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Abstract: With the rapid development of wireless communication technologies and the miniaturiza-
tion trend in the electronics industry, the reduction of electromagnetic interference has become an
important issue. To solve this problem, a lot of attention has been focused on polymer composites
with combined functional fillers. In this paper, we report a method for creating an acrylonitrile buta-
diene styrene (ABS) plastic composite with a low amount of conductive carbon and magnetic fillers
preparation. Also, we investigate the mechanical, thermophysical, and electrodynamic characteristics
of the resulting composites. Increasing the combined filler amount in the ABS composite from 1 to
5 wt % leads to a composite conductivity growth of almost 50 times. It is necessary to underline the
temperature decrease of 5 wt % mass loss and, accordingly, the composite heat resistance reduction
with an increase in the combined filler from 1 to 5 wt %, while the thermal conductivity remains
almost constant. It was established that electrodynamic and physical–mechanical characteristics
depend on the agglomeration of fillers. This work is expected to reveal the potential of combining
commercially available fillers to construct effective materials with good electromagnetic interference
(EMI) protection using mass production methods (extrusion and injection molding).

Keywords: electrodynamics properties; ABS plastic; carbon fiber; magnetite; filler orientation

1. Introduction

Advances in wireless communications technology, utilization of wireless communi-
cation methods, and miniaturization trends in the electronics industry have increased the
importance of reducing electromagnetic interference (EMI) [1]. Electromagnetic radiation
impact on the human body and electronics reveals the significance of its minimization [2–6].
To provide a shield against the effects of EMI irradiation, a wide range of different mate-
rials are used [7]. The most commonly applied materials are metal screens, which work
by reflecting the incident electromagnetic (EM) wave. Magnetic losses in such shielding
materials allow for increasing the shielding efficiency in the low-frequency range [8]. The
uses of metal screens are limited not only by their characteristics, such as high weight, low
corrosion resistance, and manufacturing complexity of complex shape screens, but also by
the main shielding mechanism of such materials—the reflection of EM waves, which does
not eliminate the impact of interference both inside the screen and through the galvanic
connection of the screen to grounding [9].
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According to the issues described above inherent to the metal screens, composite
shielding materials based on various organic polymer materials are of profound interest [8–10].
However, almost all commercially available polymers are good dielectrics. Plastics utiliza-
tion for screens creation allows for changing the mechanism of EM waves shielding from
EM waves reflection to the absorption of energy in the volume of the material through the
use of various fillers. The Mao-Sheng Cao research group presented theoretical models for
the regulation of dielectric/magnetic behavior, which is important for achieving a balance
between reflection and absorption in composite materials [11–14].

A wide range of synthetic polymers have been studied as dielectric matrices for shield-
ing composites, including polyaniline, polyphenylene sulfide, polyimide, polypropylene
(PP), polycarbonate (PC), polyamide, and polylactic acid (PLA) [15]. The primary objective
for a shielding material based on a plastic matrix creation is the selection of conductive
fillers that can provide the required level of dielectric losses. The most commonly used
conductive fillers are carbon materials of various shapes: nanotubes, graphene oxide,
and carbon fibers [16–20]. The use of magnetic fillers in composites leads to improved
impedance, matching at the sample–air interface, as well as increased EM absorption due
to internal magnetic losses [21]. The distribution of conductive and magnetic fillers in
the polymer matrix forms electrical and thermal conductive paths, which plays a crucial
role in EMI shielding efficiency (SE) and thermal conductivity growth [22]. An increas-
ing amount of literature is devoted to the combined use of nanoscale conductive and
magnetic fillers [18–20,23,24]. The work [19] shows that the magnetite Fe3O4 content
increase to 10 vol % promotes the development of a percolation network in systems of
hybrid PBS nanocomposites with 0.1 vol % of multiwalled carbon nanotubes (MWCNT)
and the achievement of high conductivity values. Fang Ren et al. [20] showed a signif-
icant conductivity growth of a system with a layered composite structure with 5 wt %
of graphene nanosheets (GNS) and 15 wt % of Fe3O4. Reclaimed carbon fiber (rCF) is
not inferior in its properties compared to virgin CF, which makes it an ideal inexpensive
and ecofriendly conductive material for EM shielding thermosetting polymer composites
reinforcement [25–27]. A detailed investigation of the electrodynamic parameters revealed
the attractive properties of rCF as a component of shielding materials, especially with the
simultaneous addition of magnetite [28].

Plastics and composites based on ABS are used as structural elements of many elec-
tronic products and electrical accessories [17]. Mechanical and thermal properties are vital
for such devices. Thermal conductivity reduction in ABS plastic-based composite materials
can lead to the additional heating of the device and, as a result, to the degradation of its
technical and operational characteristics [29].

Our current research is focused on the investigation of the concentration effect of
available conductive and magnetic fillers in a widely used ABS matrix to achieve a good
correlation between commercial availability and the thermal, mechanical, and electrical
properties of the resulting composite material.

2. Materials and Methods
2.1. Materials

The carbon polyimide is based on epoxy resin ED-20, polyethylenepolyamine (PEPA),
and reinforced with carbon cloth Toho Tenax 3 K (Toho Tenax, Wuppertal, Germany).
The mass content of CF in the polymer was 26.5 wt %. The ABS plastic (bar diame-
ter 1.75 ± 5 mm) was manufactured by “Hi-Tech Plast” (Vladimir, Russia). All chem-
ical reagents were high purity grade and used as received: iron (II) sulfate heptahy-
drate (FeSO4•7H2O) (chemically pure), 12.5 M aqueous ammonia solution (NH4OH)
(pure for analysis), and iron (III) chloride hexahydrate (FeCl3•6H2O) (pure) were pur-
chased from “NevaReaktiv” (Saint-Petersburg, Russia); a 95% sulfuric acid (H2SO4) was
purchased from UCC “Shchekinoazot” Ltd. (Tula, Russia); a 37% hydrogen peroxide
(H2O2) and acetone (C3H6O) (pure for analysis) were purchased from LLC “Sigmatek”
(Saint-Petersburg, Russia).
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2.2. Composite Preparation

The reclaimed carbon fiber was obtained by low-temperature solvolysis [30] with a
mixture of H2SO4/H2O2/H2O(dist) (2.5:3:1). According to the scanning electron microscope
(SEM) results, the diameter of the rCF was 6–7 µm, and the length of the short carbon fibers
was approximately 0.5–2 mm [30]. The magnetic particles were obtained by the addition of
ammonium hydroxide excess to the solution of Fe(II) and Fe(III) [28]. The average particle
size of Fe3O4 was 27 nm [28].

The process of composite preparation based on ABS plastic is shown in the scheme
(Figure 1). The preparation of the composite involved dissolving a rod of ABS plastic in
acetone to obtain a solution with a 10 wt % plastic. For the initial composite, the resulting
solution was poured into a fluoroplastic mold and mechanically mixed to avoid a large
number of bubbles in the sample. Mechanical stirring was stopped when the minimum
amount of acetone was reached, and the sample was left until the complete evaporation
of the acetone at room temperature. The amount of filler and the names of the obtained
samples are shown in Table 1.
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Figure 1. Preparation of ABS samples with functional fillers.

Table 1. Composite samples description.

№ Samples
Amount of Filler, wt %

rCF Fe3O4 Total Amount

1 ABS/Fe3O4-1 - 1 1
2 ABS/Fe3O4-3 - 3 3
3 ABS/Fe3O4-5 - 5 5
4 ABS/rCF-1 1 - 1
5 ABS/rCF-3 3 - 3
6 ABS/rCF-5 5 - 5
7 ABS/rCF/Fe3O4-1 0.5 0.5 1
8 ABS/rCF/Fe3O4-3 1.5 1.5 3
9 ABS/rCF/Fe3O4-5 2.5 2.5 5
10 ABS/rCF/Fe3O4-6 3 3 6

2.3. Characterization

A thermal behavior investigation of the plastics samples was performed using a
TGA/DSC 3+ (Mettler Toledo, Greifensee, Switzerland) in the temperature range of
25–1000 ◦C, with a heating rate of 10 ◦C/min in an air atmosphere, using 70 µL alu-
mina crucibles as the sample holders. A Differential Scanning Calorimeter (DSC) analysis
of the plastics samples was carried out on a DSC1 822e instrument from Mettler Toledo
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(Greifensee, Switzerland) in an air environment from 0 to 480 ◦C at a heating rate of
5 ◦C/min. The thermal conductivity of the samples was studied with the utilization of
pure gallium metal and naphthalene. The measurements were performed on a DSC differ-
ential scanning calorimeter 882e/400 (Mettler Toledo, Greifensee, Switzerland). The tested
material samples had a cylindrical shape, with a diameter of ~5 mm and a thickness of
2–3 mm. The thermal conductivity coefficient was determined in accordance with ASTM
E1952-11 [31], and specific heat capacity was determined in accordance with ISO 11357-
4:2005 [32]. The test was repeated 3 times, and the error bars were adopted based on the
std error calculated from the standard deviation of the mean values.

The physical and mechanical characteristics of the plastics samples were determined
on an INSTRON-3365 (High Wycombe, Great Britain) universal testing machine: nominal
strength σk; stress–strain modulus E100 at 100%; relative critical tension strain εk, at a
tensile speed of 10 mm/min and 25 ◦C. The samples were thin plates (50 × 10 mm), in
accordance with GOST 14236-81 [33]. The thickness of all the samples was 0.25 ± 0.01 mm.
The number of strength test repetitions in the series was 4.

After mechanical measurements, the surface of the polymer samples was studied on a
FEI Quanta 650FEG scanning electron microscope (SEM) (FEI, Hillsboro, OR, USA) with
the following parameters: low vacuum mode, SE, WD ~ 9–7 mm, magnification of 1000
times at 20 kV.

The distribution of the filler particles in the polymer volume was assessed using an
OLIMPUS X501 optical microscope (Tokyo, Japan).

The most important parameters for materials that are used to prevent the propagation
of electromagnetic interference are relative permittivity and permeability. To find the
frequency dependence of the complex relative permittivity and permeability, we used a
measuring equipment based on the vector network analyzer R&SZVA50 (Rohde & Schwarz,
Munich, Germany), with the widely used transmission–reflection method, based on existing
types of radio frequency (RF) transmission lines. The studied material was placed in a
sampler holder with subsequent measurement of the complex coefficients of the scattering
matrix. The studied samples were prepared according to waveguide WR90 IEA type in
the form of 23 × 10 × 1 mm plates. The complex relative permittivity measurements and
the conductivity calculation were made for three samples of each composition material in
order to eliminate errors in the preparation of the samples. To obtain the values of complex
relative permittivity and permeability, a developed specialized software was used [34]. The
calculated error in the real part of the relative permittivity measurement was no more than
5% and is determined by the error of the device itself [35].

3. Results and Discussion
3.1. Thermal and Mechanical Properties of Samples

In order to study the influence of nature and concentration of introduced fillers
(rCF and magnetite) on the thermal properties of the ABS-plastic-based samples, the
process of thermal oxidative destruction of the pure ABS plastic and its composites was
investigated with a simultaneous thermal analysis (TGA/DSC) method. The thermal
oxidative stability comparison of composite samples was carried out according to the
temperature corresponding to the 5% weight loss and is based on the thermogravimetric
analysis (TGA) results. The introduction of all types of fillers in an amount of 1 wt %
and magnetite in an amount of 3 wt % leads to an increase in the heat resistance of ABS
samples (Table 2). It is necessary to admit that the joint introduction of carbon fiber and
magnetite at 1.5 and 2.5 wt % reduces the thermal stability of samples ABS/rCF/Fe3O4-3
and ABS/rCF/Fe3O4-5, respectively. The close contact between goethite (FeOOH) ore with
high Fe2O3 content and carbon promotes a rapid reduction reaction to metallic iron [36,37].
Jalil Vahdati Khaki and co-authors showed that reducing the particle size of a composite
mixture of hematite and graphite leads to a decrease in the reduction process temperature
and increase in the rate of its occurrence [38].



Polymers 2024, 16, 2153 5 of 15

Table 2. Thermal properties of ABS plastic samples.

Sample Temperature of the 5%
Weight Loss, ◦C

Glass Transition
Temperature, ◦C

Thermal Conductivity,
W/(m•K)

Heat Capacity,
kJ/(kg ◦C)

ABS 345 80.0 0.15 1.36

ABS/rCF-1 354 97.3 0.15 1.30

ABS/rCF-3 349 98.2 0.17 1.28

ABS/rCF-5 346 99.3 0.17 1.25

ABS/Fe3O4-1 351 89.7 0.15 1.30

ABS/Fe3O4-3 353 97.8 0.15 1.30

ABS/Fe3O4-5 346 99.0 0.17 1.30

ABS/rCF/Fe3O4-1 353 96.2 0.15 1.37

ABS/rCF/Fe3O4-3 338 97.9 0.15 1.28

ABS/rCF/Fe3O4-5 338 99.6 0.15 1.23

The oxidation of the polybutadiene segment phase in ABS leads to an exothermic
and self-accelerating effect at moderate temperatures [39]. Therefore, the heat resistance
reduction in the ABS plastic, with the combined introduction of carbon fiber and mag-
netite, can pose a potential danger when the final material is dried and extruded during
the production process. This effect requires more detailed study and is a subject of our
future investigation.

Moreover, we determined the glass transition temperature, thermal conductivity and
heat capacity of the samples (Table 2). The introduction of all types of fillers led to the
limitation of the polymer chains’ mobility, causing the glass transition temperature to
increase [40–42]. No noticeable change in the thermal conductivity and heat capacity of
the ABS plastic samples with fillers was detected; there is no noticeable change in thermal
conductivity and heat capacity for ABS plastic samples with fillers.

The interaction between the binder and fillers affects the thermal and electrodynamic
properties, as well as the strength of the resulting materials [43]. The mechanical properties
tests results of the original and filled ABS plastic samples are presented in Figure 2. It
is clear that the introduction of the 1 wt % fillers (for ABS/rCF-1, ABS/Fe3O4-1) and the
3 wt % combined filler (for ABS/Fe3O4-3) resulted in a mechanical strength growth of
more than 20%. In other cases, we observed minor changes in strength. With the addition
of the 3 wt % carbon fiber, a strength reduction of 12% was detected, compared to the
pure ABS plastic. One of the reasons for the strength decrease in the samples may be the
agglomeration of rCF and magnetite particles as their amount increases [44]. In this work,
we used a powder filler—magnetite and fiber filler—and a short, reclaimed carbon fiber.
Both fillers, in addition to their different adhesion to the polymer matrix, have a difference
in form, which can have a significant impact on the agglomeration of the filler during the
manufacturing process of the samples and, as a consequence, on the formation of the final
characteristics of the material.

For the composites primarily filled with the rCF, the morphology of the fracture
surface can provide information characterizing adhesion at the filler matrix interface. High
interfacial adhesion is responsible for the production of highly effective composites [45].
The morphological features of the ABS samples’ fractured surfaces are presented on SEM
micrographs in Figures 3 and 4. The fractured surface of the filled samples differs slightly
from the fractured surface of pure ABS. The spikier surface for ABS samples containing
magnetite reflects ductile fracture behavior, compared to samples filled with carbon fibers
only [44]. All ABS plastic samples filled with carbon fiber are characterized by adhesive
failure and fiber pullout [46]. Moreover, the tensile load was not sufficient to cause fiber
failure after matrix failure, causing the fibers to pull out of the matrix during testing [46].
Also, we observed dark rings around the fibers, due to local deformation of the matrix [46].
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The ratio of fillers is considered to be one of the main factors that require control
and influence the improvement of electrical, thermal, and mechanical properties [47].
In addition, the properties are affected by the distribution of the filler in the polymer
matrix and its agglomeration, which can be qualitatively assessed from micrographs of
the structure of the samples [48,49]. Figure 5 shows micrographs of the filled ABS plastic
samples. For sample ABS/rCF-1 with 1 wt %, the carbon fiber filler is distributed evenly in
the ABS matrix, without any continuous structure observed (Figure 5a). Also, a continuous
structure is absent for samples with the introduction of magnetite in ABS (Figure 5d–f) and
for samples with simultaneous introductions of the 1 wt % carbon fiber (Figure 5g). With
the introduction of 3 wt % and 5 wt % carbon fiber, we found areas with high and low
carbon fiber content (Figure 5h,i). In this case, we can assume the presence of isolated areas
with a conductive structure. It should be noted that the presence of areas with high carbon
fiber content also promotes stronger agglomeration of magnetite (Figure 5h,i), compared to
the size of the agglomerates (Figure 5e,f).

The fillers’ distribution can also influence the obtained mechanical properties. Thus, a
decrease in tensile strength can be noted for compositions with a higher content and greater
agglomeration of fillers [22]. A strength improvement of the samples was noted for all
samples with 1 wt % of fillers, as well as for the samples with 3 wt % of combined fillers.
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3.2. Electrodynamic Properties of Composite

The crucial parameters of materials used to ensure compliance with electromagnetic
compatibility standards is the electrical conductivity of the dielectric material [21]. One
of the main characteristics for composite materials based on a non-conducting dielectric
matrix with the addition of carbon fiber is the percolation point. This parameter provides
the filler concentrations at which the resulting composite gains sufficient conductivity [50]
and, as a consequence, the ability to prevent electromagnetic wave propagation.

Materials that are capable of radiation absorption in the centimeter wavelength range
are of great interest for electromagnetic protection. A large number of satellite communica-
tion systems, radars, and wireless information transmission systems are implemented in
this frequency range, which leads to strong electromagnetic pollution.

The direct measurement of dielectric conductivity as a measure of the material’s ability
to conduct electric current at frequencies of several GHz is not correct. At such frequencies,
the absorption of electromagnetic energy takes place. To estimate the influence of fillers on
these characteristics of the composite, in this work, we used the approach of calculating
the real part of the conductivity from the frequency response of the imaginary part of the
relative permittivity with the Formula (1) [51]:

σd = ωε0εr
′′ (1)

where εr
′′ is imaginary part of relative permittivity, ε0 is vacuum permittivity, σd is conduc-

tivity of a dielectric, and ω is angular frequency.
A pure ABS plastic matrix demonstrates stable parameters in the studied frequency

range. The measured characteristics are shown in Table 3.

Table 3. The electrodynamic characteristics of a pure matrix of ABS at fixed frequencies.

Frequency, GHz εr
′ εr

′′ σd, S/m

8 2.4806 0.085 0.037
10 2.4804 0.115 0.064
12 2.4709 0.089 0.059
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The given characteristics demonstrate that the ABS sample without fillers is char-
acterized by weak conductivity. This indicates that ABS plastic is a radio transparent
dielectric material.

Figure 6 shows the dependence of the real and imaginary parts of the relative permit-
tivity for the ABS/Fe3O4 and ABS/rCF compositions on the amount of filler.
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According to the dependence, it is clear that the addition of magnetite to the ABS
plastic matrix has virtually no effect on the electrodynamic characteristics of the resulting
composite. In contrast, the addition of carbon fiber leads to a sharp increase in the value of
the real part of the relative permittivity. With the frequency of the applied electromagnetic
field’s growth, this dependence becomes steeper (Figure 6a), which may indicate that the
electrical length of carbon fibers increases. With the comparison results of the samples
structure and the data on their thermal conductivity, heat capacity, and conductivity from
Table 2 and Figures 5 and 6, it becomes obvious that the rCF and rCF/Fe3O4 fillers form an
electrically conductive structure [22]. The work [52] shows that larger magnetite particles
improve electrical conductivity. Also, larger Fe3O4 particles increase the conductivity
and, therefore, can improve the ability to remove radio frequency (RF) interference for
compliance with EMI standards.

The concentration of magnetite filler practically does not affect the imaginary part of
the relative permittivity, which can be considered as the imaginary part of a pure ABS plastic
matrix. The addition of carbon fiber to ABS plastic matrix sharply increases dielectric losses
in the composite. The main reason for such losses is the appearance of conducting regions
in the sample, resulting from the addition of conductive carbon fibers. The conductivity
dependence on the concentration of fillers is presented in Figure 6c.

Surprisingly, the introduction of Fe3O4 leads to an increase in conductivity, in contrast
to the data given in the work [14]. The simultaneous introduction of magnetite and carbon
fiber leads to a more expressed percolation dependence of conductivity, helping to obtain
stable electrodynamic characteristics at lower filler concentrations than in the case of
addition of carbon fiber only. Figure 7 shows the real and imaginary parts of the relative
permittivity dependence of the composite on the filler concentration, rCF/Fe3O4.

The obtained results allow us to conclude that the addition of magnetite and rCF to
the ABS matrix contributes to the production of materials with well-reproducible electrody-
namic characteristics, as well as to the achievement of high values of electrical conductivity
with a low filler content in the sample.
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The data from Table 2 and Figures 6 and 7 suggest a significant difference between the
mechanisms of heat and electrical conductivity. We expected that the introduction of carbon
fibers and magnetite would not only regulate the electrodynamic characteristics but also in-
crease the thermal conductivity of the samples due to their conductive properties and high
aspect ratio [53]. Variation of filler concentration from 1 to 6 wt % for ABS/rCF/Fe3O4 com-
positions increased the electrical conductivity without any significant changes in thermal
conductivity. Optical microscope images (Figure 5) do not allow for drawing an unambigu-
ous conclusion about the presence of an infinite conducting network in the sample with
the maximum amount of fillers. We suppose that carbon fibers and magnetite particles are
separated by the layers of a dielectric polymer matrix. Such a structure of composites leads
to interfacial resistance between carbon fibers and the polymer matrix, as well as to contact
resistance between carbon fibers that have high interfacial thermal resistance, preventing
thermal conductivity of samples from increasing. Also, the distribution of fillers in the ABS
matrix creates more interfaces that can provide greater phonon scattering than phonon
transport, thereby increasing the interfacial thermal resistance and exhibiting low thermal
conductivity of the composites [53]. The low thermal conductivity of the samples with
rCF and rCF/Fe3O4 fillers with a significant electrical conductivity growth with increased
filler concentration suggests a tunnel or hopping mechanism as the leading mechanism of
electrical conductivity. This can also be indirectly confirmed by the conductivity increase
with the frequency growth. [15,54–58].

Since complex permittivity (ε′ and ε′′) and complex permeability (µ′ and µ′′) are the
two most important parameters characterizing the EM response of the materials, we studied
the dependence of these characteristics on the frequency of the applied electromagnetic
field for composites in case of the direct and random orientation of carbon fibers in the bulk
of the polymer. The dependence of the complex permittivity and complex permeability
for the mentioned compositions are shown in Figure 8 and indicate that, with different
orientations of the fibers, as well as in the presence of magnetite, the main mechanism
of electron conduction may change. The maximum values of the real part of the relative
permittivity (ε′) are observed for a composite sample ABS/rCFrandom with a random
distribution of carbon fibers. Apparently, this sample is characterized by the maximum
number of free electrons [11]. Dielectric losses ε′′ do not depend on the relative orientation
of CF for samples with carbon fiber only, while for samples with rCF/Fe3O4 filler, they are
significantly higher, with a random distribution of the filler. This feature may indicate that
magnetite particles may help to increase the conductivity of the composite.
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The analysis of dielectric constant ε′ and ε′′ data revealed that, for the random distri-
bution of fibers, the conduction mechanism of electrons predominates for the composition
with rCF, while for the composition with rCF/Fe3O4, the hopping mechanism remains [11].

Figure 8e shows that the tangential loss coefficient tan δ for rCF/Fe3O4
random increases

with the frequency growth. With the increasing frequency, losses caused by eddy currents,
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in conductive composites, increase due to the skin effect leading to the tangential loss
coefficient growth [59]. Magnetic losses are also an important factor affecting microwave
absorption performance. Due to the skin effect of the conductor and the three-dimensional
carbon network, a local conductive network is formed at the macroscopic scale, forming
eddy currents and, thus, generating eddy current losses [60]. Figure 8 reveals that µ′ is
close to 1 and µ′′ is close to 0, indicating weak dynamic magnetic properties arising from
weak natural magnetic resonance. The value of tan δe is higher than tan δµ, which means
that dielectric losses are the main way of electromagnetic waves attenuation [59,61–63].

The complex permittivity and permeability of compositions with a random distri-
bution of carbon fiber are more dependent on frequency (Figure 8). A detailed study of
practical cases on the creation of modern protective materials to ensure compliance with
EMI standards contributes to the further development of protective materials.

4. Conclusions

In this work, composites containing short, reclaimed CF, magnetite, and their combi-
nation were studied. The determination of electrodynamic characteristics showed different
conductivity mechanisms in composites with carbon fiber and with a combined carbon
fiber/magnetite filler. The introduction of ABS/rCF magnetite leads to a multiple increase
in the conductivity of the composition. The thermal properties study of ABS plastics
showed that the combined use of carbon fiber and magnetite leads to the thermal stability
decrease in the resulting composites, which requires further study. The electrodynamic and
physical–mechanical characteristics are dependent on the agglomeration of fillers: a com-
position with a combined filler of 2.5 wt % carbon fiber and magnetite can be considered
optimal. The orientation of a short carbon fiber significantly affects the electrodynamic
properties of the composites. To obtain the most stable characteristics, it is necessary to
increase the filler orientation in the composites. This results potentially make ABS com-
posites with rCF and magnetite particularly attractive for practical applications as green
protective materials using available components.
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