate the classification performance of GHs’ regioselectivity, a confusion matrix
comprising four elements, including true positive (TP), false positive (FP), false negative
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(FN), and true negative (TN), was used. TP indicates the number of samples correctly
identified as positive by the classifier, while FP indicates the number of negative samples
mistakenly classified as positive. FN represents positive samples incorrectly classified as
negative, and TN denotes correctly identified negative samples. Based on the confusion ma-
trix, four evaluation metrics, including precision, recall, accuracy, and Matthews correlation
coefficient (MCC), were calculated by:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TN + TP

TN + TP + FN + FP

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

2.8. Interpretability Algorithm

A mask strategy was used to filter out the subgraphs that have the greatest impact
on model performance [37]. The Captum algorithm that supports heterogeneous graphs
was employed to extract model interpretability [38]. The fidelity score was selected as an
evaluation indicator for the reliability of interpretability. The subgraph’s contribution to
the prediction was evaluated by comparing fidelity scores before (fid+) and after (fid−)
removing the important subgraph. Here, fid+ represents necessity. If removing the sub-
graph from the initial graph changes the model’s prediction, it also indicates the subgraph’s
importance. Fid- represents sufficiency. If the presence of a subgraph alone leads to the
model’s initial prediction, it indicates the subgraph’s importance. The specific formulas are
as follows:

f id+ =
1
N ∑N

i=1 1(ŷi = yi)− 1
(

ŷi
GC\S = yi

)
f id− =

1
N ∑N

i=1 1(ŷi = yi)− 1
(

ŷi
GC = yi

)
where yi and ŷi are the label and prediction of graph i, respectively. N is the number of
graph samples. ŷi

GC and ŷi
GC\S represent the prediction of the model when the subgraph

is retained and removed, respectively. When ŷi and yi are equal, 1 is returned, otherwise,
0 is returned.

3. Results and Discussion
3.1. Sequence and Structure Alignments of Ginsenoside Hydrolase

GHs with different regioselectivities share a typical (β/α)8-barrel structural architec-
ture, which is commonly found in glycoside hydrolase family 1 (Figure 2). This structural
form, known as the TIM-barrel fold, was first discovered in the triosephosphate isomerase
(TIM) [39]. Despite the high similarities in their core structures, the selected GHs exhibit
several insertions or deletions in the peripheral rings, labeled as M regions (Figure 2A–C).
In Pfu, fragments of the sequence were inserted into the βα2, βα3, and βα6, denoted as
M_β2_α2, M_β3_α3, and M_β6_α6, respectively. For Tpe and Tca, insertions occur between
α5 and β6, and within βα7, recorded as M_α5_β6 and M_β7_α7, respectively. These inser-
tions or deletions in peripheral loop regions will influence the structural flexibility of GHs.
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In the (β/α)8-barrel structure, the active site contains two conserved carboxylic acid
residues on β strands 4 and 6, serving as the catalytic acid/base and nucleophile, respec-
tively. Additionally, the elongated molecular structure of ginsenosides is associated with
the loop regions around the catalytic surface, particularly concentrated in the loops in
βα5 and βα8. Structural analysis showed that βα4, βα5, βα6, and βα8 (highlighted in
Figure 2D–F) are closely related to the substrate specificity of GHs.

3.2. Cluster Analysis of Substrate Docking Poses

Due to the lack of experimentally resolved substrate-complexed GH structures, experiment-
resolved structures of glycoside hydrolase family 1 with substrates were selected as ref-
erences to validate the docking results. The steps for selecting reference experimental
structures were as follows (Figure 3): (1) Obtaining all experimental structures of gly-
coside hydrolase family 1. (2) Identifying experimental structures with polysaccharide
substrates. (3) Since ginsenosides have two sugar rings, experimental structures with
substrates containing two sugar rings were further screened. (4) Excluding structures
with high sequence similarity or those that are too long or too short. (5) Ensuring that the
catalytic residues are as similar as possible to those of GHs. Ultimately, three reference
experimental structures complexed with substrates were obtained, with PDB IDs of 2O9R,
4PTV, and 8B81, respectively.
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Figure 3. Molecular docking process. (A) Obtaining representative docking poses by clustering
a large number of docking results. (B) Screening reference structures from glycoside hydrolase
family 1. (C) Selecting the docking pose closest to the reference structure as the final result. (D) Local
comparison of the final docking result of ginsenoside hydrolase Pfu and substrate R1 with the
reference structure 8B81.

Different glycosylated ginsenoside substrates were docked to GHs. After aligning
with the reference structure, the distance between every docking result and the glycosidic
bonds in the reference structure was calculated. All docking results within 5 Å of the
glycosidic bond distance to the reference were screened out, and then these docking results
were clustered. The glycoside hydrolases operate substrates by two acidic residues: one
as a general acid residue and the other as a nucleophile. The spatial position between
the glycosidic bond in the substrate and the active residues of the enzyme is a critical
factor affecting catalysis [40]. Therefore, we validated and selected the docking results
based on the distance between the glycosidic bonds between the docking results and
the reference structure. The docking result with the shortest distance in each cluster is
chosen as the representative structure. By comparing the orientation of each representative
structure and the reference structure, the structure most similar to the reference structure
was selected as the final docking result. For example, the final docking result of Pfu and R1
was compared with the reference structure 8B81 with the docking energy of −8.4 kcal/mol
and the distance between the glycosidic bond of 0.65 Å, yielding highly reliable docking
results. Detailed docking results of enzymes and substrates are shown in Supplementary
Table S1 and Figure S3.

3.3. Different Systems Exhibit Similar Dynamic Macroscopic Properties

To evaluate the molecular dynamic differences of GHs with different regioselectivities,
we statistically analyzed the macroscopic dynamic properties represented by RMSD and
SASA in each simulation system (Figure 4). RMSD is a quantitative indicator to compare
the structural differences between proteins during simulations and reference structures,
assessing simulation stability and convergence. RMSD values of all simulation systems are
between 0.75 and 1.75 Å with minor fluctuations, indicating that the simulation systems
are very stable (Figure 4A). Among them, Pfu and Tpe have similar RMSD distributions,
ranging from 1.0 to 1.5 Å. The RMSD value of Tca (1.25–1.75 Å) is slightly higher than those
for Pfu and Tpe. The RMSD comparison indicates that there is no significant difference
between GHs with different regioselectivities when complexed with different substrates.

SASA is a commonly used statistical measure to characterize the exposed surface area
of proteins. Based on SASA, the solubility, metal ion coordination ability, surface activity,
and other properties of proteins can be evaluated. As shown in Figure 4B, the SASA of Pfu
and Tca is distributed between 16,000 and 18,000 Å

2
, while the SASA of Tpe is distributed

between 15,000 and 17,000 Å
2
, indicating that there is no obvious difference among the
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three in terms of SASA properties. Combined with the comparison of RMSD, it is clear that
GHs with different regioselectivities exhibit similar macroscopic dynamic properties.
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3.4. Residue Dynamics Exacerbate the Challenge of Distinguishing Regioselectivity

By comparing and analyzing RMSF during the MD simulations, the flexibility and
dynamics of different regions in the enzyme can be revealed, providing crucial insights
into understanding the relationship between molecular structure and function. As shown
in Figure 5, the regions with higher flexibility are located in the βα4_loop, βα5_loop, and
βα6_loop around the active site in the Pfu and Tpe. However, in the Tca, the areas with
greater flexibility are concentrated in the outer α-helical regions near the βα4, away from
the active site. The clustering of highly flexible regions near the active site suggests that
these loop regions have some special relationship with the substrate specificity of GHs.

Figure 5. Conformational dynamics of ginsenoside hydrolases, Pfu (A), Tpe (B), and Tca (C). 3D
backbone representation structures mapped with per-residue average backbone RMSF (root-mean-
square fluctuation) values. The backbone color ranges from red to blue corresponding to line thickness,
and denotes backbone RMSF values varying from lowest to highest.
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3.5. Classification Performance of Graph Neural Network

To identify the regioselectivity of GHs, we encoded the structure of the enzyme–
substrate complex as a heterogeneous graph and modeled it from MD simulations using
energy terms such as electrostatic interactions and van der Waals interactions (Figure 6).
We constructed a dataset based on MD trajectories, where each frame of the simulation was
abstracted into a heterogeneous graph. The structure and function of the complex system
can be more comprehensively described and better understood by integrating information
from different data sources in the heterogeneous graph representation. By modeling the
enzyme–substrate complexes as heterogeneous graphs, we aim to capture more detailed
residue–residue and residue–substrate interactions, facilitating a better understanding and
utilization of complex data relationships for more precise and intelligent applications.
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Figure 6. The overall architecture of the proposed workflow. Each frame in the molecular dynamic
(MD) trajectory is represented as a heterogeneous graph, which contains residue and substrate nodes
and their residue–residue (RR) and residue–substrate (RS) edges. The model consists of 3 SageConv
layers, a pooling layer, a dropout operation, and a linear mapping.

We trained our model using 5-fold cross-validation on the training set and evaluated
its performance on the glycosyl and replicate test sets (Table 2). In the glycosyl test set, the
model achieved a precision of 96.6%, a recall of 100%, an accuracy of 98.1%, and an MCC of
96.4, demonstrating excellent performance in the site classification task of regioselectivity
of GHs. To test the generalization ability of the model, our train set and glycan test set
are composed of different systems. Our model showed strong generalization ability and
accurate identification of the glycan test set. The low variance in these evaluation metrics
indicates the high reliability and robustness of our model. Additionally, the uncertainty
score of 0.0214 further supports the model’s stability. To illustrate the role of multiple MD
trajectory replicates in ML scenarios, we built a replica test set. Our model also performed
very well on the replicate test set, suggesting that a model trained on replicates from the
same system can accurately recognize other replicate data, implying that multiple MD
trajectory replicates are not necessary during the model training process.

Table 2. Classification performance of ginsenoside hydrolase regioselective.

Dataset Precision Recall Acc Mcc Uncertainty

Glycan test set 96.6 ± 3.8 100.0 ± 0.0 98.1 ± 2.1 96.4 ± 4.0 0.0214 ± 0.0187
Replica test set 98.5 ± 1.4 100.0 ± 0.0 99.2 ± 0.8 98.5 ± 1.5 0.0075 ± 0.0069

3.6. Active Learning Weakens Reliance on Molecular Dynamics

To study the impact of simulation duration on model performance, we referred to
the idea of the active learning approach, starting with a small amount of training data
and gradually increasing the training set to train the model. We selected training data
from the training set based on different active learning strategies and evaluated their
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impact on model performance (Figure 7). Two data selection strategies were employed:
(1) Accumulation: Commencing from the start of the MD simulation trajectory and sequen-
tially adding training data. (2) Average: Uniformly selecting the required training data in
the whole simulation trajectory.
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Figure 7. Active learning from molecular dynamics. (A) Active learning model training process.
(B) Active learning training data selection strategy.

As shown in Table 3, the performance of models trained with both data selection
strategies improved as the amount of training data increased. However, the models trained
with the average selection strategy outperformed those trained with the accumulation
strategy, revealing that the average strategy captures a broader distribution of data. When
the training data increased to 20 ns, the accuracy for the accumulation and average strategies
reached 95.2% and 98.1%, respectively, which is very close to the 98.1% accuracy achieved
using the full-length MD trajectories, suggesting that extended MD simulations are not
necessary. For the task of determining regioselectivity in GHs, about 20 ns simulation data
may be sufficient for the training requirements of deep learning models.

Table 3. Effect of active learning strategies (accumulation and average) on classification performance
of ginsenoside hydrolase regioselective.

Cumulative
Data

Accumulation Average

Precision Recall Acc Mcc Uncertainty Precision Recall Acc Mcc Uncertainty

3000 (5 ns) 84.2 ± 8.7 100.0 ± 0.0 90.0 ± 6.4 82.0 ± 10.8 0.0395 ± 0.0033 91.6 ± 6.6 100.0 ± 0.0 95.1 ± 4.0 90.9 ± 7.3 0.0335 ± 0.0180
6000 (10 ns) 86.6 ± 9.2 100.0 ± 0.0 91.6 ± 6.2 84.9 ± 10.8 0.0357 ± 0.0132 92.8 ± 4.0 100.0 ± 0.0 95.9 ± 2.3 92.3 ± 4.3 0.0111 ± 0.0058

12,000 (20 ns) 92.1 ± 8.4 100.0 ± 0.0 95.2 ± 5.4 91.2 ± 9.7 0.0233 ± 0.0104 96.6 ± 4.2 100.0 ± 0.0 98.1 ± 2.3 96.4 ± 4.4 0.0165 ± 0.0160

3.7. Model Interpretability and Its Important Elements

Although ML models have achieved high accuracy in modeling MD data, their
“black box” nature hinders the understanding of the results and limits their application in
biomolecular systems. Therefore, model interpretability algorithms were employed to iden-
tify key residues related to regioselectivity in enzyme–substrate interactions. Our approach
consists of the following steps (Figure 8): (1) Interactively masking some subgraphs on the
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original graph and finding the subgraph that has the greatest impact on the model predic-
tions. (2) Integrating the gradients of node features to determine the importance of nodes
and features. (3) Evaluating the reliability of the model’s interpretability by comparing
fidelity scores before and after removing the important subgraph.
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Figure 8. Model interpretability. The explanation (A) and evaluation (B) process of model interpretability.

As shown in Table 4, among the five node features with the greatest impact on classifi-
cation, short-range (elec14) and long-range (elec) electrostatic interaction energy occupies a
predominant position, accounting for nearly 100% of the influence. Electrostatic interac-
tions, through the attraction and repulsion between charges, significantly affect the affinity
and selectivity between enzymes and substrates, highlighting their crucial role in regios-
electivity. We analyzed the top five edges with the greatest impact on classification. In
Tpe and Tca, the edges between the enzyme residues and the substrate (RS) are the most
critical, accounting for nearly 100% of the influence. In Pfu, both the internal edges between
enzyme residues (RR) and the RS edges are important, each contributing approximately
50%. Compared to Pfu, the RS edges in Tpe and Tca are more crucial for determining
enzyme regioselectivity. The importance analysis achieved near 1.0 Fid+ scores and 0 Fid-
scores, indicating that our interpretability is highly reliable. In summary, according to the
interpretable algorithm, the most important feature of regioselectivity is electrostatic inter-
action. In addition, the interpretable algorithm also pointed out that the RS edge is the most
important in the edge importance analysis, which means that the electrostatic interaction
between the residue and the substrate has the greatest impact on the regioselectivity.
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Table 4. The important features and edges identified by the model with validation by Fidelity score.

Ginsenoside
Hydrolases

Feature Importance Edge Importance Fidelity Score

Bond Angle Dih Vdw14 Elec14 Vdw Elec RR Edge RS Edge Fid+ Score
(↑)

Fid− Score
(↓)

Pfu 0% 0% 0% 0% 96% 0% 4% 54% 46% 0.95 0.05
Tpe 0% 1% 0% 0% 69% 0% 30% 0% 100% 1.00 0
Tca 0% 0% 0% 0% 62% 0% 38% 1% 99% 0.99 0.01

3.8. Regioselective Residues Extracted from Model Interpretability

The top 10 residues most critical for the classification task were identified by model
interpretability (Supplementary Figure S4). The cyan boxes in Supplementary Figure S1
mark the top 10 important residues in the sequence. To further determine the residues
associated with the regioselectivity of GHs, we clustered the substrate conformations from
the MD trajectories and extracted the binding modes of the two main conformations with
the largest population (Figure 9).Molecules 2024, 29, x FOR PEER REVIEW 14 of 17 
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Figure 9. Binding modes of ginsenoside hydrolases with substrates. Conformational clustering of Pfu
with substrate R1 (A), Tpe with substrate Rb1 (D), and Tca with substrate Rb1 (G). Binding modes of
the representative conformations of Pfu with substrate R1 (B,C), Tpe with substrate Rb1 (E,F), and
Tca with substrate Rb1 (H,I). The same residues in the two binding modes are circled in red, and the
top 10 important residues are marked in red font.
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From the cluster ensemble of substrate R1 conformations in Pfu (Figure 9A), it can
be seen that the substrate exhibits a stable binding mode with minimal conformational
fluctuations due to the constraint by the enzyme’s catalytic site. However, regions far away
from the catalytic site show larger conformational fluctuations. The βα4_loop, βα5_loop,
and βα6_loop, being close to the highly fluctuating parts of the substrate, consequently
exhibit significant conformational variability. Examining the two primary conformations of
substrate R1 in Pfu (Figure 9B,C), the key interacting residues in both binding modes are
similar, mainly involving residues on the βα4_loop, βα5_loop, and βα6_loop. Among these
interacting residues, six are consistent with model interpretability and five are common
to both binding modes Trp151, Glu207, Trp346, Trp410, and Trp418. It should be noted
that Glu207 is a catalytic site residue, while hydrophobic Threonine in 151, 346, 410, and
418 positions provide a favorable hydrophobic environment for substrate binding.

Similar to Pfu, the conformational fluctuations of the substrates in Tpe (Figure 9D) and
Tca (Figure 9G) were large when they interacted with βα4_loop, βα5_loop, and βα6_loop.
In the binding modes of Tpe (Figure 9E,F) and Tca (Figure 9H,I), both of them mainly
established strong connections with βα4_loop and βα6_loop. The key residues identified
by the model interpretability are mainly distributed in βα4_loop and βα6_loop, implying
their strong relationship to the regioselectivity of GHs.

4. Conclusions

Our study has significantly advanced the understanding of GHs by identifying re-
gioselective residues using a novel graph-based active learning framework combined with
MD simulations. The dynamic-aware graph model demonstrated remarkable accuracy
(96–98%) in distinguishing GH regioselectivity, even among enzyme–substrate systems
with similar dynamic behaviors. This high level of precision underscores the robustness
of our active learning strategy, which efficiently reduces reliance on extensive dynamic
data by leveraging short multi-replica simulations. Furthermore, the interpretability of
our model allowed us to pinpoint crucial residues and features associated with the re-
gioselectivity of GHs, offering valuable insights into their catalytic mechanisms. These
findings not only enhance our fundamental understanding of GHs but also have practical
implications. The ability to accurately model enzyme catalytic specificity paves the way
for the rational design of GHs, potentially leading to more efficient industrial processes
for producing rare deglycosylated bioactive compounds from Panax plants. In conclusion,
the computational framework we developed bridges the gap between experimental and
computational approaches, offering a comprehensive tool for enzyme optimization and
design. This integration holds promise for future applications in biotechnology, where
tailored enzymatic properties can be engineered to meet specific industrial needs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29153614/s1, Figure S1: Sequence comparison of Pfu,
Tpe, and Tca., Figure S2: Structural representation of the substrate, Figure S3: Final docking poses
compared to reference structures, Figure S4: Important residues associated with the regioselectivity
of ginsenoside hydrolases; Table S1: Details of the final docking result.
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