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Abstract: In contrast to the traditional analysis of molecules using local mode behavior, where the
degree of locality is given through a function in terms of Morse potential parameters, new criteria for
locality/normality (LN) suitable for application to any molecular system are proposed. The approach
is based on analysis of the connection between the algebraic normal and local mode representations.
It is shown that both descriptions are equivalent as long as the polyad (total number of quanta) in the
local representation is not conserved. The constraint of a local polyad conservation naturally provides
a criterion for assigning an LN degree in quantitative form, without an analogue in configuration
space. The correlation between the different parameters reveals the physical properties of molecules.
A clear connection between the LN degree (based on the fundamentals) and spectroscopic properties
is also presented, suggesting a promising approach for identifying mixtures of isotopologues.

Keywords: local normal criteria; algebraic approach; Raman spectroscopy; infrared spectroscopy;
vibrational spectroscopy

1. Introduction

Vibrational degrees of freedom can be identified either with a local or a normal
mode behavior. Until the seventies, the point of view of description in terms of normal
modes dominated, due in part to the success in describing spectra through the inclusion
of resonances in the Hamiltonian [1,2]. Examples of this success include the descriptions
of H2O and CO2 [3,4]. This situation changed during the eighties with the advent of
modern spectroscopy techniques based on lasers [5–7], unveiling doublets in the energy
spectra of molecules involving bonds with large mass differences, although evidence of
such patterns had been identified many years before [8–11]. This kind of spectra, although
difficult to describe in terms of normal modes, were relatively easy to interpret in terms
of interacting local oscillators [12–16]. Indeed, the doublets signal the presence of a local
mode behavior and they were explained by the simple model of anharmonic oscillators
harmonically coupled (AOHC) [17]. Regarding this model, the general features of the
spectra are explained in terms of both the anharmonicity and strength of the interaction
between the oscillators, as a consequence of the close relation between anharmonicity
and locality [18]. It was realized that in every molecule with bonds involving large mass
differences, like for instance H2O, CH4, and AsH3, the stretching degrees of freedom cn be
well described in terms of interacting Morse oscillators. In contrast, the bending degrees
of freedom are still treated in terms of normal modes, due to their collective features [19].
Within a set of molecules presenting a local mode behavior, it is possible to assign a locality
degree using the parameter ξ defined by [12,13]

ξ =

∣∣∣∣ 2
π

arctan
(

λ

ωx

)∣∣∣∣, (1)

Molecules 2024, 29, 3490. https://doi.org/10.3390/molecules29153490 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29153490
https://doi.org/10.3390/molecules29153490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5670-3133
https://orcid.org/0009-0001-2315-5588
https://orcid.org/0000-0002-9233-968X
https://doi.org/10.3390/molecules29153490
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29153490?type=check_update&version=3


Molecules 2024, 29, 3490 2 of 35

where ωx stands for the Morse anharmonicity and λ corresponds to the interaction strength
of the oscillators. In the local limit (ωx large and λ small) ξ → 0, while in the normal limit
(ωx small and λ large) ξ → 1. This parameter has been calculated for several molecules
following the expected behavior, in accordance with the mass ratio ligand/central-atom
dictated by the structure of the molecule. In general, the criterion established by the
parameter ξ is satisfied for a great variety of molecules. However, when in a series of
molecules the anharmonicities are similar and the strengths do not increase in accordance
with the mass difference, the local-normal mode behavior leads to unexpected results. This
is the case for the series of pnictogen pyramidal hydrides XH3, with X = N, P, As, Sb, and
Bi. In order to elucidate this type of behavior a new perspective on local-normal behavior
was considered [20].

Even for molecules with local mode behavior, a local-normal transition may appear
regarding different states of a given multiplet. This situation has been analyzed from a
dynamical point of view using methods of non-linear classical mechanics [21–29]. Recently,
the local to normal mode transition has been studied from a quite different point of
view [20,30–32]. The basic feature of the proposal is to focus on the problem from a
polyad breaking perspective. A molecule with a local mode behavior is characterized by a
set of interacting levels associated with a local polyad, defined in terms of local quantum
numbers. As long as this polyad is conserved, the molecule maintains a local character. This
viewpoint is partial, in the sense that the polyad-conservation depends on the energy. At
sufficiently high energy, the local polyad stops being conserved. However, a local behavior
may still be present in a wide energy range, as long as the local polyad is conserved. From
this perspective, the energy range becomes very narrow for molecules with evident normal
mode behavior. This is indeed the case of the CO2 molecule, where the central carbon
atom is lighter than the ending oxygen atoms. In this situation, it is not possible to define a
local polyad. In fact, the concept of a polyad as a pseudo quantum number that embraces
the set of interacting states is well defined in a normal mode scheme, and only when this
polyad is suitable to be translated into a local scheme is the molecule said to have a local
character, otherwise the concept of a local polyad is lost. The question that arises is how to
measure the LN degree from this perspective. The traditional parameter (1) is not useful,
because it is constrained to molecules with local mode behavior and consequently a new
criterion is needed, in order to involve any possible case covering the different molecular
systems. On the other hand, this new criterion is not expected to be based on a system of
interacting Morse oscillators, because, in principle, molecules with strong normal mode
behavior cannot be described starting with local oscillators without breaking the polyad. In
this work, we propose a new general different approach based on the analysis of the limit
of the normal to the local description. Following this route, it is possible to derive more
than one LN criteria. Surprisingly, these criteria include only the analysis of normal modes
associated with the fundamentals. In this contribution, we present in detail the analysis of
the new LN criteria for two, three, four, and six oscillators. The case of two oscillators has
been partially presented in the context of the isotopologues of CO2 [33], as well as the three
equivalent oscillators in pyramidal molecules [20], but here both are included in detail in the
context of an unified treatment that includes any molecular system. We shall show that the
proposed parameters are sensitive enough to distinguish any molecule in either the extreme
normal or local regimes. The four-oscillator system is included for tetrahedral molecules, to
study the situation where spurious states are present, while octahedral molecules involving
six oscillators are studied, because several types of interactions are involved. Embracing
this set of systems, we consider every situation to test the proposed parameters. We stress
that, for the first time, LN parameters are proposed with incidence in molecular properties,
such as non-rigidity and resonances, but also in spectroscopy where vibrational excitations
are involved.

This paper is organized as follows: The general theory to establish the different LN
criteria is presented in Section 2. In Section 3, an analysis involving two oscillators is
presented in detail. Section 4 is devoted to the case of three equivalent oscillators. In
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Section 5, tetra-atomic molecules are analyzed, while in Section 6, the stretching modes of
octahedral molecules are studied. Section 7 is devoted to discussing the relation between
the parameters proposed and their physical properties. Finally, the conclusions are drawn
in Section 8.

2. LN Mode Criteria: General Formalism

In this section, we present the general ideas that lead to establishing several inde-
pendent parameters to measure the LN degree of molecules. We start by considering the
situation for an arbitrary number of equivalent oscillators, albeit for the particular case
in which the normal coordinates coincide with symmetry-adapted coordinates. This is a
common situation in small and medium size molecules, where the energy of the bends
are quite different from the stretches. The generalization to normal coordinates involving
several coordinates of the same symmetry involves GF formalism and will be discussed in
the next section.

The simplest model to describe vibrational degrees of freedom consists in considering
the system as a set of independent harmonic oscillators associated with normal coordinates.
When normal coordinates span irreducible representations Γ of the symmetry group G, the
Hamiltonian in terms of bosonic operators takes the form [34]

ĤN = ∑
Γ

h̄ΩΓ

2 ∑
γ

(Â†
ΓγÂΓγ + ÂΓγÂ†

Γγ), (2)

where the sum over Γ runs over all irreducible representations contained in the reducible
representation spanned by the equivalent local oscillators. The subscript index N in the
Hamiltonian emphasizes the normal mode representation. From the fundamental energies

and the explicit expression of the frequencies ΩΓ =
√

G(0)
ΓΓ FΓΓ, we are able to estimate the

force constants for both normal and local mode schemes

{FΓΓ} → { f (N)
qiqj }. (3)

Here, G(0)
ΓΓ and FΓΓ correspond to the elements of the Wilson matrix and force constants,

respectively, in the normal basis. The local force constants f (N)
qiqj associated with the local

coordinates {qi} are obtained from the force constants FΓΓ using the chain rule. The
superscript index (N) emphasizes the precedence of the local force constants. The con-
nection between the normal bosonic operators Â†

Γγ and the local bosonic operators â†
i (âi)

corresponding to the internal coordinates is given by the Bogoliubov transformation

Â†
Γ,γ =

√
δ+Γ ∑

i
mi,Γγ â†

i +
√

δ−Γ ∑
i

mi,Γγ âi, (4)

where

δ±Γ =
1
4

√√√√ FΓΓ G(0)
ΓΓ

fqq g(0)qq

 g(0)qq

G(0)
ΓΓ

+
fqq

FΓΓ
± 2

√√√√ fqq g(0)qq

FΓΓ G(0)
ΓΓ

. (5)

The term g(0)qq stands for the Wilson matrix elements in the local scheme. Given our consid-

eration of equivalent diagonal operators, we have fqiqi = fqq; g(0)qiqi = g(0)qq ∀i. The elements
||mi,Γγ|| stand for the coefficients connecting the normal and local coordinates through

QΓγ = ∑
i

mi,Γγ qi, (6)

which are obtained by symmetry projection [34]. The relation (4) is obtained from the
definition of the operators Â†

Γ,γ in terms of the normal coordinates (6) and assuming

bosonic operators for the local coordinates with frequencies ωi =
√

fqiqi g(0)qiqi . Notice that,
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in Equation (5), there is no superscript index in the force constants fqq. The reason for this
is that the same expression will be used to estimate the force constants in both local and
normal limits. The coefficients δ±Γ satisfy the relation δ+Γ − δ−Γ = 1, as a consequence of
the commutator [ÂΓ′γ′ , Â†

Γγ] = δΓΓ′δγγ′ . In addition, we can see that in the pure local limit
δ+Γ = 1 and δ−Γ = 0, and consequently it is useful to introduce the average

δ− =
1

NΓ
∑
Γ

δ−Γ (7)

as an LN degree, with NΓ standing for the number of irreducible representations contained
in the subspace of N oscillators. The substitution of (4) into the Hamiltonian (2) leads to an
algebraic representation of the Hamiltonian in the local scheme

ĤL = ∑
i

λ
(i)
0 (â†

i âi + âi â†
i ) + ∑

i ̸=j
λ
(ij)
1 (â†

i âj + âi â†
j ) + ∑

i ̸=j
λ
(ij)
2 (â†

i â†
j + âi âj), (8)

with coefficients

λ
(i)
0 = ∑

Γ

h̄ΩΓ

2
(δ+Γ + δ−Γ)∑

γ

|mi,Γγ|2, (9a)

λ
(ij)
1 = ∑

Γ

h̄ΩΓ

2
(δ+Γ + δ−Γ)∑

γ

mi,Γγmj,Γγ, (9b)

λ
(ij)
2 = ∑

Γ
h̄ΩΓ(

√
δ+Γδ−Γ)∑

γ

mi,Γγmj,Γγ. (9c)

These expressions provide a deep insight into the problem, since it implies that, in the limit
δ− → 0, the coefficients λ

(ij)
2 vanish. Consequently, only when δ− is negligible is the total

number of local quanta PL = ∑i â†
i âi conserved. We will shortly return to this point. In

practice, it is more convenient to carry out the explicit substitution of (5) to express these
parameters in the following form

λ
(i)
0 =

h̄
4 ∑

Γ

(
FΓΓ

√√√√ g(0)qq

fqq
+ G(0)

ΓΓ

√√√√ fqq

g(0)qq

)
∑
γ

|mi,Γγ|2, (10a)

λ
(ij)
1 =

h̄
4 ∑

Γ

(
FΓΓ

√√√√ g(0)qq

fqq
+ G(0)

ΓΓ

√√√√ fqq

g(0)qq

)
∑
γ

mi,Γγmj,Γγ, (10b)

λ
(ij)
2 =

h̄
4 ∑

Γ

(
FΓΓ

√√√√ g(0)qq

fqq
− G(0)

ΓΓ

√√√√ fqq

g(0)qq

)
∑
γ

mi,Γγmj,Γγ. (10c)

For equivalent oscillators the coefficients λ
(i)
0 are independent of the oscillator, and are

reduced to λ
(i)
0 = h̄ω0/2 with ω0 = ( fqq g(0)

qq)
1/2 for any oscillator. The parameters λ

(ij)
1 and

λ
(ij)
2 can be simplified to the form

λ
(ij)
1 =

h̄ω0

2
(x(ij)f + x(ij)g ); λ

(ij)
2 =

h̄ω0

2
(x(ij)f − x(ij)g ), (11)

with definitions

x(ij)f =
fqiqj

fqiqi

; x(ij)g =
g(0)qiqj

g(0)qiqi

. (12)

Not all of these parameters are different. Some of them are expected to be equal, depending
on the symmetry dictated by the geometrical conformation. This information is contained
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in the matrix ||mi,Γγ||. To simplify the notation, we shall use x′f (x′g) when only one type
of interaction is present and x′′f (x′′g ) for a second type of interaction. It is important to
notice that, as long as spurious modes are not present, the same Hamiltonian (8) is obtained
starting from the quadratic Hamiltonian in local coordinates and momenta, which explains
the subscript index L. The presence of redundancies imposes constraints on the local
representation (8), as will be shown in Section 5.

The Hamiltonians (2) and (8) are equivalent. Their difference lies in the representation.
Both Hamiltonians conserve the normal total number of quanta P̂N = ∑Γγ Â†

ΓγÂΓγ, but
from the point of view of (8), P̂L = ∑i â†

i âi is not conserved. From now on, we assign the
name polyad to the total number of quanta, which is justified by that fact that we shall be
dealing with Hamiltonians with interactions up to second order (normal modes). In order
to obtain a local polyad-conserving Hamiltonian, we have two alternatives. One possibility
consists in just neglecting the interactions associated with λ

(ij)
2 in the Hamiltonian (8)

to obtain
Ĥ(PL)

L = ∑
i

λ
(i)
0 (â†

i âi + âi â†
i ) + ∑

i>j
λ
(ij)
1 (â†

i âj + âi â†
j ), (13)

where the coefficients are kept to be identified by (10). This Hamiltonian (13) can be used
to estimate the force constants

{ f (L)
qiqj}, (14)

by choosing parameters to fit the fundamental energies and using the matrix representation
in the local basis |n1n2 . . . ⟩ = Πi ⊗ |ni⟩, with ni being the number of local quanta for the i-th
oscillator. It is clear that this route is feasible as long as an evident local mode behavior is
present. In Table 1, analytical expressions for the force constants obtained from (3) and (11)
are displayed for the systems we shall discuss.

Table 1. Calculated force constants f (N)
qiqj using expressions (3) and f (L)

qiqj (11) for the different systems
we have included in our analyses. Here, the h̄ΩΓ corresponds to the fundamental energy of the Γ-th

mode and N stands for the number of oscillators. G(0)
ΓΓ and g(0)qq are the elements of the Wilson matrix

in the normal and local coordinate basis, respectively. The meanings of µ2 and µ3 are irreducible
representations and will be specified for each case along the text.

Force Constants from (3) Force Constants from (11)

f (N)
qq =

1
N ∑Γ

nΓΩ2
Γ

G(0)
ΓΓ

f (L)
qq =

1

g(0)qq

(
1
N ∑Γ nΓΩΓ

)2

f (N)
qq′ =

1
N ∑Γ(−)δΓ,µ2

Ω2
Γ

G(0)
ΓΓ

f (L)
qq′ = f (L)

qq

[
2 ∑Γ(−)δΓ,µ2 ΩΓ

∑Γ nΓΩΓ
− x′g

]

f (N)
qq′′ =

1
N ∑Γ(−)δΓ,µ3

nΓΩ2
Γ

G(0)
ΓΓ

f (L)
qq′′ = f (L)

qq

[
2 ∑Γ(−)δΓ,µ3 nΓΩΓ

∑Γ nΓΩΓ
− x′′g

]

As a second alternative to obtain a Hamiltonian with the property [Ĥ, P̂L] = 0, we
may take δ−Γ = 0 in (4) and consequently also in (9). In this case, the renormalization
δ+Γ = 1 must be imposed to satisfy [ÂΓ′γ′ , Â†

Γγ] = δΓΓ′δγγ′ valid. In this case, the canonical
transformation takes the form

Â†
Γ,γ = ∑

i
mi,Γγ ĉ†

i . (15)

The substitution of the operators (15) into the Hamiltonian (2) leads to the polyad-conserving
Hamiltonian

Ĥ(PL)
L′ = ωnor ∑

i
(ĉ†

i ĉi + ĉi ĉ†
i ) + ∑

i ̸=j
λ
(ij)
nor(ĉ†

i ĉj + ĉi ĉ†
j ), (16)
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with coefficients

ωnor = ∑
Γ

h̄ΩΓ

2 ∑
γ

|mi,Γγ|2, (17a)

λ
(ij)
nor = ∑

Γ

h̄ΩΓ

2 ∑
γ

mi,Γγmj,Γγ, (17b)

The Hamiltonians (16) and (8) look similar when λ
(ij)
2 = 0, but they are not the same. Two

features make them different: (i) the bosonic operators ĉ†
i (ĉi) are not strictly local, which

explains the subscript index L′; and (ii) the relation between the spectroscopic parameters
and the force constants is different, a fact that suggests an additional LN criterion, as we
next discuss.

The sets of parameters {ωnor, λ
(ij)
nor} in (16) and {λ

(i)
0 , λ

(ij)
1 } in (13) are functions of

both the force and the structure constants, although with different functional form. To
establish the connection between both sets, it is convenient to recall the definitions (12),
since they are expected to be small, actually vanishing at the pure local limit. The set
{λ

(i)
0 , λ

(ij)
1 } is expected to be recovered from {ωnor, λ

(ij)
nor} near the local limit. The latter set

can be considered a function of the variables (12), which can be put together in vector form
x = {x(ij)f , . . . , x(ij)g , . . . }. The connection between the parameters is given by the Taylor
series expansion

ωnor =
2λ

(i)
0

h̄

[
1 +

1
2!

xHω(0)x̃ + ||x||2Eω
2 (0, x)

]
, (18a)

λ
(ij)
nor = λ

(ij)
1 + ωloc

[
1
2!

xHλ(ij)
(0)x̃ + ||x||2Eλ(ij)

2 (0, x)
]

, (18b)

where H(0) is the Hessian matrix evaluated at x = 0 and ||x||2E2(0, x) denotes the error
involved up to second order. It is clear that the second-order terms measure the deviation
of the parameters from the local mode description, but they also indicate the degree of
local polyad conservation. We thus propose the set

γ(ω) =

∣∣∣∣ 1
2!

xHω(0)x̃
∣∣∣∣; γ(ij) =

∣∣∣∣ 1
2!

xHλ(ij)
(0)x̃

∣∣∣∣, (19)

as new parameters to provide an LN degree. In addition, the spectroscopic parameters (11)
from the local scheme and the parameters involved in (16) provide different force constants,
both connected through (18). This fact suggests the introduction of the following parameters
to estimate the LN degree

ϵ1 = 1 −
f (L)
qq

f (N)
qq

; ϵ(ij) = 1 −
f (L)
qiqj

f (N)
qiqj

, (20)

since limx→0 ϵ1 = ϵ(ij) = 0.
On the other hand, since the energy splitting of a set of degenerate equivalent oscil-

lators is expected to be proportional to the their interaction strength, the following LN
parameter may also be proposed [30,31]

ζ =

∣∣∣∣ 2
π

arctan
(

Ed − Eu

(Ed + Eu)/2

)∣∣∣∣ (21)

where Ed and Eu correspond to the lowest and highest energy of the multiplet.
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Summarizing, we have identified four parameters, namely δ−Γ, γ, {ϵi, ϵ(ij)}, and ζ,
which vanish in the local limit, and consequently provide a way to measure the local-
ity(normality) of a molecule. It is convenient to emphasize that these criteria do not assume
a model of interacting Morse oscillators, but only harmonic oscillators. They arise from
bosonic operators and are determined by the fundamental energies. We now describe
their characteristics:

δ−Γ: This parameter measures the suitability of applying the polyad-conserving canon-
ical transformation (15) for each symmetry (normal mode). For convenience, we also
introduced the average (7), which takes into account the contribution of all normal modes.
It is worth stressing that this parameter δ− can be calculated for any molecular system, and
from its definition (5) it measures the degree of locality/normality from the point of view
of the normal mode scheme. In contrast, the polyad-conserving transformation (15) has
been assumed in every study of the local-to-normal mode transition involving stretching
degrees of freedom of molecules with a clear local mode behavior. Indeed, this assumption
leads to the x-K relations [18,35–42], which stop being valid when the molecules move to a
normal mode behavior.

γ′s: These parameters correspond to the Hessians in (18) and they provide the
quadratic approximation for the sets {ωnor, λ

(ij)
nor} starting from {λ

(i)
0 , λ

(ij)
1 } when the local

parameters become small. These parameters establish LN criteria from the point of view of
the local mode scheme and are expected to be correlated with δ−, in some cases in a perfect
linear trend when the higher order terms in the expansion (18) are neglected compared
with the quadratic terms, as we shall discuss.

ϵ′s: This set of parameters are introduced to see the impact of the LN degree on the
estimation of the force constants and takes into account both the normal and local mode
schemes, since both estimations (3) and (14) for the force constants are involved. However,
in order to obtain reliable results, the force constants should not be too small, since the
errors may hide the criterion.

ζ: This parameter takes into account the correlation between the strength of the
interaction and the LN degree, and it is a natural parameter based on the correlation
between the splitting of the fundamentals and the strength of the interaction. However, we
shall prove that the parameter ζ, although intuitive, is not appropriate for establishing a
LN degree.

Here, we have assumed that the development of this approach lies in the formulation
of the model in terms of internal coordinates. This route can be quite elaborate from a theo-
retical point of view because of the calculation of the Wilson matrix and the identification
of redundancies. However, since these parameters involve the concept of normal modes,
the calculations are quite fast.

A comment regarding the correlation between the polyad breaking and the LN degree
deserves special attention. The canonical transformation (15) conserves the local polyad,
but even when the local polyad is not conserved, the Hamiltonian satisfies [P̂N , HL] = 0.
Substitution of (4) into the definition of a normal polyad leads to the relation

P̂N = ζ0 + ∑
i

β
(i)
0 (â†

i âi) + ∑
i ̸=j

β
(ij)
1 (â†

i âj + âi â†+j)

+ ∑
i

β
(i)
2 (â†2

i + â2
i ) + ∑

i ̸=j
β
(ij)
3 (â†

i â†
j + âi âj), (22)
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with coefficients given by

ζ0 = NΓ ∑
Γ

δ−Γ = N2
Γδ−, (23a)

β
(i)
0 = ∑

Γγ

(δ+Γ + δ−Γ)|mi,Γγ|2, (23b)

β
(ij)
1 = ∑

Γγ

(δ+Γ + δ−Γ) mi,Γγmj,Γγ, (23c)

β
(i)
2 = ∑

Γγ

√
δ+Γδ−Γ|mi,Γγ|2, (23d)

β
(ij)
3 = ∑

Γγ

√
δ+Γδ−Γ mi,Γγ mj,Γγ. (23e)

The transformation (15) assumes δ−Γ = 0 and δ+Γ = 1, leading to the values ζ0 = β
(ij)
1 =

β
(ij)
2 = β

(ij)
3 = 0 and β

(ij)
0 = 1, with P̂N = P̂L. The explicit behavior of these parameters will

be studied later on in the context of two equivalent oscillators. At the moment, we just
reinforce the argument that local polyad breaking is strongly correlated with the LN degree.

In the next sections, we present an analysis for different numbers of oscillators. The
aim is to show that the correlation between different parameters unveils physical properties.
Due to its importance, the case of two oscillators will be studied in detail, including the
case of non-equivalent oscillators. The latter illustrates the way our approach is modified
when the normal mode coordinates do not coincide with symmetry-adapted coordinates.

3. LN Degree in Triatomic Molecules

In this section, we revisit the stretching degrees of freedom of triatomic molecules.
Since this system has already been discussed in part [30,31], we present only its salient
features, although in modified form in accordance with the general framework presented
in the previous section. First, we consider the case of equivalent oscillators.

3.1. Equivalent Oscillators

For two equivalent oscillators, the irreducible representations are two, which we name
as Γ = g, u. The expressions for the force constants (3) are [30,31]

Fgg = frr + frr′ ; G(0)
gg = g(0)

rr + g(0)

rr′ ; (24a)

Fuu = frr − frr′ , G(0)
uu = g(0)

rr − g(0)

rr′ , (24b)

from which we obtain the force constants f (N)
qiqj provided by Table 1, with µ2 = u. The

parameters (5) can be simplified to

δ±Γ =
1
4
(rΓ ± 1)2

rΓ
; rΓ =

√√√√1 + (−)σΓ x′f
1 + (−)σΓ x′g

, (25)

where σg = 0 and σu = 1. The matrix ||mi,Γγ|| corresponding to (6) takes the form

||mi,Γγ|| =
1√
2

(
1 1
1 −1

)
. (26)

The substitution of (4) into (2) leads to an algebraic representation in terms of local bosonic
operators â†

i (âi):

ĤL = λ0

2

∑
i=1

(â†
i âi + âi â†

i ) + λ
(1)
1 (â†

1 â2 + â1 â†
2) + λ

(1)
2 (â†

1 â†
2 + â1 â2), (27)
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with coefficients given by (11). Here, the superscript index (1) in λ’s indicates that only
one type of interaction is present. The basis for constructing the matrix representation
of the Hamiltonian (27) is given by the direct product |n1n2⟩ = |n1⟩ ⊗ |n2⟩. When the
interaction strength λ

(1)
2 is large, the whole space of states |n1n2⟩ is mixed, leading to a

time-consuming diagonalization. In contrast, when λ
(1)
2 is negligible, the Hamiltonian

commutes with the operator P̂L. Hence, if we make the approximation λ
(1)
2 → 0 and fit

the λ0 and λ
(1)
1 to reproduce the fundamentals, we can estimate the force constants (14)

from (11). The analytical expressions are given in Table 1.
A more fruitful viewpoint for obtaining a local polyad-conserving Hamiltonian is pro-

vided by realizing that λ
(1)
2 also vanishes when the contribution of annihilation operators

in (4) is null. To follow this route, we apply the canonical transformation (15), which when
substituted into (2), leads to the Hamiltonian

Ĥ(PL)
L′ = ωnor

2

∑
i=1

(ĉ†
i ĉi + ĉi ĉ†

i ) + λ
(1)
nor(ĉ†

1 ĉ2 + ĉ1 ĉ†
2), (28)

where

ωnor =
h̄ω0

2

(
1
2

√
(1 + x′f )(1 + x′g) +

1
2

√
(1 − x′f )(1 − x′g)

)
(29a)

λ
(1)
nor =

h̄ω0

2

(√
(1 + x′f )(1 + x′g)−

√
(1 − x′f )(1 − x′g)

)
. (29b)

The relation between these coefficients and (29) is obtained through the Equation (18),
which takes the form [30,31]

ωnor =
h̄ω0

2

(
1 − 1

8
(x′g − x′f )

2 +O(x3)

)
, (30)

λ
(1)
nor =

h̄ω0

2

(
x′g + x′f +O(x3)

)
. (31)

with the identification
γ(ω) =

1
8
(x′f − x′g)

2. (32)

This parameter is related to λ
(1)
2 appearing in the Hamiltonian (27) by γ(ω) = 1

2

(
λ
(1)
2

h̄ω0

)2

,

which is consistent with the fact that both of them are associated with local polyad breaking.
From the expressions for the force constants obtained from Table 1, we can calculate the
parameters ϵi, i = 1, 2 defined in (20). Finally, we should recall that we have the additional
parameter ζ defined in (21), which was used in Refs. [30,31] for the case of two oscillators.

We now proceed to show the relation between these parameters for different molecules.
We start by considering the series of symmetric triatomic molecules analyzed in Refs. [30,31].
In Table 2, the fundamentals as well as the force constants are displayed, while in Table 3
all the parameters suitable for measuring the LN degree are listed. In order to appreciate
the behavior of the parameters, it is convenient to display the results in graphical form.
In Refs. [30,31], the plot ζ vs. γ was presented. Although a general local-to-normal trend
was identified, a clear correlation between the parameters was not manifested. This fact
suggests that the splitting of the interacting oscillators is not necessarily a quantitative
criterion for assigning an LN degree. In Figure 1, a plot of δ− vs. γ(ω) for all the molecules
included in Table 3 is depicted. Now, we can see a linear trend for the molecules near
the local limit. The molecules with normal mode behavior are shifted to the upper part
of the line. The reason for this is that the parameter γ(ω) only takes into account the first
term of the expansion (30). A discussion of this behavior will be provided in Section 3.3.
The importance of the correlation between δ− and γ(ω) is two fold: first both parameters
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represent a consistent LN criterion and second this correlation allows unveiling molecular
properties, as we shall see later on.

Table 2. Fundamentals and force constants calculated using the expressions in Table 1. References
from which the fundamental energies were taken are indicated.

Molecule ν1 ν3 f (N)
rr f (N)

rr′

H2O [43] 3657.053 3755.930 7.6756 −0.0910
H2S [44] 2614.408 2628.455 3.9569 −0.0168
H2Se [45] 2344.36 2357.65 3.2413 −0.0177
SO2 [46] 1151.71 1362.06 10.0004 −0.0233
F2O [47] 928.07 831 4.0864 0.9397
Cl2O [48] 641.97 686.54 3.0032 0.5452

O3 [49] 1103.14 1042.08 5.7941 1.6114
NO2 [50] 1319.79 1616.85 10.2889 1.8984
CO2 [51] 1285.41 2349.14 14.8871 0.6891
CS2 [52] 658.00 1535.35 7.6021 0.5767

Table 3. LN parameters for the molecules given in Table 2. Parenthesis (x) means ×10x.

Molecule δ− γ(ω) ζ ϵ1 ϵ2

H2O 5.47 (−7) 1.09 (−6) 0.0170 2.19 (−6) −2.73 (−6)
H2S 6.06 (−7) 1.21 (−6) 0.0034 2.42 (−6) −6.42 (−7)
H2Se 1.73 (−6) 3.46 (−6) 0.0036 6.92 (−6) −2.51 (−7)
SO2 1.68 (−3) 3.26 (−3) 0.1056 6.57 (−3) −0.4635
F2O 8.05 (−3) 0.0156 0.0700 0.0312 0.0167
Cl2O 0.0118 0.0228 0.0426 0.0457 0.0618

O3 0.0167 0.0317 0.0358 0.0634 0.0514
NO2 0.0211 0.0386 0.1271 0.0779 0.1567
CO2 0.0331 0.0477 0.3371 0.1033 1.2741
CS2 0.0736 0.0807 0.4296 0.1855 1.7789

2

NO2

O3

SO2
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0.00

0.02

0.04

0.06

Figure 1. Plot of the parameters δ− vs. γ for the series of molecules included in Table 3.

We now turn our attention to the correlation between the parameters ϵ1 vs. δ− and ϵ1
vs. γ(ω) displayed in Figure 2. A clear linear trend is obtained, which confirms the validity
of the parameter ϵ1 for measuring the LN degree.
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Figure 2. Plots of ϵ1 vs. δ− and ϵ1 vs. γ(ω), for the same series of molecules considered in Figure 1.

Regarding the correlation of ϵ2 vs. δ−, a somewhat unclear behavior is obtained for
the molecules with strong local behavior. This is explained as, in the region close to locality,
a weak interaction between oscillators is present, leading to small values of frr′ . This fact
makes it difficult to assign an LN degree; the error is of the same order of magnitude as the
parameters themselves.

3.2. Non-Equivalent Bonds

In the previous analysis, we considered two equivalent oscillators, a case where the
principal isotopologues are embraced. However, we can incorporate the full variety of
triatomic molecules through a symmetry reduction. In this case, it is more convenient to
start with an algebraic representation of the Hamiltonian in terms of local operators.

ĤL =
h̄ω1

2

{
(â†

1 â1 + â1 â†
1) +

√
αβ(â†

2 â2 + â2 â†
2)λ

(1)
1 (â†

1 â2 + â1 â†
2) + λ

(1)
2 (â†

1 â†
2 + â1 â2)

}
, (33)

with the new definitions

ω1 =
√

f11g(0)

11 ; λ
(1)
1 =

√
αβ

(
x′f + x′g

)
; λ

(1)
2 =

√
αβ

(
x′f − x′g

)
(34)

and

x′f =
f12√
f11 f22

; x′g =
g(0)

12√
g(0)

11g(0)

22

; α2 =
g(0)

22
g(0)

11
; β2 =

f22

f11
. (35)

The algebraic Hamiltonian (33) is obtained from the quadratic Hamiltonian for two inter-
acting oscillators in configuration space. For the general case like FCN, α ̸= 1 and β ̸= 1.
Assuming the Born–Oppenheimer approximation, for asymmetric isotopologues of type
x1 B y A x2 B, we have β = 1, while for symmetric molecules, it is clear that α = β = 1; the
case previously analyzed.

We proceed to obtain the normal representation of the Hamiltonian (33). To consider
this scenario, we invoke the GF formalism to obtain the normal modes. The normal modes
are defined in terms of the internal coordinates using the transformation L−1G0FL = ΛΛΛ,
where the matrices G0 and F are chosen in terms of the symmetry-adapted coordinates
S = {Sg = (q1 + q2)/

√
2, Su = (q1 − q2)/

√
2} [33]. Here, the condition L†G−1

0 L = 1
provides the normalization of L.

In the normal mode scheme, the algebraic Hamiltonian equivalent to (2) takes the
general form

ĤN = ∑
ι

h̄Ωι(Γ)

2 ∑
γ

(Â†
ιγÂιγ + ÂιγÂ†

ιγ), (36)
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where we have taken into account that the ι-th normal mode carries the Γ-th irreducible
representation with components γ. For the particular case of two non-equivalent interacting
oscillators, the Hamiltonian (36) simplifies to

ĤN = ∑
ι

h̄Ωι(Γ)

2
(Â†

ι Âι + ÂιÂ†
ι ), (37)

with Γ identified with the totally symmetric irreducible representation. It was found that
the connection between the bosonic normal operators Â†

ι (Âι) associated with the ι-th
normal mode and the local operators â†

j (âj) is the following [33]

Â†
ι =

2

∑
j=1

(c(ι,j)+ â†
j + c(ι,j)− âj), (38)

with coefficients

c(ι,j)± =
1

2
√

2
∑
σ

(−1)(σ+1)(1−δj1)βι

√
h̄

ωjµj

[
(L−1)ισ ± (L̃)ισ

ωjµj

h̄β2
ι

]
. (39)

where β2
ι =

1
h̄ (λι)1/2, with λι = Λιι given by

λ± =
g11 f11

2

(
1 + η2 + 2ηx′f x′g ±

√
1 + η2(η2 − 2) + 4η[η(x′2f + x′2g ) + (1 + η2)x′f x′g]

)
, (40)

with η = αβ. In Equation (39), σ denotes a sum over the symmetry-adapted coordinates
σ = {1 → g, 2 → u}. The matrix L is defined through S = LQ:

Qι = ∑
α

(L−1)ιαSα; α = 1, 2. (41)

If we now into account that µj = 1/g(0)qjqj and ωj =
√

fqjqj g
(0)
qjqj , Equation (38) allows the

parameter δ− to be defined

δ− =
1
2

2

∑
ι=1

[ 2

∑
j=1

|c(ι,j)− |2
]

, (42)

which measures the LN degree and also the feasibility of establishing a polyad preserving
canonical transformation from (38). Here, we have to stress that, because of the non-
equivalence between the oscillators, the coefficients c(ιj)± cannot be factorized as happened
in (4).

In order to identify the parameters (19), we recall the connection between (32) and λ
(1)
2

in (27). Hence, from λ
(12)
2 → λ

(1)
2 , we define

γ(ω) =
1
8
(x′f − x′g)

2, (43)

as the parameter connected with the Hessian in (18), albeit with the new definitions (35).
As we know, the substitution of (38) into the Hamiltonian (2) leads to the algebraic

Hamiltonian (33) given in the local representation. But now, in order to obtain the equivalent
expression to (28), we need to consider the polyad-conserving canonical transformations

Â†
1 = αĉ†

1 +
√

1 − α2 ĉ†
2 (44a)

Â†
2 =

√
1 − α2 ĉ†

1 − αĉ†
2 (44b)
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to ensure the commutation relations [Âι, Â†
ι′ ] = διι′ , where α is chosen to be α = c(1,1)

+ .
Substitution of (44) into (2) gives rise to the Hamiltonian

Ĥ(PL)
L′ = ω

(1)
nor(ĉ†

1 ĉ1 + ĉ1 ĉ†
1) + ω

(2)
nor(ĉ†

2 ĉ2 + ĉ2 ĉ†
2) + λ

(12)
nor (ĉ†

1 ĉ2 + ĉ1 ĉ†
2), (45)

where

ω
(1)
nor =

h̄
2
(Ω1 α2 + Ω2 (1 − α2)) (46a)

ω
(2)
nor =

h̄
2
(Ω1 (1 − α2) + Ω2 α2) (46b)

λ
(12)
nor = h̄α

√
1 − α2(Ω1 − Ω2). (46c)

Both the Hamiltonians (33) and (45) involve three force constants { f11, f22, f12}. This is
indeed the case in a general situation like the FCN molecule, where the two fundamentals
are not enough to determine them. In such situations, fundamentals for an isotopologue
are needed to estimate the three force constants. For symmetric isotopologues f11 = f22,
and just the two fundamentals need to be determined.

The transformation (44) acquires a preponderant importance in describing molecules
with clear normal mode behavior, like CO2, N2O, OCS, or FCN, for instance. In molecules
with local mode behavior, the usual approach consists in describing the stretching internal
coordinates in terms of interacting Morse oscillators, with the bends in terms of normal
coordinates. The splitting of the stretching fundamental energies is small and consequently
a local polyad-conserving Hamiltonian may be a good approximation. In contrast, for
the bending degrees of freedom , this is not possible because the polyad is only well
defined in the normal scheme. The same situation is present for the stretching degrees of
freedom in molecules with strong normal behavior. In order to embrace both behaviors,
we propose to apply the transformation (44) to a normal polyad Hamiltonian to obtain
a local representation. The obtained Hamiltonian is later anharmonized by mapping the
bosonic operators ĉ†

i (ĉi) for stretches to SU(2) operators b̂†
i (b̂i) associated with Morse

ladder operators. This approach allows us to take advantage of the Morse properties in
systems where only the normal polyad is defined. This procedure has been tested on the
whole series of isotopologues of carbon dioxide [33,53] and the FCN molecule [54].

3.3. Parameterization Local–Normal Mode Transition

Because of the close relation between the contribution of the annihilation operators
in (38) and local polyad breaking P̂L, it is convenient to recall the parameterization from
H2O to CO2 presented in Refs. [30,31], but now taking care of the linear path appearing
in the diagram δ− vs. γ. Both parameters depend on x′g and x′f . Hence, taking t ≡ x′g, we
have for x′f (t)

x′f (t) = m f (t − x′(N)
g ) + x′(N)

f ; m f =
x′(N)

f − x′(L)
f

x′(N)
g − x′(L)

g

, (47a)

ω(t) = mω(t − x′(N)
g ) + ω(N); mω =

ω(N) − ω(L)

x′(N)
g − x′(L)

g

, (47b)

with t ∈ [x′(L)
g , x′(N)

g ], while (x′(L)
g , x′(L)

f ) and (x′(N)
g , x′(N)

f ) correspond to the values of the
parameters for the molecules H2O and CO2, respectively. This parametrization can be used
to study Equation (22) connecting the normal and local polyads. From Figure 3, we can see
that, at the local limit, all parameters vanish, with the exception of β0 going to unity and
leading to P̂N = P̂L, as expected. We found that these parameters are basically correlated to
the δ− parameter and consequently they do not contribute to additional LN criteria.
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Figure 3. Coefficients involved in the relation (22) connecting the normal and local polyads.

Up to now, we have considered the correlation of δ− vs. γ(ω) for molecules near a
local mode behavior. Figure 1 suggests that the linear trend is a consequence of the local
mode behavior, since the location of CO2 and CS2 lies outside of the linear correlation.
This situation is clearly manifested in Figure 4, left side, where the series of molecules
BeX2 and MgX2 are analyzed. We can see that by including molecules with strong normal
mode behavior the function changes from linear to exponential form, making it clear that
the linear correlation is just an approximation. To explain this behavior, we notice that
from the point of view of the series (18), γ(ω) represents the first correction to the linear
approximation. When higher-order terms are incorporated, the linear trend tends to be
recovered, as seen in the same Figure 4 on the right-hand side. This behavior also explains
the location of the molecules CO2 and CS2 above the line in Figure 1. On the other hand, the
parameter δ− is unique, while there are several γ′s. This fact suggests that putting together
the information of all the γ′s, a closer approximation to δ− is obtained. This guess is
confirmed by the plot of δ− vs. γ

(ω)
10 + γ

(ij)
9 depicted on the right of Figure 4. The subscript

index in the γ’s means the upper order is taken into account. In our analysis, the addition
of higher-order terms to γ(ω) is not necessary to define a different parameter, because of
the clear exponential form, which ensures a consistent behavior, and consequently both δ−
and γ(ω) provide LN parameters, even in extreme conditions of normality.

MgI2

MgBr2

MgCl2

MgF2

BeI2

BeBr2

BeCl2
BeF2
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Figure 4. At the left, the plot δ− vs. γ(ω) is displayed, including the series of molecules BeX2 and
MgX2, which manifest a strong normal mode behavior. On the right, the equivalent plot using the
parameterization (47), but adding to γ(ω) additional contributions up to n-th order indicated with

γ
(ω)
n . The curve labeled γ

(ω)
10 + γ

(ij)
9 means that both gammas were summed up the indicated order.

3.4. Isotopologues

The analysis of the series of isotopologues deserves special attention, because the plots
δ− vs. γ(ω) provide a perfect linear correlation, which is expected from Figure 4, since they
represent a short segment of the exponential function. In addition, since each series of
isotopologues is characterized using the same force constants, the slopes are expected to be
correlated to x′f .

The case of equivalent oscillators embraces the isotopologues of type x AyB2. Examples
of molecules with sufficient experimental information include H2O, NO2, SO2, O3, and CO2.
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In Figure 5, the plots δ− vs. γ are displayed for H2O, SO2, and O3. For the isotopologues
of carbon dioxide, the corresponding plot is given in Figure 1 of Ref. [33]. For NO2, only
two isotopologues are given, and no plot is necessary. In Figure 6, the force constants
vs. the slope m are depicted. The molecules H2O, SO2, and CO2 are in close agreement
with the expected linear trend, although for SO2 and CO2, we have corrected the slope,
adding higher order terms to γ(ω), as explained before. However, two molecules, NO2 and
O3, present a quite different behavior, which we believe is due to their resonant structure
manifested by the different values of force constants.

In this analysis, our results are obtained either using force constants from ab initio
calculations or from the fundamentals, but in either case the force constants must be the
same for every isotopologue.

(162)
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Figure 5. Plots of δ− vs. γ(ω) for the series of isotopologues of H2O, SO2, and O3. A clear linear trend
was obtained in all systems. The fundamentals needed to obtain the parameters were obtained from
the references indicated: water [55–57], sulfur dioxide [58], and ozone [49]. The force constants were
obtained from the principal isotopologues.
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Figure 6. Slope m vs. x′f for the isotopologues associated with the molecules H2O, SO2, CO2, O3, and
NO2. The fundamentals for nitrogen dioxide were obtained from Refs. [59,60].

4. Pyramidal Molecules

In Ref. [20], the case of three equivalent oscillators was analyzed in the context of the
pyramidal molecules for both stretching and bending modes, while in Ref. [61] a study of
the stretching modes in the molecule BF3 was considered. Here, we focus on pyramidal
molecules, because of their abundance.

Pyramidal molecules present two stretching and two bending normal modes, both
with symmetries A1 ⊕ E. The fundamental energies of the bending modes are far from
the stretching frequencies, hence a good approximation consists in neglecting stretching–
bending interactions up to second order, where the normal modes are defined. This means
that the stretches and bends can be independently analyzed in terms of a Hamiltonian of
type (2).

We start with the stretching degrees of freedom. The expressions for the force
constants (3) are [20]
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FA1 A1 = frr + 2 frr′ ; G(0)
A1 A1

= g(0)
rr + 2g(0)

rr′ , (48a)

FEE = frr − frr′ ; G(0)
EE = g(0)

rr − g(0)

rr′ , (48b)

while for the matrix elements involved in (6)

||mi,Γγ|| =


1√
3

2√
6

0
1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2

, (49)

which was chosen to be associated with the group chain C3v ⊃ Ca
s with Ca

s = {E, σa
v}, with

the same notation for the symmetry elements used in Ref. [20]. In this case, the algebraic
Hamiltonian (8) takes the form

ĤL = λ0

3

∑
i=1

(â†
i âi + âi â†

i ) + λ
(1)
1

3

∑
i>j=1

(â†
i âj + âi â†

j ) + λ
(1)
2

3

∑
i>j=1

(â†
i â†

j + âi âj), (50)

with coefficients given by (11). This Hamiltonian does not conserve the local polyad. Again,
if we demand λ

(1)
2 = 0, we are able to estimate the force constants using (11), as well as

the matrix representation of the Hamiltonian in the local basis L = {|100⟩, |010⟩, |001⟩}.
The results were extracted from Table 1 with µ2 = E, allowing the parameters ϵ′s to
be calculated.

To obtain a polyad-conserving Hamiltonian, we should consider the canonical trans-
formation (15), which when substituted into the Hamiltonian (2) yields

Ĥ(PL)
L′ = ωnor

3

∑
i=1

(ĉ†
i ĉi + ĉi ĉ†

i ) + λ
(1)
nor

3

∑
i>j=1

(ĉ†
i ĉj + ĉi ĉ†

j ), (51)

where the spectroscopic parameters given by

ωnor =
h̄ω0

2

(
1
3

√
(1 + 2x′f )(1 + 2x′g) +

2
3

√
(1 − x′f )(1 − x′g)

)
, (52a)

λ
(1)
nor =

h̄ω0

2

(
2
3

√
(1 + 2x′f )(1 + 2x′g)−

2
3

√
(1 − x′f )(1 − x′g)

)
. (52b)

are functions of x, in accordance with (18). Their expansion, equivalent to (18), leads to
the identification

γ(12) → γ(1) = γ(ω) =
1
4
(x′f − x′g)

2, (53)

which again turns out to be basically the Hessian of the Taylor expansions of (52). In
Table 4, the fundamentals as well as the calculated force constants are given for several
molecules. Because it is possible to establish an isomorphism between the stretches and
the bends in such a way that both span the same irreducible representations, the general
results are basically valid, with the proviso that the structure constants change for the
bends [20]. In Table 5, the LN parameters for the stretches are presented, while in Table 6
the corresponding parameters for the bends are listed.

In Figure 7, a plot of δ− vs. γ(ω) is displayed for the stretching modes for several
molecules, including the pyramidal molecules analyzed in Ref. [20]. Again, a linear trend
is manifested, because all the molecules are in the local mode region (small values of δ−).
In Figure 8, the plot δ− vs. γ(ω) for the bending modes is displayed. One point to stress
is that the NH3 molecule is the only one located out of the line, a fact we assumed to be
due to the existence of the inversion mode [20]. We have thus identified two cases where
the deviation of the linear behavior allows particular molecular properties to be identified:
internal inversion and resonance.
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Table 4. Fundamentals (in cm−1) and calculated force constants (in aJ Å−2) for certain pyramidal
molecules. References from which the fundamental energies were taken are indicated.

Molecule ν1 ν2 ν3 ν4 f (N)
rr f (N)

rr′ f (N)
θθ f (N)

θθ′

14NH3 [62] 3336.08 932.43 3443.68 1626.28 6.3871 −0.0117 0.5252 −0.0815
14NT3 [63] 2014.1 656.37 2184.76 996.28 6.5989 −0.0138 0.5402 −0.0645
15NCl3 [64] 541.7 364.8 632.3 262.8 2.4275 0.3837 0.2321 0.0571
14NCl3 [64] 554.2 365.2 644 263 2.4189 0.4073 0.2202 0.0533
31PH3 [65] 2321.12 992.13 2326.87 1118.31 3.0853 0.0006 0.3303 −0.0203
PCl3 [66] 515 258.3 504 186 2.5695 0.3104 0.1963 0.0222
PBr3 [66] 390 159.9 384.4 112.8 2.0586 0.3502 0.0959 0.0072

75AsH3 [67] 2115.16 906.75 2126.42 999.23 2.6198 −0.0080 0.2727 −0.0139
AsF3 [68] 740 338 703 263 4.5824 0.2579 0.3644 0.0489
AsCl3 [66] 416.5 192.5 319 150.2 2.2860 0.2180 0.1829 0.0211
AsBr3 [66] 272 128 287 99 1.8326 0.1105 0.1236 0.0079

121SbH3 [69] 1890.50 782.25 1894.50 827.86 2.0944 −0.0025 0.1929 −0.0053
SbF3 [70] 666 250 634 213 4.0305 0.1828 0.2436 0.0223
SbCl3 [66] 380.7 150.8 358.9 121.8 2.1794 0.1529 0.1364 0.0156
BiH3 [71] 1733.25 726.7 1734.47 751.24 1.7632 −0.0008 0.1619 −0.0035
BiCl3 [66] 342 123 322 107 1.9351 0.1179 0.1112 0.0116
BiBr3 [66] 220 77 214 63 1.5975 0.0998 0.0750 0.0076
BiI3 [66] 162 59.7 163.5 47 1.2453 0.0747 0.0575 0.0056

Table 5. Parameters δ−, γ(ω), ζ, ϵi associated with the stretching degrees of freedom for several
pyramidal molecules. Parenthesis (x) means ×10x.

Molecule δ− γ(ω) ζ ϵ1 ϵ2

14NT3 4.00 (−4) 5.91 (−4) 0.0516 0.0012 −0.3214
SbF3 4.84 (−4) 8.09 (−4) 0.0313 0.0016 0.0180
AsF3 8.79 (−4) 0.0015 0.0326 0.0029 0.0268
BiBr3 0.0016 0.0027 0.0176 0.0053 0.0463
BiI3 0.0024 0.0037 0.0059 0.0075 0.0703
AsBr3 0.0037 0.0056 0.0341 0.0114 0.1118
PCl3 0.0072 0.0117 0.0137 0.0231 0.1138
PBr3 0.0150 0.0237 0.0092 0.0468 0.1755
15NCl3 0.0264 0.0348 0.0975 0.0726 0.3282
14NCl3 0.0284 0.0375 0.0947 0.0782 0.3339

Table 6. LN parameters δ−, γ(ω), ζ, ϵi for the bending degrees of freedom of pyramidal molecules.
Parenthesis (x) means ×10x.

Molecule δ− γ(ω) ζ ϵ1 ϵ2

121SbH3 5.09 (−5) 7.70 (−5) 0.0360 1.57 (−4) −0.0029
BiH3 7.12 (−5) 1.10 (−4) 0.0211 2.23 (−4) −0.0052
14NH3 1.33 (−4) 1.09 (−4) 0.3164 2.81 (−4) −0.0012
75AsH3 2.60 (−4) 3.78 (−4) 0.0616 0.0008 −0.0078
31PH3 3.64 (−4) 5.16 (−4) 0.0758 0.0011 −0.0090
PCl3 1.29 (−6) 2.64 (−6) 0.2003 4.85 (−6) 1.64 (−5)
AsCl3 4.40 (−4) 8.56 (−4) 0.1541 0.0016 0.0061
SbCl3 8.42 (−4) 0.0016 0.1335 0.0030 0.0123
BiCl3 0.0017 0.0031 0.0880 0.0059 0.0286
14NCl3 0.0077 0.0153 0.2003 0.0281 0.0586

Although we do not present the plot ϵ1 vs. δ−, it turned out to be similar for both
stretches and bends, a behavior that can be extracted from Tables 5 and 6. Regarding ϵ2, for
the stretches, the expected correlation with δ− is fulfilled, while this is not the case for the
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bends. From the same Tables, it is clear that the parameter ζ associated with the splitting of
labels does not represent an LN parameter.
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Figure 7. Plot of δ− vs. γ(ω) for the stretching modes of pyramidal molecules.
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Figure 8. Plots of δ− vs. γ(ω) for the bending modes of pyramidal molecules.

5. Tetrahedral Molecules

Here, we present a study of tetrahedral molecules for both stretching and bending
degrees of freedom. This system is relevant because the bending modes present a spuri-
ous state. First, we consider the four stretching oscillators, which reduce to the A1 ⊕ F2
irreducible representations. Again, the fundamental energies of the bending modes are
far from the stretching frequencies, and consequently to obtain the normal modes, a good
approximation consists in neglecting stretching–bending interactions up to second order.

5.1. Stretching Oscillators

The Hamiltonian in the normal scheme for the stretching modes takes the form (2), with

FA1 A1 = frr + 3 frr′ ; G(0)
A1 A1

= g(0)
rr + 3g(0)

rr′ , (54a)

FF2F2 = frr − frr′ ; G(0)
F2F2

= g(0)
rr − g(0)

rr′ . (54b)

From these expressions and the fundamentals, we obtained the estimation of the force
constants (3) given in Table 1 with µ2 = F2. Here, the components of F2 are labeled in
accordance with the canonical chain Td ⊃ C2v. The connection between the normal bosonic
operators and the local operators is given by (4), with δ±Γ obtained through (5). The matrix
elements ||mi,Γγ|| define the symmetry adapted combinations for one quantum

||mi,Γγ|| =


1
2

1
2

1√
2

0
1
2 − 1

2 0 1√
2

1
2

1
2 − 1√

2
0

1
2 − 1

2 0 − 1√
2

 (55)
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with order {A1, (F2, A1), (F2, B2), (F2, B3)}.
The substitution of (4) into the Hamiltonian (2) leads to the algebraic representation of

the Hamiltonian in the local scheme

ĤL = λ0

4

∑
i=1

(â†
i âi + âi â†

i ) + λ
(1)
1

4

∑
i>j=1

(â†
i âj + âi â†

j ) + λ
(1)
2

4

∑
i>j=1

(â†
i â†

j + âi âj), (56)

with coefficients defined by (11) with the convention λ(12) → λ(1), since only one type of
interaction is present. As expected, this Hamiltonian does not conserve the local polyad.
Demanding λ

(1)
2 = 0 in (56) and taking its diagonalization in the space of one local quanta

L = {|1000⟩, |0100⟩, |0010⟩, |0001⟩}, we are able to estimate the force constants f (L)
rr , f (L)

rr′
from Table 1.

Let us now consider the equivalent expression (16). The normal operators neglecting
the contribution of the annihilation local operators are given by (15). Their substitution into
the Hamiltonian (2) leads to

Ĥ(PL)
L′ = ωnor

4

∑
i=1

(ĉ†
i ĉi + ĉi ĉ†

i ) + λ
(1)
nor

4

∑
i>j=1

(ĉ†
i ĉj + ĉi ĉ†

j ), (57)

with coefficients

ωnor =
h̄ω0

2

(
1
4

√
(1 + x′f )(1 + 3x′g) +

3
4

√
(1 − x′f )(1 − x′g)

)
, (58a)

λ
(1)
nor =

h̄ω0

2

(
1
2

√
(1 + 3x′f )(1 + 3x′g)−

1
2

√
(1 − x′f )(1 − x′g)

)
, (58b)

which when expanded in terms of the x′f and x′g allow the identification

γ(ω) =
3
8
(x′f − x′g)

2; (59a)

γ(12) → γ(1) =
1
2
(x′f − x′g)

2. (59b)

Since these expressions are proportional, we introduce the unique parameter

γ ≡ (x′f − x′g)
2. (60)

The fits of the parameters involved in the Hamiltonians (56) and (57) to reproduce the
fundamentals. Both fits provide the same numerical values for the sets {λ0, λ

(1)
1 } and

{ωnor, λ
(1)
nor}, but the connections to the force constants are different. From these results the

parameters ϵ′s can be obtained.
In Table 7, the fundamentals and the force constants calculated from Table 1 are given,

while in Table 8 the LN parameters can be found. Using these results in Figure 9 the plot of
δ− vs. γ is depicted, including several tetrahedral molecules for the stretching modes. On
the right side of the figure, molecules with extreme normal mode behavior are displayed,
while on the left, molecules with local mode behavior are included. The exponential trend
in the former, behavior explained in Section 3.3.
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Table 7. Fundamental energies for several tetrahedral molecules, together with the force constants
calculated in accordance with Table 1. References from which the fundamental energies were taken
are indicated.

Molecule ν1 ν2 ν3 ν4 f (N)
rr f (N)

rr′ f (N)
θθ f (N)

θθ′ f (N)
θθ′′

12CH4 [72] 2916.482 1533.336 3019.493 1310.762 4.9144 0.0455 0.3424 −0.0776 −0.0321
13CH4 [72] - 1533.493 - 1302.781 - - 0.3413 −0.0776 −0.0310
12CD4 [72] - 1091.652 - 997.871 - - 0.3576 −0.0786 −0.0433
13CD4 [72] - 1091.801 - 989.250 - - 0.3565 −0.0786 −0.0422

[14NH4]
+ [66] 3040 1680 3145 1400 5.3914 0.0322 0.4024 −0.0931 −0.0300

[15NH4]
+ [66] - 1646 - 1399 - - 0.3957 −0.0894 −0.0381

[ND4]
+ [66] - 1215 - 1065 - - 0.4281 −0.0973 −0.0387

[NT4]
+ [66] - 976 - 913 - - 0.4290 −0.0940 −0.0528

28SiH4 [73,74] 2186.8723 970.93445 2189.1895 913.46879 2.7466 0.0311 0.1576 −0.0311 −0.0332
29SiH4 [74] - 970.94842 - 912.18312 - - 0.1575 −0.0311 −0.0331
30SiH4 [74] - 970.96148 - 910.97961 - - 0.1574 −0.0311 −0.0329
29SiD4 [75] - 689.88679 - 672.93384 - - 0.1628 −0.0314 −0.0373
30SiD4 [75] - 689.89950 - 671.43227 - - 0.1626 −0.0314 −0.0371

70GeH4 [76] - 929.90124 - 821.54462 - - 0.1360 −0.0285 −0.0219
72GeH4 [76] - 929.90513 - 821.11703 - - 0.1360 −0.0285 −0.0218
73GeH4 [76] - 929.90728 - 820.91126 - - 0.1359 −0.0285 −0.0218

74GeH4 [76,77] 2110.70051 929.90910 2111.14192 820.71165 2.6109 0.0115 0.1359 −0.0285 −0.0218
76GeH4 [76] - 929.91308 - 820.32666 - - 0.1359 −0.0285 −0.0217

CF4 [66] 908.4 - 1283.0 - 6.7545 0.8276 - - -
CCl4 [66] 460 - 792.765 - 3.1000 0.4401 - - -
CBr4 [66] 267 - 672 - 2.4546 0.3006 - - -
CI4 [66] 178 - 555 - 1.7372 0.2106 - - -

HfCl4 [66] - 101.5 - 112 - - 0.0672 −0.0120 −0.0193
[PH4]

+ [66] - 1086 - 974 - - 0.1867 −0.0389 −0.0311
[AsH4]

+ [66] - 1024 - 941 - - 0.1729 −0.0346 −0.0345

Table 8. LN parameters associated with the stretching degrees of freedom of tetrahedral molecules.

Molecule δ− γ ζ ϵ1 ϵ2

74GeH4 2.48 (−5) 7.92 (−5) 0.0001 5.94 (−5) 0.0090
28SiH4 1.64 (−4) 5.25 (−4) 0.0007 3.94 (−4) 0.0236
[14NH4]

+ 2.63 (−4) 8.03 (−4) 0.0216 6.13 (−4) 0.0708
12CH4 4.03 (−4) 1.23 (−3) 0.0221 9.40 (−4) 0.0702
CF4 0.0545 0.1068 0.2097 0.0920 0.6536
CCl4 0.1038 0.1528 0.3109 0.1414 0.9123
CBr4 0.1976 0.1699 0.4531 0.1835 1.4336
CI4 0.2828 0.1813 0.5090 0.2099 1.6816
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Figure 9. Plot of δ− vs. γ for the stretching degrees of freedom of tetrahedral molecules. On the right,
the exponential form is manifested due to the high degree of normality of the molecules.
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5.2. Bending Oscillators

The set of bending oscillators in tetrahedral molecules is interesting because of the
presence of a spurious state, a common situation in molecules with high symmetry in the
framework of internal coordinates. The subspace of six oscillators spans the irreducible
representations A1 ⊕ E ⊕ F2, with A1 identified as a spurious mode. Consequently, the
Hamiltonian (2) only involves the E ⊕ F2 modes with

ΩE =

√
( fθθ − 2 fθθ′ + fθθ′′)(g(0)θθ − 2g(0)θθ′ + g(0)θθ′′) (61a)

ΩF2 =

√
( fθθ − fθθ′)(g(0)θθ − g(0)θθ′ ). (61b)

Here, we have three force constants and two fundamentals with the constraint

ΩA1 =

√
( fθθ + 4 fθθ′ + fθθ′′)(g(0)θθ + 4g(0)θθ′ + g(0)θθ′′) = 0. (62)

The estimation of the force constants are given in Table 1, with µ2 = E and µ3 = F2,
omitting from the sums the spurious state A1. The normal and the local operators are
related through the transformation (4). The symmetry projection matrix takes the form

||mi,Γγ|| =



1√
6

− 1√
3

0 − 1√
2

0 0
1√
6

1
2
√

3
− 1

2 0 − 1
2

1
2

1√
6

1
2
√

3
1
2 0 1

2 − 1
2

1√
6

− 1√
3

0 1√
2

0 0
1√
6

1
2
√

3
− 1

2 0 1
2 − 1

2
1√
6

1
2
√

3
1
2 0 1

2
1
2


(63)

Here, the projection is associated with the group chain Td ⊃ C2v with the following order
for the irreducible representations {A1, (E, A1), (E, A2), (F2, A1), (F2, B1), (F2, B2)}.

Because of the presence of the spurious mode, this system will be analyzed following
a different route. The substitution of the transformations (4) into (2), without eliminating
the spurious state A1, leads to the local representation

ĤL = λ0 ∑
i

(
â†

i âi + âi â†
i

)
+ λ

(1)
1 ∑

j>i

(
â†

i âj + âi â†
j

)
+ λ

(2)
1 ∑

j′>i

(
â†

i âj′ âi â†
j′

)
+ λ

(1)
2 ∑

j>i

(
â†

i â†
j + âi âj

)
+ λ

(2)
2 ∑

j′>i

(
â†

i â†
j′ + âi âj′

)
, (64)

with coefficients

λ0 = h̄
[

ΩA1

12
(
δ+,A1 + δ−,A1

)
+

ΩE
6

(δ+,E + δ−,E) +
ΩF2

4
(
δ+,F2 + δ−,F2

)]
; (65a)

λ
(1)
1 = h̄

[
ΩA1

12
(
δ+,A1 + δ−,A1

)
− ΩE

12
(δ+,E + δ−,E)

]
; (65b)

λ
(2)
1 = h̄

[
ΩA1

12
(
δ+,A1 + δ−,A1

)
+

ΩE
12

(δ+,E + δ−,E)−
ΩF2

8
(
δ+,F2 + δ−,F2

)]
; (65c)

λ
(1)
2 = h̄

[
ΩA1

12

√
δ+,A1 δ−,A1 −

ΩE
12

√
δ+,Eδ−,E

]
; (65d)

λ
(2)
2 = h̄

[
ΩA1

12

√
δ+,A1 δ−,A1 +

2ΩE
12

√
δ+,Eδ−,E −

ΩF2

4

√
δ+,F2 δ−,F2

]
, (65e)
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where here we notice that two types of pairwise interactions appear. We decided to write
down the coefficients in this form, because this makes evident that when δ−Γ = 0, we obtain
the expected results (11). However, when the A1 mode is eliminated, the coefficients become

λ0 = −ω0

24
[−10 + 4(x′f + x′g) + (x′′f + x′′g )] (66a)

λ
(1)
1 = −ω0

24
[2 − 2(x′f + x′g) + (x′′f + x′′g )], (66b)

λ
(2)
1 = −ω0

24
[2 + 4(x′f + x′g)− 5(x′′f + x′′g )], (66c)

λ
(1)
2 = −ω0

24
[−2(x′f − x′g) + (x′′f − x′′g )], (66d)

λ
(2)
2 = −ω0

24
[4(x′f − x′g)− 5(x′′f − x′′g )]. (66e)

As noticed, the general form (11) has been broken. But we will not deal with the expres-
sions (66) used to calculate the force constants. Instead, we return to (11), as we next explain.
The simplest way to proceed consists in starting with the Hamiltonian (64), but neglecting
the non-conserving polyad contributions:

Ĥ(PL)
L = λ0 ∑

i
(â†

i âi + âi â†
i ) + λ

(1)
1 ∑

i ̸=j
(â†

i âj + âi â†
j ) + λ

(2)
1 ∑

i ̸=j′
(â†

i âj′ + âi â†
j′) , (67)

with the identification (11). The diagonalization of this Hamiltonian in one quantum
local basis L6 = {|100000⟩, |010000⟩, |001000⟩, |000100⟩, |000010⟩, |000001⟩, } leads to three
eigenvalues, which when they are identified with the fundamentals h̄ΩΓ lead to

h̄ΩA1 = h̄ω0

[
1 + 2(x′f + x′g) +

1
2
(x′′f + x′′g )

]
(68a)

h̄ΩE = h̄ω0

[
1 − (x′f + x′g) +

1
2
(x′′f + x′′g )

]
(68b)

h̄ΩF2 = h̄ω0

[
1 − 1

2
(x′′f + x′′g )

]
, (68c)

When we impose the condition (62) with definitions (12), we are able to obtain the local
force constants f (L)

qiqj from the equations given in Table 1.
We now proceed to obtain the γ′s parameters. Applying the transformation (15) to the

Hamiltonian (2), preserving the spurious state, we obtain

Ĥ(PL)
L′ = ωnor ∑

i
(ĉ†

i ĉi + ĉi ĉ†
i ) + λ

(1)
nor ∑

i ̸=j
(ĉ†

i ĉj + ĉi ĉ†
j ) + λ

(2)
nor ∑

i ̸=j′
(ĉ†

i ĉj′ + ĉi ĉ†
j′) , (69)

where

ωnor = h̄
(

ΩA1

12
+

ΩE
6

+
ΩF2

4

)
; (70a)

λ
(1)
nor = h̄

(
ΩA1

12
− ΩE

12

)
; (70b)

λ
(2)
nor = h̄

(
ΩA1

12
+

ΩE
6

−
ΩF2

4

)
, (70c)
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The Equations (70) are implicit functions of the variables x. Their expansion leads to

ωnor = h̄ω0

[
1
2
− γ(ω) +O(x3)

]
; (71)

λ
(1)
nor = h̄ω0

[
1
4
(x′f + x′g)− γ(1) +O(x3)

]
; (72)

λ
(2)
nor = h̄ω0

[
1
4
(x′′f + x′′g )− γ(2) +O(x3)

]
, (73)

with the identification

γ(ω) =
1
4
(x′f − x′g)

2 +
1

16
(x′′f − x′′g )

2 ; (74a)

γ(1) =
1
8
(x′f − x′g)

[
(x′f − x′g) + (x′′f − x′′g )

]
; (74b)

γ(2) =
1
4
(x′f − x′g)

2 . (74c)

We stress that in these expressions the spurious state A1 has been included. However,
the redundancy takes into account the calculation of force constants f (N)

qiqj through the use
of (61) together with the constraint (62). In Table 9, the LN parameters are listed, while in
Figure 10, the plot δ− vs. γ(ω) is displayed. In addition in Figure 11, the corresponding plots
involving the parameters γ(1) and γ(2) are presented. These results show the consistency
of the parameters in establishing an LN degree, even in the presence of spurious states.

Table 9. LN parameters associated with the bending degrees of freedom of tetrahedral molecules.

Molecule δ− γ(ω) γ(1) γ(2) ζ ϵ1 ϵ2 ϵ3

13CH4 4.96 (−7) 6.05 (−7) 1.82 (−7) 1.21 (−7) 0.1027 −0.0655 9.40 (−4) −0.7303
12CH4 3.00 (−6) 3.64 (−6) 1.09 (−6) 7.28 (−7) 0.0988 −0.0611 6.87 (−4) −0.6576
[14NH4]

+ 1.10 (−5) 1.34 (−5) 4.03 (−6) 2.69 (−6) 0.1145 −0.0688 7.02 (−4) −0.9332
[15NH4]

+ 1.29 (−5) 1.57 (−5) 4.71 (−6) 3.14 (−6) 0.1024 −0.0667 1.43 (−3) −0.7056
13CD4 1.87 (−4) 2.19 (−4) 6.56 (−5) 4.38 (−5) 0.0625 −0.0168 5.00 (−4) −0.1460
12CD4 2.56 (−4) 2.98 (−4) 8.94 (−5) 5.96 (−5) 0.0570 −0.0094 9.76 (−4) −0.0849
[ND4]

+ 3.25 (−4) 3.87 (−4) 1.16 (−4) 7.74 (−5) 0.0833 −0.0223 8.30 (−4) −0.2548
HfCl4 4.65 (−4) 4.81 (−4) 1.44 (−4) 9.63 (−5) 0.0624 7.69 (−3) 2.46 (−3) 0.0206
[NT4]

+ 6.85 (−4) 7.80 (−4) 2.34 (−4) 1.56 (−4) 0.0424 0.0164 4.42 (−3) 0.1018
[PH4]

+ 1.01 (−3) 1.22 (−3) 3.65 (−4) 2.44 (−4) 0.0690 −0.0986 0.0153 −0.6693
70GeH4 1.30 (−3) 1.58 (−3) 4.73 (−4) 3.16 (−4) 0.0784 −0.1127 0.0198 −0.8034
72GeH4 1.30 (−3) 1.58 (−3) 4.75 (−4) 3.16 (−4) 0.0787 −0.1130 0.0199 −0.8073
73GeH4 1.30 (−3) 1.58 (−3) 4.75 (−4) 3.17 (−4) 0.0789 −0.1132 0.0199 −0.8093
74GeH4 1.31 (−3) 1.59 (−3) 4.76 (−4) 3.17 (−4) 0.0790 −0.1133 0.0199 −0.8111
76GeH4 1.31 (−3) 1.59 (−3) 4.77 (−4) 3.18 (−4) 0.0793 −0.1136 0.0200 −0.8147
29GeD4 1.41 (−3) 1.63 (−3) 4.88 (−4) 3.25 (−4) 0.0158 −0.0701 0.0162 −0.3603
30GeD4 1.44 (−3) 1.66 (−3) 4.98 (−4) 3.32 (−4) 0.0173 −0.0717 0.0166 −0.3705
28GeH4 1.80 (−3) 2.13 (−3) 6.38 (−4) 4.25 (−4) 0.0388 −0.0945 0.0226 −0.5329
29GeH4 1.81 (−3) 2.15 (−3) 6.44 (−4) 4.29 (−4) 0.0397 −0.0954 0.0229 −0.5403
30GeH4 1.83 (−3) 2.16 (−3) 6.49 (−4) 4.33 (−4) 0.0405 −0.0963 0.0231 −0.5474
[AsH4]

+ 2.16 (−3) 2.59 (−3) 7.76 (−4) 5.17 (−4) 0.0537 −0.1121 0.0283 −0.6754
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Figure 10. Plot of δ− vs. γ(ω) for tetrahedral molecules involving the bending degrees of freedom.
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Figure 11. Plot of δ− vs. γ(1) and δ− vs. γ(2) for tetrahedral molecules involving the bending degrees
of freedom.

5.3. Isotopologues

Let us now consider the series of isotopologues αXβH4, X = Ge, Si, N, C; involving
the bending degrees of freedom. The plots δ− vs. γ(ω) are displayed in Figure 12. Since
similar results were obtained for δ− vs. γ(1) and δ− vs. γ(2), their corresponding plots are
not included. The linear correlations are evident, as in the previous cases. This is clearly
explained by the local mode behavior of the systems. However, this is not an obvious
result, since we are dealing with bending degrees of freedom presenting a spurious state.
We again stress that bending modes are not traditionally contemplated when assigning
an LN degree, but with these results we confirm that the parameters we have introduced
represent a valid measure of the LN degree.

From Figure 12, we may also consider the slopes to look for a correlation with the force
constants x′f . The result is presented in Figure 13. In order to create the plot, we had to take
into account that several force constants are available. This fact is taken into account by the
bars in the plot. We can see that with the exception of GeH4, a line can be assigned for the
correlation. We believe that the odd behavior of GeH4 with respect to the other compounds
is due to the Germanium configuration [Ar]4s23d104p2, in contrast to C, N, and Si, where
no d orbitals are present. A similar situation appears in the series of pyramidal molecules,
where the unexpected local-to-normal order is believed to have the same origin [20].
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Figure 12. Plot of δ− vs. γ(ω) for the different series of isotopologues.
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Figure 13. Plot of m(ω) vs. x′f associated with the isotopologues of Figure 12. [NH4]+, CH4, and SiH4

lie along the line, while GeH4 is manifested outside of it.

6. Octahedral Molecules

We now consider the stretching modes of octahedral molecules, with the Oh symmetry
group. This system is included in our study because of the presence of two types of
interactions: contiguous and opposite ones, but also because, in the case of contiguous
bonds, the parameter x′g vanishes. A partial analysis of this system, including vibrational
descriptions of the series of molecules SF6, WF6, and UF6, was discussed in Ref. [32].

The reduction of the internal coordinates corresponds to A1g ⊕ Eg ⊕ T1u. In this case,
the force and structure constants take the form

FA1g A1g = frr + 4 frr′ + frr′′ ; G(0)
A1g A1g

= g(0)rr + 4g(0)rr′ + g(0)rr′′ ; (75a)

FEgEg = frr − 2 frr′ + frr′′ ; G(0)
EgEg

= g(0)rr − 2g(0)rr′ + g(0)rr′′ ; (75b)

FT1uT1u = frr − frr′′ ; G(0)
T1uT1u

= g(0)rr − g(0)rr′′ . (75c)

from these expressions and the fundamental energies, the force constants can be obtained
from Table 1, with µ3 = T1u. The results are displayed in Table 10. The matrix elements
||mi,Γγ|| defining the symmetry-adapted combinations for one quantum are given by
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||mi,Γγ|| =
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− 1√
3

0 − 1√
2

0 0


, (76)

in accordance with chain Oh ⊃ D2h. The substitution of (4) into the Hamiltonian (2) leads
to the local representation

ĤL = λ0

6

∑
i=1

(â†
i âi + âi â†

i ) + λ
(1)
1 ∑

i>j
(â†

i âj + âi â†
j ) + λ

(2)
1 ∑

i>j′
(â†

i âj′ + âi â†
j′)

+ λ
(1)
2 ∑

i>j
(â†

i â†
j âi âj)λ

(2)
2 ∑

i>j′
(â†

i â†
j′ + âi âj′), (77)

with coefficients provided by (11). A polyad-conserving Hamiltonian is obtained by setting
λ
(1)
2 = λ

(2)
2 = 0. The diagonalization of the Hamiltonian in the one-quantum basis

L6 = {|100000⟩, |010000⟩, |001000⟩, |000100⟩, |000010⟩, |000001⟩} allows us to express the
spectroscopic parameters in terms of the fundamental energies, from which we estimate
the force constants f (L)

qiqj . The results are displayed in Table 1. We may now apply the
polyad-conserving transformation (15) to the Hamiltonian (2) to obtain

Ĥ(PL)
L′ = ωnor

6

∑
i=1

(ĉ†
i ĉi + ĉi ĉ†

i ) + λ
(1)
nor ∑

i>j
(ĉ†

i ĉj + ĉi ĉ†
j ) + λ

(2)
nor ∑

i>j′
(ĉ†

i ĉj′ + ĉi ĉ†
j′), (78)

with spectroscopic coefficients given by

ωnor =
h̄
2

(
1
6

ΩA1g +
1
3

ΩEg +
1
2

ΩT1u

)
, (79a)

λ
(1)
nor =

h̄
2

(
1
3

ΩA1g −
1
3

ΩEg

)
, (79b)

λ
(2)
nor =

h̄
2

(
1
3

ΩA1g +
2
3

ΩEg − ΩT1u

)
, (79c)

with

ΩA1g = ω0

√
(1 + 4x′f + x′′f )(1 + 4x′g + x′′g ) (80a)

ΩEg = ω0

√
(1 − 2x′f + x′′f )(1 − 2x′g + x′′g ) (80b)

ΩT1u = ω0

√
(1 − x′′f )(1 − x′′g ). (80c)

In this case, the expansion in terms of x leads to the identification

γ(ω) =
1
2
(x′f − x′g)

2 +
1
8
(x′′f − x′′g )

2 ; (81a)

γ(1) =
1
2
(x′f − x′g)

[
(x′f − x′g) + (x′′f − x′′g )

]
; (81b)

γ(2) = (x′f − x′g)
2 . (81c)

In Table 11, the corresponding parameters associated with the LN degree are presented.
Based on these results, in Figure 14 the plot δ− vs. γ(ω) is displayed, obtaining a clear
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linear correlation. In addition, in Figure 15, the plots involving ϵ1 and ϵ2 are included.
As expected, the ϵ1 shows a clear linear correlation, while for ϵ2, although a linear trend
is obtained, it is not as clear as for ϵ1. The parameter ϵ3 was not included, because no
correlation appeared. Again, from Table 11, it is clear that the parameter ζ does not provide
a general LN parameter.

Table 10. Fundamentals (in cm−1) from Ref. [66] and force constants (in aJ Å−2) for octahedral
molecules.

Molecule ν1 ν2 ν3 f (N)
rr f (N)

rr′ f (N)
rr′′

PuF6 625 519 612 3.5476 0.2262 −0.0801
NpF6 646 525 618 3.6491 0.2643 −0.0352
[PtF6]

2− 611 576 571 3.4617 0.0775 0.4071
[PbCl6]2− 281 209 262 1.1132 0.1228 0.0449
[HfCl6]2− 325 257 275 1.3928 0.1378 0.2623
[GaF6]

3− 535 398 481 1.9631 0.2385 0.2869
[SbBr6]

− 192 169 239 1.3189 0.0651 0.1560
[SiF6]

2− 663 477 741 2.9751 0.3956 0.3629
[AlF6]

3− 541 400 568 1.8928 0.2475 0.3932
[TiCl6]2− 320 271 316 1.2881 0.1008 0.4475

Table 11. LN parameters associated with the stretching degrees of freedom of octahedral molecules.

Molecule δ− γ(ω) γ(1) γ(2) ζ ϵ1 ϵ2 ϵ3

PuF6 0.0019 0.0023 0.0036 0.0041 0.1167 0.0045 0.0541 −0.1762
NpF6 0.0024 0.0031 0.0050 0.0052 0.1297 0.0059 0.0645 −0.5237
[PtF6]

2− 0.0031 0.0056 0.0026 0.0005 0.0430 0.0110 0.1105 0.0117
[PbCl6]2− 0.0071 0.0104 0.0164 0.0122 0.1820 0.0185 0.1374 0.2959
[HfCl6]2− 0.0120 0.0206 0.0224 0.0098 0.1461 0.0377 0.2049 0.0673
[GaF6]

3− 0.0142 0.0236 0.0293 0.0148 0.1818 0.0422 0.2212 0.1258
[SbBr6]

− 0.0230 0.0343 0.0140 0.0024 0.2104 0.0691 0.3048 0.2421
[SiF6]

2− 0.0295 0.0434 0.0438 0.0177 0.2604 0.0807 0.3303 0.3378
[AlF6]

3− 0.0368 0.0567 0.0492 0.0171 0.2127 0.1062 0.3670 0.2481
[TiCl6]2− 0.0481 0.0777 0.0333 0.0061 0.1046 0.1522 0.4135 0.1936
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Figure 14. Plot of δ− vs. γ(ω) for different octahedral molecules.
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Figure 15. Plots of δ− vs. ϵ1 and δ− vs. ϵ2 for different octahedral molecules.

7. Normal/Local Degree and Physical Properties

The importance of having a parameter measuring the local/normal degree is that
it may be correlated with physical properties, depending on the vibrational degrees of
freedom. First, we shall consider the effect on the partition function.

7.1. Partition Function

As a first case, we shall consider a molecular system in the framework of the
Born–Oppenheimer approximation and rotor rigid approximation. If we focus on the
stretching vibrational degrees of freedom and consider the Hamiltonian of two equiva-
lent interacting oscillators reduced to the form (2), the partition function ZN takes the
simple form

ZN = ∏
Γ=g,u

e−
h̄ΩΓ
2KT

1 − e−
h̄ΩΓ
KT

, (82)

with Ωg = ω0

√
(1 + x′f )(1 + x′g) and Ωu = ω0

√
(1 − x′f )(1 − x′g). Considering the param-

eterization (47), which is equivalent to moving along the parameter δ−(t) and frequencies
ΩΓ(t), we are able to see the functional form ZN(t), and consequently the properties
depending on it. In Figure 16, left side, the change in the function ZN(t) along the LN
parameter is displayed for different temperatures. We can see that in the local limit the
partition function is close to zero and increases as the normal character becomes stronger.
On the other hand, for two equivalent oscillators of frequency ω0 without interaction, the
partition function takes the form

ZL =

 e−
h̄ω0
2KT

1 − e−
h̄ω0
KT

2

, (83)

with ω0 =

√
frrg(0)rr . It is clear that in the local limit both coincide: limt→0 ZN = ZL. This

behavior is shown on the right side of Figure 16. The importance of this analysis is that
the dependence on δ− of the partition function implies a a correlation with thermody-
namic properties.
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Figure 16. Plots of ZN(t) at different temperatures, showing the dependence of the LN degree. On
the right, the partition function ZL(t) is shown together with ZN(t). Both coincide in the local limit,
as expected.

7.2. Spectroscopic Properties

We now study the correlation between the parameter δ− and the wave functions
obtained using an algebraic model based on su(2) and su(3) algebras [20,33,53,54]. First,
we consider the series of pyramidal molecules PH3, AsH3, and SbH3, which present a local
mode behavior. Thereafter, we analyze the isotopologues of carbon dioxide and cyanogen
fluoride. The analysis of these systems permits proving that the parameters introduced are
correlated with the spectroscopic properties of molecules.

7.2.1. Pyramidal Molecules

Let us start by considering the effect of the LN degree on the wave functions and
consequently on the transition intensities. In Ref. [20], a spectroscopic description of the
molecules PH3, AsH3, and SbH3 was given. These molecules present a local mode behavior,
which is manifested by the locality of the states. In Table 12, the maximum local components
for several states characterized by having large local components are displayed. We have
chosen states with experimental energies common to the three molecules. The first three
states mostly have a stretching character, while the last one has a bending contribution. In
order to appreciate the dependence on the LN parameter, the δ− values have been included.
It is interesting to notice the local to normal sequence for the states |200000⟩ and |400000⟩ is
given by SbH3 → PH3 → AsH3, in accordance with the δ− parameter. In contrast, for the
state |200100⟩, the sequence changes to SbH3 → AsH3 → PH3. This is explained by the fact
that the former set is associated with stretches and the latter to the bends [20]. Hence, we
have a correlation between the wave functions and the LN parameter δ−, a result that may
also exist in transition intensities.

Table 12. Maximum components of the wave function compared with δ− for the pyramidal molecules
PH3, AsH3, and SbH3, taken from Ref. [20].

δ− × 10−6 0.143 0.685 1.042

State SbH3 PH3 AsH3

|200000⟩ 0.989 0.968 0.951
|400000⟩ 0.981 0.627 0.555
|200100⟩ 0.467 0.756 0.722

7.2.2. Isotopologues of CO2

In Refs. [33,53], vibrational analyses were carried out of the series of isotopologues
of carbon dioxide using a SU1(2) × SU(3) × SU2(2) algebraic model based on the an-
harmonization of local operators applied to normal operators. It is known that, in these
isotopologues, the Fermi interactions dominates the spectrum, a fact manifested in the
wave functions. In Figure 3 of Ref. [53], a plot of the Fermi interaction strength |αF| vs. δ−
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is displayed, showing a clear correlation. This result suggests that the wave functions will
also be correlated. This is indeed the case, as we show next.

In Raman spectroscopy, four of the most intense lines are due to the transitions listed
in Table 13 [78]:

Table 13. Transition involved in the most intense lines in the Raman spectrum. Labels Σ+(Π±) and
Σ+

g (Π±
u ) for the asymmetric and symmetric isotopologues, respectively. Given the normalization, the

parameters a and a′ determine the eigenstates and the transition strength.

Symmetry |ν⟩ → |ν′⟩

Σ+, Σ+
g |0000⟩ → a|1000⟩+ b|0200⟩

Σ+, Σ+
g |0000⟩ → b|1000⟩ − a|0200⟩

Π±, Π±
u |01±10⟩ → a′|11±10⟩+ b′|03±10⟩

Π±, Π±
u |01±10⟩ → b′|11±10⟩ − a′|03±10⟩

These transitions are basically determined by the coefficients a and a′, which turn
out to be dominant in the Raman spectrum. The question that arises is whether or not
these coefficients are correlated with the parameter δ−. In Table 14, the coefficients of
the basis together with the parameter δ− are displayed. From this table, a correlation is
clearly evident and graphically shown in Figure 4 of Ref. [53]. The real importance of this
correlation lies in the impact on the description of the Raman spectrum, which may be
useful in the identification of isotopologues. Preliminary results show that the Raman
transition intensities are indeed correlated with the Raman intensities.

Table 14. Components of the wave functions, as well as the parameter δ−. The notation for the
isotopologues is 1xO1yC1zO → (xyz).

(636) (637) (638) (626) (738) (627) (628) (727) (728) (828)

a 0.5587 0.604859 0.645312 0.6983 0.747715 0.75071 0.794356 0.7826 0.830245 0.8488
a′ 0.6076 0.636241 0.656285 0.7045 0.722074 0.743765 0.778424 0.7586 0.805748 0.8150

δ− 0.03375 0.03487 0.03594 0.3684 0.03717 0.038035 0.03915 0.03933 0.04051 0.04181

7.2.3. Isotopologues of FCN

As a second example of the importance of the LN degree in vibrational spectroscopy,
we consider the vibrational degrees of freedom of the FCN molecule. Given the presence of
the resonances ω1 ≈ 2ω2 and 2ω1 ≈ ω3, the appropriate polyad is PN = 2ν1 + 2ν2 + 4ν3.
In Ref. [54], vibrational description of this molecule was carried out. Here, we consider the
four sets of states corresponding to polyads PN = 2, 3, 4, 5 associated with symmetries Σ+

and Π±:

Σ+; PN = 2 : a|1000⟩+ b|0200⟩, (84a)

Σ+; PN = 4 : a′|0400⟩+ b′|1200⟩+ c′|2000⟩+ d′|0001⟩, (84b)

Π±; PN = 3 : α|0310⟩+ β|1110⟩, (84c)

Π±; PN = 5 : α′|0510⟩+ β′|1310⟩+ γ′|2110⟩+ δ′|0111⟩. (84d)

For an specific polyad and symmetry, there is a multiplet of states interacting by the two
resonances. Hence, the states are characterized by pairs. In Table 15, the squares of the
maximum components are displayed, indicating the states in resonance, together with the
parameter δ−. Again, the correlation between the components and the LN parameter is
manifested: going from local to normal mode behavior with the decrement in components
manifested. This correlation is explicitly presented in Ref. [54].
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Table 15. Square of the maximum components for the wave functions involved in the multiplets (84).
The components were taken from Ref. [54].

δ− 0.02626 0.02894 0.03035

Polyad States (934) (924) (925)

2 |0200⟩–|1000⟩ 0.961 0.944 0.937
4 |0400⟩–|1200⟩ 0.875 0.834 0.816
4 |2000⟩–|0001⟩ 0.844 0.827 0.811

3 |0310⟩–|1110⟩ 0.930 0.904 0.890
5 |0510⟩–|1310⟩ 0.820 0.781 0.750
5 |2110⟩–|0111⟩ 0.756 0.735 0.712

8. Conclusions

In this contribution, we have presented, for the first time, a consistent set of LN
criteria that can be applied to any molecule. In contrast to the long established theory of
local molecules, where the criterion of locality depends on a model of interacting Morse
oscillators, our criteria are based on the analysis of normal modes. Choosing a selected set
of molecules, we have shown that the proposed LN criteria can be applied to a great variety
of situations, from local to normal extremes. Each parameter presents its own features.
The parameter δ− measures the degree of locality from the normal point of view, while
the Hessian γ(ω) can be associated with a local perspective. In addition, ϵ1 (and in some
cases ϵ2 too) offers a third parameter, and this is defined taking ingredients from both local
and normal mode schemes through the force constants. Analyses of several representative
systems were presented. First, the most simple system of two oscillators was presented, in
order to include the case where the normal modes do not coincide with symmetry-adapted
coordinates. The pyramidal molecules were included, in order to show that the proposed
parameters can also be applied to the bending degrees of freedom. In addition, tetrahedral
molecules were studied because of the presence of spurious modes in the bending modes.
Finally, octahedral molecules were incorporated in our analysis because of the presence of
two types of interactions involving vanishing contributions of the Wilson matrix. Although
this set of studied systems may be considered relatively simple, it was chosen to include
every possibility encountered in the framework of local coordinates, which allowed us to
conclude the validity of our LN criteria.

The correlations between the different parameters in these systems were investigated
to prove their consistency, but also to show that through such correlations it is possible to
identify particular signatures of the molecules with just the knowledge of the fundamental
energies:non-rigidity in NH3, resonance structures in O3 and NO2, and change in electronic
configuration in the pnictogen pyramidal hydrides and GeH4. The isotopologues displayed
a perfect linear correlation for the plots δ− vs. γ(ω). This fact allowed us to establish a
linear correlation between the slopes and the force constants.

An important result is that the LN degree is correlated with physical properties. This
conclusion was obtained by considering the behavior of the partition function for two
oscillators, taking advantage of the parameterization H2O → CO2. A similar situation
appears in spectroscopy; a clear dependence of the wave functions with the LN parameters,
together with their correlation with the interaction strengths allowed us to conclude the
importance of the LN parameters in the analysis of Raman and infrared spectroscopy. This
finding is particularly relevant for series of isotopologues, where preliminary results indi-
cated the existence of a correlation between the LN parameters and the relative transition
intensities in the Raman spectra of the isotopologues of CO2.

The present formalism is based on a harmonic oscillator model, and only the funda-
mentals were involved in both the determination of the LN parameters and their correlation.
Consequently, the proposed criteria can be applied to any molecular system, without lim-
itations. A remarkable result is that these parameters are correlated with spectroscopic
properties, taking into account the full description of the systems, where all the relevant
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interactions are included: anharmonicities and resonances. On the other hand, we selected
internal coordinates in our treatment because of the physical meaning of the force constants,
but in practice Cartesian coordinates are more appropriate to generalize our approach. In
the latter case, efficient programs to obtain the normal modes are available and a work in
this direction is in progress.

Finally, we conclude from this work that the LN parameters, in particular the δ−,
is a descriptor of a molecule, which opens the possibility of also being used in machine
learning algorithms.
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