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Abstract: Cancer is the second leading cause of death in the world following cardiovascular disease.
Its treatment, including radiation therapy and surgical removal of the tumour, is based on phar-
macotherapy, which prompts a constant search for new and more effective drugs. There are high
costs associated with designing, synthesising, and marketing new substances. Drug repositioning
is an attractive solution. Fluoroquinolones make up a group of synthetic antibiotics with a broad
spectrum of activity in bacterial diseases. Moreover, those compounds are of particular interest to
researchers as a result of reports of their antiproliferative effects on the cells of the most lethal cancers.
This article presents the current progress in the development of new fluoroquinolone derivatives
with potential anticancer and cytotoxic activity, as well as structure–activity relationships, along with
possible directions for further development.
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1. Introduction

The National Cancer Institute (NCI) defines cancer as a disease in which some of the
body’s cells grow uncontrollably and spread throughout the body. Long periods of cell divi-
sion, accumulation of oncogenic mutations, and favourable localisation of lesions allowing
for the accumulation of abnormal cells appear to be necessary to initiate the carcinogenesis
process [1]. According to statistical data, cancer is the second leading cause of death in the
world following cardiovascular disease [2–4]. Among the most lethal cancers, the World
Health Organisation indicates lung, colon, liver, stomach, and breast cancers [5]. Cancer
treatment is based on a reductionist approach. The methods used primarily encompass
pharmacotherapy (chemotherapy, immunotherapy), radiotherapy, and surgical removal
of the lesion [6]. Despite medical progress, the prognosis for patients may remain un-
favourable. The lack of a perfect panacea and the high costs of designing, synthesising, and
marketing new medicinal substances encourage the search for an anticancer drug among
derivatives of available drugs through the so-called repositioning of the drug [7].

Fluoroquinolones make up a group of synthetic antibacterial drugs with a broad
spectrum of activity in invasive medical and veterinary infections. They are used in
infections of the urogenital tract, respiratory tract, and gastrointestinal tract caused by
Gram-positive and Gram-negative microorganisms [8]. They are also successfully used in
the treatment of bacterial infections of the eyes, bones, joints, and soft tissues [7–9]. They
also have antiviral activity [9,10]. Chemically, fluoroquinolones are derivatives created by
modifying the skeleton of 4-oxo-1,4-dihydroquinolones. In addition to the oxygen groups
necessary for pharmacological activity, namely, carboxyl and ketone groups at positions
3 and 4 of the ring skeleton, respectively, they contain one or two fluorine atoms in their
structure [11,12].

Nalidixic acid obtained as a byproduct of the synthesis of chloroquine has been the
first compound classified as a quinolone antibiotic. The ring structure of that compound
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is 1,8-naphthyridine [13]. Nalidixic acid was a drug with a narrow spectrum of pharma-
cological action widely used in the 1960s in urinary tract infections. Modifications of the
structure of nalidixic acid have led to the preparation of approximately 10,000 analogues
classified into four generations of quinolones [13,14]. In addition to nalidixic acid, repre-
sentatives of the first generation of quinolones also include piromidic acid and pipemidic
acid. Replacing the carbon atom with a nitrogen atom at position 6 of the nalidixic acid
ring skeleton and introducing heterocyclic substituents at position 7 (in piromidic acid, the
substituent is pyrrolidine with one nitrogen heteroatom, and in pipemidic acid, piperazine
containing two nitrogen heteroatoms) has resulted in the preparation of drugs with an ex-
tended spectrum of activity against Gram-negative bacteria and that are very well absorbed
after oral administration [15,16]. The second and third generations include 4-quinolone
derivatives containing one or two halogen atoms in the heterocyclic system (most often
fluorine–fluoroquinolones), while the fourth-generation antibiotics differ mainly in terms
of modifications within the heterocyclic substituent at position 7. Those structural changes
have a positive impact on the antibacterial activity properties of quinolones, extending the
spectrum of their action onto Gram-positive bacteria, as well as anaerobic and atypical
bacteria [11]. The most important representatives of the second-generation quinolones are
ciprofloxacin, norfloxacin, ofloxacin, pefloxacin, lomefloxacin, and fenoxacin. The third
generation includes levofloxacin, sparfloxacin, and grepafloxacin. The fourth-generation
drugs include moxifloxacin and gemifloxacin.

The mechanism of the antibacterial action of fluoroquinolones is based on the inhibi-
tion of bacterial enzymes involved in DNA replication. By inhibiting DNA gyrase, they
prevent the binding of initiation proteins, thus inhibiting the initiation of the replication
process. Inhibition of topoisomerase IV prevents decatenation, thereby preventing the
separation of genetic material into two daughter cells. Inhibition of proper DNA replica-
tion leads to apoptosis of bacterial cells [17]. Moreover, fluoroquinolones have anticancer
potential, manifested by their ability to inhibit the cell cycle and induce apoptosis of cancer
cells. In this review, we have decided to elaborate upon the current progress in the develop-
ment of new fluoroquinolone derivatives showing anticancer properties and correlations
between the structure of those compounds and their cytotoxic activity towards cancer cells.

2. Structure of Fluoroquinolones and Their Antiproliferative Activity

The chemical structure of fluoroquinolones is very diverse, and small structural modi-
fications may significantly affect their biological activity. Several structural elements of fluo-
roquinolones appear to be of particular importance in their mechanism of anticancer action.

As mentioned below, the core of fluoroquinolones is a modified quinoline ring
(Figure 1). Its structure is crucial in inhibiting topoisomerase II, which is an enzyme
involved in numerous processes related to the replication of genetic material [18,19]. The
nitrogen at position 1 is necessary for activity, and the type of substituent on this atom
determines the potency of the activity. The related literature data indicate the advantage
of the cyclic substituent (cyclopropyl) over chain substituents in the inhibitory effect on
topoisomerase II [20]. In order to achieve anticancer activity, a fluorine atom at position
6 of the quinolone ring is necessary. The introduction of an additional fluorine atom or a
methoxy group at position 8 increases the effectiveness of that action [18].
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Similarly to the carboxyl group at position 3, the heterocyclic substituent at position 7
has a significant impact on the antibacterial activity of fluoroquinolones and the interaction
with the prokaryotic topoisomerase-DNA complex, but it does not have an affinity for
eukaryotic topoisomerases. It thus gives fluoroquinolones selectivity towards bacterial
enzymes. In order to change the profile of action toward cancer cells, it is important to
induce modifications within both functional groups [18,20,21].

Based on this information, five representatives of fluoroquinolones were selected,
and their tumorigenic activity against cancer cell lines was characterised. The data are
summarised in Table 1, along with the structural formulas of the selected compounds.

Table 1. Anticancer activity of fluoroquinolones.

Comp.
No.

Name and Structure
of Fluoroquinolone Cell Line/Activity Mechanism of

Anticancer Activity Ref.

1

Ciprofloxacin
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µM 
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cer cells/238 µM 

Cell cycle arrests in S phase, 
induction of apoptosis [25] 

Huh7/29.4 µM, 
HepG2/2.9 µM 

liver cancer cells 

Increased expression of 
CD86+CD206- macrophages 
leading to inhibition of cell 

growth 

[26] 

Lung cancer 
cells A549 

Cell cycle arrests in G2/M 
phase 

[27] 

2 

Norfloxacin 

 

NCI-H460 lung 
cancer 

cells/43.5% of in-
hibition at 200 

µM  

Antiproliferative effect, 
generation of apoptosis [28] 

COLO829 melanoma cells/100 µM

Cell cycle arrests in S phase,
induction of mitochondrial

membrane breakdown
leading to apoptosis

[22]

MDA-MB-231 breast cancer
cells/14 µM

Cell cycle arrests in S phase,
induction of apoptosis [23]

U87MG glioma cells/0.5 µM

Cell cycle arrests in S and
sub-G1 phase, DNA
fragmentation, and

induction of apoptosis

[24]

LOVO colon cancer cells/110 µM Induction of apoptosis [25]

T24 bladder cancer cells/238 µM Cell cycle arrests in S phase,
induction of apoptosis [26]

Huh7/29.4 µM, HepG2/2.9 µM liver
cancer cells

Increased expression of
CD86+CD206- macrophages

leading to inhibition of
cell growth

[27]

Lung cancer cells A549 Cell cycle arrests in
G2/M phase [28]

2

Norfloxacin
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Table 1. Cont.

Comp.
No.

Name and Structure
of Fluoroquinolone Cell Line/Activity Mechanism of

Anticancer Activity Ref.

4

Levofloxacin
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3. Complexes of Fluoroquinolones with Heavy Metals

Among cytostatic drugs currently used in cancer pharmacotherapy, platinum-based
drugs such as cisplatin, carboplatin, and oxaliplatin, which are coordination compounds
of Pt2+ ions, are widely used. Platinum complexes interact with the DNA of cancer cells,
disrupting the structure of the DNA and interfering with its synthesis. They inhibit cell
division, which results in the induction of apoptosis. They are used within the framework
of monotherapy or in combination with other anticancer drugs for the treatment of breast,
ovarian, or colorectal cancer [37–41].

Fluoroquinolones are able to form complex compounds through the coordination of
O,O′-bidentate or through coordination through nitrogen atoms in the piperazine N,N′

ring, so they constitute a chelate ligand of bidentate (Figure 2). The formation of a complex
involving the carbonyl and carboxyl oxygen atoms at positions 3 and 4 of the quinolone
skeleton in fluoroquinolones is associated with obtaining derivatives that exhibit a wide
spectrum of biological activity, including higher antibacterial and cytotoxic potential com-
pared to the original ligand. Chelation of metal ions by piperazine nitrogen atoms is a less
common phenomenon, but it may result in derivatives with antiproliferative activity [42].
The biological activity and stability of metal–fluoroquinolone complexes vary and depend
on both the type of bidentate and the ligand (Table 2).
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Knowing that platinum compounds are used successfully in the treatment of cancer,
it seems beneficial to use this metal and other heavy metals in combination with fluoro-
quinolones. The synthesis of platinum–fluoroquinolone complexes using ciprofloxacin,
levofloxacin, sparfloxacin, gatifloxacin, and ofloxacin occurs through coordination in the
piperazine ring [43]. The results of the cytotoxicity tests of the complex with sparfloxacin
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as the ligand indicate stronger inhibitory activity against breast cancer cells and greater
selectivity as compared to cisplatin [44]. The same coordination is demonstrated by gold(III)
complexes with norfloxacin, levofloxacin, or sparfloxacin. They exhibit similar cytotoxic
activity against lymphoma, myeloid leukaemia, and melanoma cell lines: they inhibit
the cell cycle in the G0/G1 phase and induce apoptosis in a concentration-dependent
manner [45]. Replacing platinum(II) or gold(II) with another metal ion causes a change
in coordination with the ligand from N,N′ to O,O′. Among the coordination compounds
of fluoroquinolones with semiprecious and noble metals, rhenium complexes are also
known. Rhenium(I) in coordination with enrofloxacin shows stronger inhibition of DNA
topoisomerase as compared to the ligand alone [46]. The results of cytotoxicity tests of com-
plexes with enrofloxacin and levofloxacin indicate their activity against erythroleukaemia
cells [47].

Table 2. Activity of fluoroquinolone complexes.
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Among the transition metals, fluoroquinolones form complexes with similar or higher
biological activity as compared to the free ligand with ions such as Cu(I) [48,57,58];
Cu(II) [49–56,58–62]; Zn(II) [63–67]; Co(II) [68–72]; or Mn(II) [73]. Copper(II) coordination
compounds are particularly interesting because of their broad spectrum of antiprolifera-
tive activity and much lower toxicity toward healthy cells than the platinum compounds
currently used in chemotherapy. The chelation of copper ions by ciprofloxacin results in
compounds that increase the production of reactive oxygen species and induce apoptosis
in human lung adenocarcinoma cells. Similar effects are achieved by using norfloxacin
as the ligand [57]. Furthermore, copper(II) norfloxacin complexes prove antiproliferative
effects on osteosarcoma and myeloid leukaemia cells [74,75], and changing the ligand
into sparfloxacin improves the inhibition of hormone-independent breast cancer cells [76].
The use of pefloxacin as a ligand leads to the production of active copper complexes
against breast cancer cells, and that activity exceeds the activity of analogous nickel(II)
complexes [77]. Copper(II) complexes based on pefloxacin and statin derivatives effectively
inhibit the proliferation of human colorectal cancer cells, reduce the viability and clonogenic
capacity of cells, and induce apoptosis [78].
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Lanthanide complexes are becoming increasingly important in cancer diagnosis and
therapy. They are used, among others, as contrast agents in magnetic resonance imaging
and in cancer radiotherapy [79]. The terbium(III)–ciprofloxacin complex, characterised
by green fluorescence, may be successfully used as a fluorescent probe [80]. Lanthanide
compounds with fluoroquinolone ligands, namely, ciprofloxacin [81,82], enrofloxacin [83],
gemifloxacin [66,84] levofloxacin [85], norfloxacin [86], and sparfloxacin [87], show high
antimicrobial activity. The interest in erbium(III) complexes with fluoroquinolones has led
to the preparation of compounds with cytotoxic and antimicrobial activity that exceeds the
activity of other metal(II)–quinolone complexes found in the related literature [88]. Those
reports may constitute a strong foundation for further attempts to obtain new lanthanide
complexes and study their cytotoxicity toward cancer cell lines.

4. Fluoroquinolone Derivatives and Their Anticancer Properties

It is possible to modify the structure of a fluoroquinolone in many directions through
substitutions at the 1 and 6 positions, modification of substituents at C3 and C7, and
the addition of another fluorine atom at the 8 position. Modifications in the quinolone
core led to changes in the antimicrobial activity [89]. The attachment of substituents [70]
(Figure 3) is associated with the spectrum expansion of drug activity beyond antibacterial,
to antiviral [90,91] and anticancer.
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Substitution of the 7 position and substitution of the N-4-piperazinyl moiety have a
large impact on the potency, bioavailability, and physicochemical properties [18,92]. As
a result of the synthetic work of researchers, there is more and more information in the
related literature about new fluoroquinolone derivatives that show anticancer activity in
relation to human cell lines of the deadliest cancers.

The latest literature reports expand the horizons in terms of the directions for obtaining
derivatives. Chrzanowska et al. [93] obtained various amide derivatives of ciprofloxacin as
a result of the condensation of a fluoroquinolone with fatty acids (Figure 4). The selection of
acids with varied chain lengths, degrees of unsaturation, and geometric isomerism ensured
the structural variability of the compounds obtained. The synthetic route used crotonic (23),
sorbic (24), geranium (25), oleic (26), elanic (27), linolenic (28), erucic (29), DHA (30), and
palmitic (31) acids. The efficiency of the syntheses ranged from 44% to 59%. Biological tests
allowed for the assessment of the cytotoxicity and apoptosis-inducing effect in primary
and metastatic SW480 and SW620 colon cancer cells and in PC3 prostate cancer cells.
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The strongest antiproliferative properties were found in PC3 cells for derivatives
24, 26, and 27, as compared to unsubstituted ciprofloxacin. The IC50 values were 11.7,
7.7 and 15.3 µM, respectively. Conjugates 28 and 30 showed moderate activity (34.4 and
27.8 µM, respectively). The most promising inhibitory effect on the SW480 cell line was
demonstrated by conjugates 24, 25, 27, and 30 conjugated with polyunsaturated fatty acids,
with IC50 values ranging between 20.1 and 35.7 µM. The obtained ciprofloxacin amides
showed high selectivity toward cancer cells, proving no cytotoxic effect towards normal
human HaCaT keratinocytes. Furthermore, derivatives 24, 26, 27, and 30 showed noticeable
apoptosis-inducing properties in the selected cell lines. These compounds significantly
influenced the increase in the number of cells in the late phase of apoptosis at concentrations
ranging from 600 to 1500 µM, and the ciprofloxacin–oleic acid conjugate had the highest
pro-apoptotic ability among those mentioned.

Akhtar et al. [94] modified the structure of ciprofloxacin in two ways: esterifying the
carboxyl group at position C3 and attaching a substituent to the nitrogen in the piperazine
ring at position 7. The synthetic work gave rise to N-acylated derivatives 32–38 (Figure 5).
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Figure 5. N-acylated and N-sulfonated derivatives of ciprofloxacin.

The obtained derivatives were tested for cytotoxic activity against the MCF-7 breast
cancer cell line using ciprofloxacin as the standard drug. All the compounds showed
higher anticancer activity than unsubstituted ciprofloxacin. The highest cytotoxic poten-
tial was demonstrated by compounds 32 (IC50 = 4.3 µM), 33 (IC50 = 12.9 µM), and 35
(IC50 = 60.9 µM), among which derivative 32 was singled out, and its usefulness in fu-
ture syntheses of new N-alkylated fluoroquinolone derivatives with improved anticancer
properties was indicated. The mechanism of the anticancer activity of compound 32 was
investigated using in silico modelling methods. The results indicated topoisomerase II as a
possible cytotoxic target; moreover, this derivative showed higher affinity for this enzyme
than the reference unsubstituted ciprofloxacin.

The syntheses conducted by Ahadi et al. [95] led to the preparation of a series of
ciprofloxacin derivatives 39–43 (Figure 6). Modifications of the fluoroquinolone structure
resulted in N-(5-(benzylthio)-1,3,4-tiadazol-2-yl)carboxamide moiety at position 3.
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The synthesised compounds were assessed for their activity against selected human
cancer cell lines: MCF-7 breast cancer, A549 lung cancer, and SKOV-3 ovarian cancer.
Derivatives 39–48 showed anticancer activity against each of the selected cell lines and
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were characterised by the stronger antiproliferative activity against MCF-7 cells than A549
and SKOV-3. The cytotoxic activity against the tested cell lines expressed in IC50 values for
the derivatives is summarized in Table 3.

Table 3. IC50 values of derivatives 39–48 for MCF-7, A549, and SKOV-3 cell lines.

Compound
IC50 [µM]

MCF-7 A549 SKOV-3

39 3.84 10.24 9.66

40 3.58 9.97 7.17

41 3.90 6.49 8.50

42 3.31 8.52 7.60

43 3.26 10.53 5.08

44 5.71 14.80 4.14

45 3.34 9.69 5.43

46 9.48 6.95 3.58

47 7.71 5.50 10.57

48 15.79 23.51 16.58

The introduction of fluorine into the benzyl group in compounds 45 and 46 resulted in
favourable changes in the activity against SKOV-3, and the bromine-containing derivative
47 showed higher activity against A549 cells. The nitro group in the para position of the
benzyl group reduced the activity of that compound against each of the selected cancer cell
lines. The mechanism of the anticancer action of the derivatives was based on the inhibition
of the cell cycle in sub-G1 phase and the induction of oligonucleosomal DNA fragmentation.
Compounds 43 and 45 showed a concentration-dependent pro-apoptotic effect.

Kassab et al. [96] prepared a series of derivatives 49–70 with structural features of a
topoisomerase II inhibitor, using ciprofloxacin substituted at position 4 of the piperazine
ring with N-acetylarylhydrazone, oxadiazole, or its bioisosterotriazole scaffolds. Aryl and
heteroaryl groups were introduced into the N-acetylarylhydrazone residue. The structures
of the synthesised derivatives are shown in Figure 7.
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An assessment of the anticancer activity performed on 59 panels of human can-
cer cell lines showed strong activity of derivatives 53 against UO-31 (IC50 = 4.92 µM)
and MDA-MB-468 (IC50 = 2.16 µM) cell lines, 54 and 56 relative to the U0-31 cell line
(IC50 0.75 µM and 3.19 µM, respectively), 60 relative to NCI-H226 cells (IC50 = 1.02 µM),
IGROV1 (IC50 = 0.75 µM) and UO-31 (IC50 = 0.72 µM), and 63 relative to the HL60 cell
line (IC50 = 1.55 µM). The antiproliferative activity of the obtained compounds seemed
to correlate effectively with their ability to inhibit topoisomerase II. The highest ability
to inhibit that enzyme was demonstrated by derivatives 54 and 63, which was several
times higher than the activity of the reference compounds: doxorubicin, amsacrine, and
etoposide. The antiproliferative effect of the derivatives led to the inhibition of the cell cycle
in the G2/M phase and the induction of the intrinsic mitochondrial apoptosis pathway.
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Ezelarab et al. [97] obtained a series of ciprofloxacin and quinoline derivatives 65–70
as a result of a multi-stage synthetic process (Figure 8). Those hybrids were assessed for
their anticancer properties against a range of cell lines. Studies have shown significant
cytotoxic activity of derivatives 65 and 66 against SR-leukaemia and UO-31 renal cell
carcinoma cell lines. The antiproliferative activity was expressed as a percentage of growth
inhibition. Derivatives 65 and 66 inhibited the growth of 33.25 and 52.62% of leukaemia
cells, respectively, and 64.19 and 55.49% of renal cancer cells, respectively. Moreover, they
inhibited the growth of LOX IMVI melanoma cells by 39.14 and 36.64%, respectively.
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The studies showed the significant cytotoxic activity of derivatives 65, 66, and 70
against the selected cell lines. These compounds inhibited the cell cycle and induced
apoptosis of the cancer cells, thereby reducing their growth and viability. In addition to
their antiproliferative properties, ciprofloxacin/quinoline derivatives demonstrated potent
antifungal activity against Candida species, highlighting their potential to be multi-targeted
therapeutic agents.

Fallica et al. [98] presented the synthetic path and results of the research on the an-
tiproliferative effect of photodonor hybrids of nitric oxide (NO) with fluoroquinolones
ciprofloxacin and norfloxacin (Figure 9). The synthesis involved modification of the fluoro-
quinolone structure with NO donor moieties, creating compounds that released NO upon
exposure to light. Their antiproliferative effect was tested on the DU145 and PC3 prostate
cancer, HCT116 colon cancer, and MDA-MB231 and MCF-7 breast cancer cell lines. In vitro
experiments indicated that derivatives 71–74 were effective against the selected cell lines.
The effect of the norfloxacin derivatives was stronger than that of the ciprofloxacin deriva-
tives. The best results were achieved with norfloxacin derivative 73: the IC50 values for the
PC3, MCF7, and MDA-MB231 cell lines were 2.33 µM, 2.27 µM, and 1.52 µM, respectively.
In relation to the DU145 cell line, derivative 74 was the most effective (IC50 = 1.56 µM).
Cytotoxicity studies showed that regardless of the length of the carbon bridge, the carboxyl
moiety was indispensable for the anticancer effect. At the same time, it was observed that
these compounds exhibit similar cytotoxicity towards non-cancer cell lines HBL100 and
WH1. The IC50 values ranged from 3.51 to 13.2 µM depending on the derivative and the
cell line tested. Similarly, the norfloxacin derivatives showed higher cytotoxicity.

Hihh et al. [99] modified the ciprofloxacin molecule by combining various derivatives
through a urea linker and a piperazine ring at position 7 of the fluoroquinolone (Figure 10).
The cytotoxic activity of new hybrids 75–84 was assessed, among others, against the HCT-
116 colon cancer and leukaemia-SR cell lines.
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Among the chalcone derivatives of ciprofloxacin, compounds 77 and 84 showed strong
growth inhibitory effects on HCT-116 cells (IC50 values of 2.53 µM and 2.01 µM, respectively)
and leukaemia-SR cells (IC50 values of 0.73 µM and 0.63 µM, respectively). Additionally,
they showed a significant inhibitory activity against topoisomerase, comparable to the
activity of the reference compounds camptothecin and topotecan. Cytotoxicity studies of
the derivatives indicated a stronger toxic effect on leukaemia cells than on colon cancer
cells. Compounds 76 and 81 showed very good growth inhibitory effects on leukaemia
cells, with IC50 of 2.38 µM and 3.22 µM, respectively. Changing the position of the chlorine
atom from 4 to 3 in compound 76 or replacing it with other halogens at position 4 in the case
of derivatives 78 and 79 reduced the cytotoxic effect. Studies on the impact of compounds
on the cell cycle progression indicated hybrid 84 to be the substance that inhibited the
cell cycle in the G2/M phase and apoptosis in leukaemia cells. Testing the cytotoxicity of
compounds 77 and 84 towards the non-cancerous WI-38 cell line indicated the selectivity of
the substance towards cancer cells. The IC50 values for the WI-38 cells were 15.96 µM and
18.42 µM, respectively, being 6 to even 20 times higher than the IC50 values determined for
cancer cells.

Szostek et al. [100] designed and synthesised ciprofloxacin derivatives using men-
thol and thymol moieties attached to the fluoroquinolone using various carboxyl linkers
(Figure 11). Both N and O-derivatives were obtained, as well as di compounds substituted
at position carboxyl group in the 3 position and at the nitrogen atom of the piperazine
ring in position 7, but the assessment of the biological activity of the latter did not yield
satisfactory results. The best antiproliferative activity against HepG2 liver cancer cells,
HCT-116 colon cancer cells, and SW480 and SW620 colon cancer cells was demonstrated by
derivative 87, with IC50 values against the mentioned lines of 36.8, 24.2, 30.3 and 38.6 µM,
respectively; derivative 92, with IC50 values of 51.3, 39.1,33.7 and 43.5 µM, respectively;
and derivative 95, with IC50 values of 41.8, 30.5, 29.5 and 49.6 µM, respectively, while being
non-toxic towards non-cancer HaCaT cells (IC50 = 45.5, >100 and 64.9 µM for derivatives
87, 92, and 95, respectively).
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derivative 97 indicated high selectivity of the cytotoxic effect of the substance towards 
cancer cells. The IC50 value for the WI38 cell line was 118.65 µM. 

Fawzy et al. [111] synthesised and tested naphthol Mannich base 98 for anticancer 
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Results proving the beneficial effects of substances of natural origin, such as cur-
cumin, silybin, or berberine, on the inhibition of the development of cancer cells and
their potential use in therapy have recently appeared more and more frequently [101–108].
Milata et al. [109] synthesised a number of 9-O-substituted berberine derivatives, includ-
ing the condensation product of berberine with ciprofloxacin (Figure 12). The anticancer
effects of the compounds were tested on HeLa and HL-60 cell lines. Derivative 96 (mean
IC50 = 19.3 µM) showed greater antiproliferative activity towards HL-60 cells than the non-
substituted berberine and ciprofloxacin but had a weaker effect than the other compounds.
That hybrid was found to have inhibited the cell cycle in the HL-60 leukaemia cell line in
the G2/M phase.
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A well-known modification of fluoroquinolones to obtain anticancer compounds is
the formation of Mannich bases. The ortho-phenol chalcone derivative of ciprofloxacin 97
obtained by Alaaeldin et al. [110] showed beneficial properties. It inhibited topoisomerase
I and II and had antiproliferative effects on A549 lung cancer (IC50 = 27.71 µM) and HepG2
hepatoma cells (IC50 = 22.09 µM). Furthermore, it inhibited the cell cycle in the G2/M
phase and activated the apoptotic pathway. Additionally, exposure of non-cancer cells
to derivative 97 indicated high selectivity of the cytotoxic effect of the substance towards
cancer cells. The IC50 value for the WI38 cell line was 118.65 µM.

Fawzy et al. [111] synthesised and tested naphthol Mannich base 98 for anticancer
activity (Figure 13). The compound showed antiproliferative activity against the OVCAR-3
ovarian cancer and A-549 lung cancer cell lines by inhibiting the cell cycle in the S phase
and inducing apoptosis through the mitochondrial pathway apoptotic.

Struga et al. [112] obtained a series of N-acylated ciprofloxacin derivatives (Figure 14)
and conjugates of ciprofloxacin molecules connected with carbon linkers of various lengths.
The antiproliferative activity of compounds 99–112 was proven against PC3 prostate cancer
cells. Derivative 99 showed high antiproliferative activity against the selected cell line,
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much stronger than in the case of cisplatin. For this compound, the IC50 value was 2.02 µM.
Furthermore, it induced apoptosis/necrosis in prostate cancer cells.
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Figure 14. N-acylated ciprofloxacin derivatives.

Recent literature reports also include data on norfloxacin and levofloxacin derivatives,
in addition to ciprofloxacin derivatives. Xi et al. [113] focused on obtaining inhibitors of
microRNA-21, which is overexpressed in cancer cells. They designed and synthesised a
series of benzamide derivatives of norfloxacin 113–120 (Figure 15).
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Derivative 119 showed the best efficacy as a microRNA-21 inhibitor, and that effect was
comparable to the selected small molecule inhibitor. That compound suppressed the expres-
sion at the level of transcription of its original form. Evaluation of the antiproliferative ac-
tivity against HCT-116 and HeLa cell lines confirmed the ability to inhibit colony formation
and migration and induction of apoptosis in the case of compound 119. That work was a
continuation of the research conducted and described by Hei et al. [114], who indicated nor-
floxacin derivatives among the compounds of other fluoroquinolones, namely, ciprofloxacin,
levofloxacin, gatifloxacin, and enoxacin, to be potential microRNA-21 inhibitors.

Wang et al. [115] linked levofloxacin with hydroxamic acid using carbon linkers
of varied lengths, resulting in dual-acting derivatives targeting histone deacetylase and
tubulin polymerisation (Figure 16). Modification of the length of the carbon chain had
a significant impact on the inhibitory activity of the compound. The antiproliferative
properties of the new hybrids were tested on A549 cell lines HepG2, MCF-7, PC-3, and
HeLa. Compound 125 had the best anticancer properties and was more than 20 times
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stronger than free levofloxacin. The IC50 values of the derivative against these cell lines
were 2.1 µM, 2.3 µM, 0.3 µM, 4.9 µM, and 1.1 µM, respectively, while the IC50 values
of levofloxacin ranged from 64.2 to a value exceeding 100 µM in relation to individual
cell lines.
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To sum up, the examples described above show interesting directions of work lead-
ing to the preparation of anticancer compounds based on the fluoroquinolone skeleton.
N-substituted compounds have higher cytotoxic potency compared to C-substituted deriva-
tives, and the most frequently chosen substrate is ciprofloxacin. Nevertheless, these reports
may constitute the basis for the syntheses of analogous derivatives using other fluoro-
quinolones in order to expand the range of potential therapeutics.

5. Molecular Docking

The search for new medicinal compounds is becoming increasingly difficult. This
is associated with increasing research costs and stricter experimental procedures. In this
context, modern computational methods are helpful, as they enable a large part of prelimi-
nary research to be carried out in silico. One of these methods is molecular docking, which
has become a powerful tool for drug development (including the repositioning of known
drugs) and is constantly evolving. Docking is a method that allows for determining the
distribution and conformation of a ligand at the receptor binding site. It also enables the
assessment of the binding strength of the complex. It is, of course, used in in silico research
on the anticancer activity of fluoroquinolones and their derivatives.

Mcl-1 is a potent anti-apoptotic protein that is amplified in many human cancers,
while the microphthalmia-related transcription factor (MITF) promotes cell proliferation
and plays a pro-survival role. Beberok et al. conducted in silico studies on the possible inter-
action of ciprofloxacin with MITF/Mcl-1 proteins. The analysis showed that ciprofloxacin
has the ability to form complexes with MITF and Mcl-1 proteins and may thus have an
apoptotic effect [116].

Suresh et. al. performed docking of a series of ciprofloxacin derivatives to topoiso-
merase II (Figure 17) using the Glide program. These derivatives obtained docking score
values ranging from −7.78 to −8.04 kcal/mol and were lower than the value obtained for
the reference ciprofloxacin (−7.57 kcal/mol), indicating higher stability of the obtained
derivative complexes 127–134 than the reference [117].
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In silico studies by Allaka et al. also used topoisomerase II as a protein target. A series
of hydrazone derivatives of pefloxacin were used as ligands (Figure 18). The obtained dock-
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ing score values for hydrazones 135–142 ranged from −7.29 kcal/mol to −6.27 kcal/mol,
and for the reference compound, this value was −5.80 kcal/mol [118]. This result may
indicate the potential anticancer activity of the tested derivatives.
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6. Methods

A literature review of reviews and studies was performed from 2000 to 2024. Using
terms such as ‘anticancer drugs’, ‘fluoroquinolone’, and ‘fluoroquinolones derivatives’
and using the structural formula of ciprofloxacin modified with R substituent, PubMed,
Scopus, and Reaxys databases were searched. The articles selected were in English, with
free access to the full content, discussing the mechanisms of the action of anticancer drugs,
and presenting synthetic protocols for fluoroquinolone derivatives and the results of tests
of those compounds for antiproliferative effects on human cancer cells. Furthermore, a
snowball approach was used, a result of which the reports relevant to the topic of this
article were extracted from the documents cited in this article selected in the main search.

7. Conclusions and Future Directions

Cancer pharmacotherapy is constantly being optimised to improve effectiveness and
reduce the risk of metastases and complications. Modern scientific reports indicate that
the search for new anticancer drugs may be based on the fluoroquinolone pharmacophore
system, among other things. The analysis of available data shows that the critical one,
from the point of view of the activity of those derivatives, is the N-alkylated pyridone
system with two carbonyl oxygen atoms: one at position 4 of the pyridone ring and the
other in the carboxyl group present at the C3 atom of the pyridone system. Possible
modifications in the structure of fluoroquinolone derivatives are primarily applicable to
substituents at position 7 of the quinolone system and modifications within the carboxyl
group (esterification, amidation). Complexes with metals also seem to be an important
direction in the modification of fluoroquinolones to obtain derivatives with anticancer
activity. This is confirmed by the complexes of fluoroquinolones obtained so far with
Cu(I), Cu(II), Zn(II), Co(II), or Mn(II). It seems that modifications of the fluoroquinolone
system at the above-mentioned positions should be taken into account in further research
on new anticancer drugs. Attempts to use in silico methods in the design or repositioning
of fluoroquinolones as compounds with anticancer activity are also promising.
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30. Beberok, A.; Wrześniok, D.; Szlachta, M.; Rok, J.; Rzepka, Z.; Respondek, M.; Buszman, E. Lomefloxacin Induces Oxidative Stress
and Apoptosis in COLO829 Melanoma Cells. Int. J. Mol. Sci. 2017, 18, 2194. [CrossRef]
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Antibacterial Activity and Action Mode of Cu(I) and Cu(II) Complexes with Phosphines Derived from Fluoroquinolone against
Clinical and Multidrug-Resistant Bacterial Strains. J. Inorg. Biochem. 2020, 210, 111124. [CrossRef] [PubMed]

59. Mjos, K.D.; Polishchuk, E.; Abrams, M.J.; Orvig, C. Synthesis, Characterization, and Evaluation of the Antimicrobial Potential
of Copper(II) Coordination Complexes with Quinolone and p-Xylenyl-Linked Quinolone Ligands. J. Inorg. Biochem. 2016, 162,
280–285. [CrossRef] [PubMed]

60. Bhatt, B.S.; Gandhi, D.H.; Vaidya, F.U.; Pathak, C.; Patel, T.N. Cell Apoptosis Induced by Ciprofloxacin Based Cu(II) Complexes:
Cytotoxicity, SOD Mimic and Antibacterial Studies. J. Biomol. Struct. Dyn. 2021, 39, 4555–4562. [CrossRef] [PubMed]

61. Ude, Z.; Flothkötter, N.; Sheehan, G.; Brennan, M.; Kavanagh, K.; Marmion, C.J. Multi-Targeted Metallo-Ciprofloxacin Derivatives
Rationally Designed and Developed to Overcome Antimicrobial Resistance. Int. J. Antimicrob. Agents 2021, 58, 106449. [CrossRef]

62. Liu, Q.-Y.; Qi, Y.-Y.; Cai, D.-H.; Liu, Y.-J.; He, L.; Le, X.-Y. Sparfloxacin—Cu(II)—Aromatic Heterocyclic Complexes: Synthesis,
Characterization and in Vitro Anticancer Evaluation. Dalton Trans. 2022, 51, 9878–9887. [CrossRef]

63. Ahmadi, F.; Ebrahimi-Dishabi, N.; Mansouri, K.; Salimi, F. Molecular Aspect on the Interaction of Zinc-Ofloxacin Complex with
Deoxyribonucleic Acid, Proposed Model for Binding and Cytotoxicity Evaluation. Res. Pharm. Sci. 2014, 9, 367–383.

64. Ahmadi, F.; Saberkari, M.; Abiri, R.; Motlagh, H.M.; Saberkari, H. In Vitro Evaluation of Zn-Norfloxacin Complex as a Potent
Cytotoxic and Antibacterial Agent, Proposed Model for DNA Binding. Appl. Biochem. Biotechnol. 2013, 170, 988–1009. [CrossRef]
[PubMed]

65. Shahabadi, N.; Asadian, A.A.; Mahdavi, M. Intercalation of a Zn(II) Complex Containing Ciprofloxacin Drug between DNA Base
Pairs. Nucleosides Nucleotides Nucleic Acids 2017, 36, 676–689. [CrossRef] [PubMed]

66. Sakr, S.H.; Elshafie, H.S.; Camele, I.; Sadeek, S.A. Synthesis, Spectroscopic, and Biological Studies of Mixed Ligand Complexes of
Gemifloxacin and Glycine with Zn(II), Sn(II), and Ce(III). Molecules 2018, 23, 1182. [CrossRef]

67. Elshafie, H.S.; Sakr, S.H.; Sadeek, S.A.; Camele, I. Biological Investigations and Spectroscopic Studies of New Moxifloxacin/Glycine-
Metal Complexes. Chem. Biodivers. 2019, 16, e1800633. [CrossRef] [PubMed]

68. Psomas, G.; Kessissoglou, D.P. Quinolones and Non-Steroidal Anti-Inflammatory Drugs Interacting with Copper(II), Nickel(II),
Cobalt(II) and Zinc(II): Structural Features, Biological Evaluation and Perspectives. Dalton Trans. 2013, 42, 6252–6276. [CrossRef]
[PubMed]

69. Protogeraki, C.; Andreadou, E.G.; Perdih, F.; Turel, I.; Pantazaki, A.A.; Psomas, G. Cobalt(II) Complexes with the Antimicrobial
Drug Enrofloxacin: Structure, Antimicrobial Activity, DNA- and Albumin-Binding. Eur. J. Med. Chem. 2014, 86, 189–201.
[CrossRef] [PubMed]

70. Kouris, E.; Kalogiannis, S.; Perdih, F.; Turel, I.; Psomas, G. Cobalt(II) Complexes of Sparfloxacin: Characterization, Structure,
Antimicrobial Activity and Interaction with DNA and Albumins. J. Inorg. Biochem. 2016, 163, 18–27. [CrossRef] [PubMed]

71. Kozsup, M.; Farkas, E.; Bényei, A.C.; Kasparkova, J.; Crlikova, H.; Brabec, V.; Buglyó, P. Synthesis, Characterization and Biological
Evaluation of Co(III) Complexes with Quinolone Drugs. J. Inorg. Biochem. 2019, 193, 94–105. [CrossRef]

72. Singh, B.; Kisku, T.; Das, S.; Mukherjee, S.; Kundu, A.; Rath, J.; Das, R.S. Refashioning of the Drug-Properties of Fluoroquinolone
through the Synthesis of a Levofloxacin-Imidazole Cobalt (II) Complex and Its Interaction Studies on with DNA and BSA
Biopolymers, Antimicrobial and Cytotoxic Studies on Breast Cancer Cell Lines. Int. J. Biol. Macromol. 2023, 253, 127636. [CrossRef]

https://doi.org/10.1016/j.ica.2014.08.005
https://doi.org/10.1039/C6DT00915H
https://www.ncbi.nlm.nih.gov/pubmed/27301999
https://doi.org/10.1208/s12249-019-1417-9
https://doi.org/10.1016/j.ejpb.2020.05.014
https://doi.org/10.3390/molecules25153492
https://doi.org/10.1039/d0mt00155d
https://www.ncbi.nlm.nih.gov/pubmed/33300517
https://doi.org/10.1002/aoc.6428
https://doi.org/10.1016/j.ica.2021.120757
https://doi.org/10.1016/j.jinorgbio.2018.01.008
https://www.ncbi.nlm.nih.gov/pubmed/29348049
https://doi.org/10.1016/j.jinorgbio.2020.111124
https://www.ncbi.nlm.nih.gov/pubmed/32534287
https://doi.org/10.1016/j.jinorgbio.2016.02.026
https://www.ncbi.nlm.nih.gov/pubmed/26979255
https://doi.org/10.1080/07391102.2020.1776641
https://www.ncbi.nlm.nih.gov/pubmed/32476567
https://doi.org/10.1016/j.ijantimicag.2021.106449
https://doi.org/10.1039/D2DT00077F
https://doi.org/10.1007/s12010-013-0255-6
https://www.ncbi.nlm.nih.gov/pubmed/23636652
https://doi.org/10.1080/15257770.2017.1388394
https://www.ncbi.nlm.nih.gov/pubmed/29185900
https://doi.org/10.3390/molecules23051182
https://doi.org/10.1002/cbdv.201800633
https://www.ncbi.nlm.nih.gov/pubmed/30629800
https://doi.org/10.1039/c3dt50268f
https://www.ncbi.nlm.nih.gov/pubmed/23529676
https://doi.org/10.1016/j.ejmech.2014.08.043
https://www.ncbi.nlm.nih.gov/pubmed/25151581
https://doi.org/10.1016/j.jinorgbio.2016.07.022
https://www.ncbi.nlm.nih.gov/pubmed/27501348
https://doi.org/10.1016/j.jinorgbio.2019.01.005
https://doi.org/10.1016/j.ijbiomac.2023.127636


Molecules 2024, 29, 3538 21 of 22

73. Zampakou, M.; Balala, S.; Perdih, F.; Kalogiannis, S.; Turel, I.; Psomas, G. Structure, Antimicrobial Activity, Albumin- and
DNA-Binding of Manganese(II)–Sparfloxacinato Complexes. RSC Adv. 2015, 5, 11861–11872. [CrossRef]

74. Di Virgilio, A.L.; León, I.E.; Franca, C.A.; Henao, I.; Tobón, G.; Etcheverry, S.B. Cu(Nor)2·5H2O, a Complex of Cu(II) with
Norfloxacin: Theoretic Approach and Biological Studies. Cytotoxicity and Genotoxicity in Cell Cultures. Mol. Cell Biochem. 2013,
376, 53–61. [CrossRef] [PubMed]

75. Katsarou, M.E.; Efthimiadou, E.K.; Psomas, G.; Karaliota, A.; Vourloumis, D. Novel Copper(II) Complex of N-Propyl-Norfloxacin
and 1,10-Phenanthroline with Enhanced Antileukemic and DNA Nuclease Activities. J. Med. Chem. 2008, 51, 470–478. [CrossRef]
[PubMed]

76. Shingnapurkar, D.; Butcher, R.; Afrasiabi, Z.; Sinn, E.; Ahmed, F.; Sarkar, F.; Padhye, S. Neutral Dimeric Copper–Sparfloxacin
Conjugate Having Butterfly Motif with Antiproliferative Effects against Hormone Independent BT20 Breast Cancer Cell Line.
Inorg. Chem. Commun. 2007, 10, 459–462. [CrossRef]

77. He, X.; Yao, Q.; Hall, D.D.; Song, Z.; Fan, D.; You, Y.; Lian, W.; Zhou, Z.; Duan, L.; Chen, B. Theoretical, in Vitro Antipro-
liferative, and in Silico Molecular Docking and Pharmacokinetics Studies of Heteroleptic Nickel(II) and Copper(II) Com-
plexes of Thiosemicarbazone-Based Ligands and Pefloxacin. Chem. Biodivers. 2023, 20, e202300702. Available online: https:
//onlinelibrary.wiley.com/doi/full/10.1002/cbdv.202300702 (accessed on 11 June 2024).

78. Gandhi, D.H.; Vaidya, F.U.; Pathak, C.; Patel, T.N.; Bhatt, B.S. Mechanistic Insight of Cell Anti-Proliferative Activity of Fluoro-
quinolone Drug-Based Cu(II) Complexes. Mol. Divers. 2022, 26, 869–878. [CrossRef] [PubMed]

79. Teo, R.D.; Termini, J.; Gray, H.B. Lanthanides: Applications in Cancer Diagnosis and Therapy. J. Med. Chem. 2016, 59, 6012–6024.
[CrossRef]

80. Nghia, N.N.; Huy, B.T.; Phong, P.T.; Han, J.S.; Kwon, D.H.; Lee, Y.-I. Simple Fluorescence Optosensing Probe for Spermine Based
on Ciprofloxacin-Tb3+ Complexation. PLoS ONE 2021, 16, e0251306. [CrossRef]

81. Li, J.-B.; Yang, P.; Gao, F.; Han, G.-Y.; Yu, K.-B. Novel Lanthanide Complexes of Ciprofloxacin: Synthesis, Characterization, Crystal
Structure and in Vitro Antibacterial Activity Studies. Chin. J. Chem. 2001, 19, 598–605. [CrossRef]

82. Shaban, S.Y.; El-Kemary, M.A.; Samir, G.; Elbaradei, H. Synthesis, Characterization, Antibacterial Activities Testing and the
Interaction of DNA with Ciprofloxacin and Its La(III)-Based Complex. J. Chin. Adv. Mater. Soc. 2018, 6, 123–133. [CrossRef]

83. Wang, Y.-J.; Hu, R.-D.; Jiang, D.-H.; Zhang, P.-H.; Lin, Q.-Y.; Wang, Y.-Y. Synthesis, Crystal Structure, Interaction with BSA and
Antibacterial Activity of La(III) and Sm(III) Complexes with Enrofloxacin. J. Fluoresc. 2011, 21, 813–823. [CrossRef]

84. Sadeek, S.A.; Abd El-Hamid, S.M.; El-Aasser, M.M. Synthesis, Characterization, Antimicrobial and Cytotoxicity Studies of Some
Transition Metal Complexes with Gemifloxacin. Monatsh. Chem. 2015, 146, 1967–1982. [CrossRef]

85. Sadeek, S.; El-Shwiniy, W. Preparation, Structural Characterization and Biological Studies of Some New Levofloxacin Metal
Complexes. J. Iran. Chem. Soc. 2017, 14, 1711–1723. [CrossRef]

86. Refat, M.; El-Hawary, W.; Mohamed, M. Study of the chemical chelates and anti-microbial effect of some metal ions in nanostruc-
tural form on the efficiency of antibiotic therapy “norfloxacin drug”. J. Mol. Struct. 2012, 1013, 45–54. [CrossRef]

87. el-Gamel, N.E.A.; Zayed, M.A. Synthesis, Structural Characterization and Antimicrobial Activity Evaluation of Metal Complexes
of Sparfloxacin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 82, 414–423. [CrossRef] [PubMed]

88. Arnaouti, E.; Georgiadou, C.; Hatizdimitriou, A.G.; Kalogiannis, S.; Psomas, G. Erbium(III) Complexes with Fluoroquinolones:
Structure and Biological Properties. J. Inorg. Biochem. 2024, 255, 112525. [CrossRef] [PubMed]

89. Castro, W.; Navarro, M.; Biot, C. Medicinal Potential of Ciprofloxacin and Its Derivatives. Future Med. Chem. 2013, 5, 81–96.
[CrossRef] [PubMed]

90. Cardoso-Ortiz, J.; Leyva-Ramos, S.; Baines, K.M.; Gómez-Durán, C.F.A.; Hernández-López, H.; Palacios-Can, F.J.; Valcarcel-
Gamiño, J.A.; Leyva-Peralta, M.A.; Razo-Hernández, R.S. Novel Ciprofloxacin and Norfloxacin-Tetrazole Hybrids as Potential
Antibacterial and Antiviral Agents: Targeting, S. Aureus Topoisomerase and SARS-CoV-2-MPro. J. Mol. Struct. 2023, 1274, 134507.
[CrossRef]

91. Alaaeldin, R.; Mustafa, M.; Abuo-Rahma, G.E.-D.A.; Fathy, M. In Vitro Inhibition and Molecular Docking of a New Ciprofloxacin-
Chalcone against SARS-CoV-2 Main Protease. Fundam. Clin. Pharmacol. 2022, 36, 160–170. [CrossRef]

92. Ahadi, H.; Emami, S. Modification of 7-Piperazinylquinolone Antibacterials to Promising Anticancer Lead Compounds: Synthesis
and in Vitro Studies. Eur. J. Med. Chem. 2020, 187, 111970. [CrossRef]

93. Chrzanowska, A.; Roszkowski, P.; Bielenica, A.; Olejarz, W.; Stępień, K.; Struga, M. Anticancer and Antimicrobial Effects of Novel
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