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Abstract: 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full
agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic mem-
branes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and
diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presy-
naptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL
isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three
other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-
lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate
phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases
(ENPP6–7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular
localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus
inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This
implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG,
which is the object of deep analysis within this review. The precise functional roles of AlterAGs
are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG
and its related lysophospholipids are involved in numerous aspects of physiology and pathology,
including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or
psychiatric disorders.

Keywords: endocannabinoids; 2-arachidonoylglycerol; lysophosphatidylinositol; lysophosphatidic
acid; lysophosphatidylcholine; lysophosphatidylserine; GDE3; lipid phosphate phosphatases; ENPP;
autotaxin; plasticity-related-gene 1
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1. Introduction

The endocannabinoid (EC) system, which was discovered from the psychotropic
effects of ∆-9-tetrahydocannabinol (THC, the main psychoactive compound of cannabis
sativa), includes two G-protein-coupled receptors (GPCRs), called CB1 and CB2, numerous
lipid mediators called ECs, mainly anandamide and 2-arachidonoylglycerol (2-AG), as well
as various enzymes involved in the metabolism of ECs [1]. Beside their well-established
role in the central nervous system via the CB1 receptor, ECs are also active in the immune
system, where CB2 is the predominant receptor [2,3]. However, the situation is not so
clear-cut, since CB1 is also present in peripheral organs such as the liver, intestine, and
adipose tissue, where it regulates energetic metabolism, whereas CB2 is also detected
in the central nervous system, where it could be involved in immune defense and in
neuroinflammation [1,2]. Recent advances revealed a much more complex situation with
additional receptors, such as various GPCRs (GPR55, GPR18, GPR119), transient receptor
potential cation channel subfamily V (TRPV1, TRPV4), peroxisome proliferator-activated
receptors (PPARα, PPARγ), as well as an increasing number of anandamide and 2-AG
congeners, forming the endocannabinoidome, with all of them contributing to a recently
recognized expanded EC system [4–6]. In addition, the lipidic nature of ECs requires
renewed attention to proteins involved in EC intracellular and extracellular transport [7–10].

2-AG is 170-fold more abundant than anandamide in the brain [11], in agreement
with other studies [12], and was thus recognized as the main player involved in the retro-
grade inhibition of neurotransmitter release upon interaction with CB1, present in both
the excitatory and inhibitory presynaptic terminals [4–19]. Although this central mech-
anism probably forms the basis of 2-AG involvement in memory, pain, anxiety, mood,
stress, regulation of hyperexcitability, neuroprotection, or addiction, its peripheral inter-
actions with both CB1 and CB2 receptors also revealed its role in regulating the energetic
metabolism of the liver, muscle, or adipose tissue, intestinal function, cell proliferation,
immune defenses, bone development, or inflammation. So, defining pharmacological
targets which are able to modify 2-AG interaction with its receptors or 2-AG metabolism
might bring renewed interest in the field of various pathologies, including psychiatric
disorders, neurodegenerative diseases, various forms of pain, obesity, inflammatory bowel
diseases, or cancer [1–6,10,12–16].

Figure 1 depicts the paradigm of the enzymatic cascade of 2-AG synthesis occurring
during synaptic retrograde signaling involving metabotropic glutamate receptors. This
involves the production of the diacylglycerol (DAG) 1-stearoyl-2-arachidonoyl-sn-glycerol
from phosphatidylinositol 4,5-bisphosphate (PIP2) by a phospholipase Cβ1 (PLCβ1), fol-
lowed by the hydrolysis of DAG by DAG lipase α (DAGLα). The efficiency of this pathway
in 2-AG production is greatly favorized by the exceptional abundance of arachidonic acid
in phosphoinositides, where 1-stearoyl-2-arachidonoyl species represent between 70 and
90% of total molecular species ([20,21] and references herein). Such a model received a very
elegant confirmation through the use of a 2-AG sensor, allowing to follow the spatiotempo-
ral imaging of synaptic retrograde signaling [22,23]. As another elegant approach, mass
spectrometry imaging was recently applied to detect increases in 2-AG in various brain
regions in response to chronic restraint stress [24].

If the picture is valid in a great majority of cases, the careful inspection of the available
literature indicates that a much greater diversity might exist at the level of PLC and
DAGL (illustrated in Table 1). This will be the first point developed in the present review
(Section 2).

As shown in Figure 2 and described in Section 3, other sources of DAG hydrolyzed
by DAGL could be PA dephosphorylated by lipins or PC cleaved by SMS (sphingomyelin
synthase) or SMSr (SMS-related protein PLC) acting as PLC. In a recent review, Baggelaar
et al. [13] proposed an additional pathway (the ‘metabolic pathway’) where intermediary
DAGs are generated from triacylglycerols through the action of various lipases (depicted
in Figure 2). This will be discussed in light of recently accumulated knowledge concerning
those various lipases (Section 4). Finally, a recent study reported unexpected data giving
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credit to a possible contribution of glycerolipid de novo synthesis to 2-AG biosynthesis
(Figure 2), which will be discussed in Section 5.
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Figure 1. Main enzymes of the canonical pathway of 2-AG synthesis involved in synaptic retrograde
signaling. Glutamate released from excitatory terminal interacts with its ionotropic receptors AMPAR
and NMDAR (not represent here), which results in the depolarization of postsynaptic neurons,
allowing Ca2+ influx through NMDAR and voltage-gated Ca2+ channels. Simultaneous binding of
glutamate (blue points) to mGluR1/5 promotes the Gαq-dependent activation of PLCβ1. The latter
enzyme activity is increased by Ca2+ but requires Gαq interaction to hydrolyze PIP2, thus acting
as a coincidence detector [15,25]. 1-Stearoyl-2-arachidonoyl-sn-glycerol, the major DAG molecular
species generated from phosphatidylinositol 4,5-bisphosphate (PIP2), can then be converted into
2-AG by diacylglycerol lipase α (DAGLα). The efficiency of this enzymatic cascade rests on the
proper positioning of the various actors involving, among other mechanisms, interaction between
DAGLα and mGluR1/5 via the scaffold Homer proteins [26–29]. 2-AG then diffuses through the
synaptic cleft to presynaptic CB1, thus inhibiting the further release of glutamate. Mechanisms of
CB1-induced presynaptic changes controlling short- and long-term synaptic plasticity are described
in detail elsewhere [19]. Not shown here, CB1 is also present in GABAergic inhibitory terminals,
resulting in the suppression of inhibition [30]. Abbreviations: 2-AG, 2-arachidonoylglycerol; AM-
PAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CB1, cannabinoid receptor
1; DAG, diacylglycerol; DAGLα, DAG lipase α; GABA, γ-amino butyric acid; Gαq, αq subunit of
heterotrimeric G protein; mGluR1/5, metabotropic glutamate receptor 1 or 5; NMDAR, N-methyl-D-
aspartate receptor; PIP2, phosphatidylinositol 4,5-bisphosphate; PLCβ1, phospholipase Cβ1.

In addition, we and another group recently identified GDE3 as a main actor in an
alternative cascade leading to 2-AG production and linked to LPI metabolism and signal-
ing [31,32]. But, at least two other alternative pathways (AlterAGs) linking 2-AG and LPL
mediators must be considered. As shown in Figure 3, we propose the names AlterAG-1, -2,
and -3 for those pathways whose last step occurs in the extracellular space. These pathways
draw particular attention to the importance of the positional isomerism of 2-AG and related
LPLs, implying problems of chemical stability as well as enzyme and receptor specificity.
This point will be discussed in Section 6 before the description of AlterAG pathways in
Section 7.
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limiting de novo synthesis to the production of LPA and 2-AG. Abbreviations: 2-AG, 2-arachidonoylglycerol; AGK, acylglycerol kinase; AGPAT, 1-acylglycerol-
3-phosphate acyltransferase; DAG, diacylglycerol; DAGK, DAG kinase; DAGL, DAG lipase; DDHD, DDHD containing; G3P, sn-glycerol-3-phosphate; GPAT,
sn-glycerol-3-phosphate acyltransferase; HSL, hormone-sensitive lipase; LPA, lysophosphatidic acid; PA, phosphatidic acid; PC, phosphatidylcholine; PHOSPHO1,
phosphocholine and phosphoethanolamine phosphatase; PIP2, phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C; PLD, phospholipase D; PNPLA2,
patatin-like PLA2; sHE, soluble epoxide hydrolase; SMS, sphingomyelin synthases (SMS1 and SMS2); SMSr, SMS related protein; TAG, triacylglycerol.
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Table 1. Various enzymes involved in the PLC/DAGL pathway of 2-AG production.

Enzymes Cells or Tissues Subcellular Localization
Following Activation Conditions of Activation (Patho)physiological Involvement Ref

PLC

PLCβ1 Hippocampal neurons Plasma membrane Gq/11-coupled receptors (mGluR1/mGluR5
or M1/M3) plus depolarization

Complex picture describing KO mice and human
pathologies reviewed in detail by Katan and

Cockroft [34]

[25]

PLCβ4 Cerebellum (Purkinje cells) Plasma membrane Gq/11-coupled receptor (mGluR1) plus
depolarization [35]

PLCδ Cultured hippocampal neurons Plasma membrane Depolarization (DSI)No effect of δ1, δ3, δ4
KO [36]

PLCε
Ventral tegmental area (VTA)

dopamine neurons Plasma membrane Depolarization (DSI) facilitated by
cAMP-Epac2-Rap-PLCε cascade

Contribution to cocaine-induced disinhibition of
VTA dopamine neurons [37]

PLCγ1

Hippocampus (mossy fiber synapses
onto stratum lucidum interneurons

Calyx of Held (giant glutamatergic
synapse)

Plasma membrane

High-frequency stimulation leading to
long-term depression via endogenous

BDNF release

BDNF application during depolarization

[38]

[39]

PLCγ2 Macrophages, microglia Plasma membrane FcγR cross-linking generating a
DAG–MAG–eicosanoid network

Hyperactive variants in autoimmune and
inflammatory diseases or protecting from

Alzheimer disease
[40]

DAGL

DAGLα

Hippocampus, cerebellum, striatum
slices or cultured neurons

Striatonigral direct-projecting pathway
medium spiny neurons

Plasma membraneRapid
turnover upon membrane

trafficking

Gq/11-coupled receptors
or depolarization

Depolarization

Production of 2-AG and AAAxon
growth/guidance, neurogenesisAnxiety, fear,
extinction, impairmentMetabolic phenotype

similar to CB1-KO miceNeuro-ocular DAGLA
related syndrome

Ethanol effects

[41–44]
[45–48]
[49,50]

[51]

[52]

[53]

DAGLα Astrocytes
Tanycytes

Plasma membrane
Plasma membrane

Affective disorders, hedonic feeding
Inhibition TRH release

[54,55]
[56]

DAGLβ

Brain, liver, macrophages, microglia,

S. nigra dopaminergic neuronsCargo
protein of AP-4 vesicles

Plasma membrane
AP-4 vesicles during axonal

anterograde transport

Altered neurogenesis2-AG, AA, and eicosanoid
production

Parkinson disease2-AG-dependent axon growth
(altered in AP4-deficiency)

[42]
[57,58]

[59]
[60]

ABHD6 Neuro-2a cells ND Retinoic acid-induced differentiation [61]

ABHD11 Ubiquitous expression Mitochondria No change in tissue 2-AGKO mice resistant
to obesity [62]

DDHD2 Brain Cytosol In vitro determination DAGL in vitro, TAGL in vivoPlastic paraplegia [63–66]

HSL Neurons and astrocytes Pre- and post-synaptic
membranes

Short- and long-term memory
in aged mice [67,68]

Abbreviations: 2-AG, 2-arachidonoylglycerol; AA, arachidonic acid; ABHD, α/β-Hydrolase Domain-Containing; AP4, adaptator protein complex 4; BDNF, Brain-Derived Neurotrophic
Factor; DAG, diacylglycerol; DAGL, diacylglycerol lipase; DDHD, DDHD containing; DSI, depolarization-induced suppression of inhibition; Epac, exchange protein directly activated by
cAMP; HSL, hormone-sensitive lipase; S. nigra, substantia nigra; M1/M3, muscarinic receptors (1 or 3); MAG, monoacylglycerol; mGluR1/5, metabotropic glutamate receptor (1 or 5);
PLC, phospholipase C; TAGL, triacylglycerol lipase.
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2. Variations in the Use of PLC and DAGL Isoforms Involved in 2-AG Synthesis
2.1. Phosphoinositide-Specific PLCs

There are 16 different members of PLC distributed between six classical families
(β,γ,δ,ε,ζ,η) and one atypical family [34]. In their very complete review, Kano et al. [15]
recalled the various distributions of the four PLCβ isoforms, which are not overlapping in
central nervous system (CNS). As shown in Table 1, PLCβ1 in hippocampal neurons [25]
and PLCβ4 in Purkinje cells [35] appear to follow the same regulation downstream of
Gαq-coupled metabotropic receptors. This is the case depicted in Figure 1, which is further
confirmed by the forebrain-specific inactivation of Gαq-/Gα11 family G proteins [69].

Retrograde signaling by 2-AG was discovered using experimental models of depolari
zation-induced suppression of excitation (DSE) or inhibition (DSI) [30]. In that case, µM
cytosolic calcium concentrations ([Ca2+]i) are reached through opening voltage-gated Ca2+

channels, but the PLC at the source of the DAGL substrate has not been identified. In
contrast to PLCβs, PLCδ1 is directly activated by µM [Ca2+]i [34] and thus appeared as
a good candidate to achieve this goal. However, hippocampal DSI was unal-tered in
PLCδ1-, δ3- and δ4-knockout mice (Table 1 and [36]). As discussed by Hashimotodani
et al. [36], double- or triple-PLCδ-knockout mice were not tested (the double mutant δ1−δ3
is lethal [34]), leaving open the question of whether PLC is involved in 2-AG-dependent
DSE or DSI.

Among other members, PLC ζ and PLCη also display a high sensitivity to Ca2+.
Whereas PLC ζ is sperm-specific, PLCη1 and PLCη2 are present in the brain, especially the
latter one, which is developmentally regulated and detected in the hippocampus, cerebral
cortex, olfactory bulb, habenula, retina, pituitary, and neuroendocrine cells [34]. In vitro,
optimal [Ca2+] are 1 µM and 10 µM for PLCη2 and PLCδ1, respectively [70]. In intact cells
activated by various GPCR ligands, PLCη1 is stimulated by Ca2+ mobilized from internal
stores [71], whereas PLCδ1 activity depends on external Ca2+ influx [72,73]. It is tempting
to discuss those properties in light of the study showing that retrograde synaptic signaling
can be equally achieved either under current artificial conditions elevating postsynaptic
[Ca2+]i over 5 µM until almost 50 µM (single pulses of 100 to 2000 ms, respectively) or
upon sustained but limited (around 1 µM) [Ca2+]i elevation obtained by a series of brief
depolarizations [74]. A possible role of PLCη1 and PLCη2 in DSE/DSI explored under
both conditions mentioned above and using corresponding knockout mice would thus
deserve attention.

Another PLC (PLCε) displays a unique mechanism of activation involving exchange
protein directly activated by cAMP (Epac), a direct effector of cAMP [34]. A cascade
involving cAMP-Epac2-PLCε-2-AG was shown to occur in dopamine neurons of the ventral
tegmental area, where it facilitates DSI and long-term depression at inhibitory synapses (I-
LTD) [37]). As outlined in Table 1, this cascade appears to participate in the cocaine-induced
disinhibition of VTA dopamine neurons.

PLCs from the γ family are activated downstream of receptor or non-receptor protein
tyrosine kinases in a mechanism involving their two src-homology-2 (SH2) domains. Two
studies mentioned in Table 1 reported convincing evidence that synaptic retrograde signal-
ing might involve Brain-Derived Neurotrophic Factor (BDNF) binding to its postsynaptic
TrkB receptor, thus promoting the activation of PLCγ1 followed by the DAGL generation
of 2-AG [38,39].

One can thus conclude that β, γ, and ε PLCs must be considered as actors of the PLC-
DAGL cascade contributing to synaptic plasticity. Curiously, DSI and DSE, which allowed
the discovery of CB1-dependent synaptic retrograde signaling, did not yet reveal the
identity of involved PLC, although PLC ζ and PLCη should undergo further investigations.

Finally, a recent study was focused on PLCγ2, which is mainly expressed in hematopoi-
etic cells at the periphery and specifically in microglia within CNS. Using exogenous ex-
pression in transfected cells, as well as macrophages and microglia, Jing et al. [40] provided
a very extensive description of endocannabinoid and eicosanoid networks resulting from a
triple enzyme cascade, i.e., PLCγ2-DAGL-MAGL (monoacylglycerol lipase). One striking
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observation was the balance occurring between that pathway of eicosanoid production
and the one involving PLA2G4A, as revealed upon the disruption of the PLCγ2 gene.
As recalled in a recent review [75], our group was the first to propose DAGL as another
pathway of arachidonic acid liberation [76,77], an idea which was then put forward mainly
by the Majerus group [78,79]. Those proposals were made almost 45 years ago at a period
where EC was not yet discovered. The favorite cell model used in those previous studies
was blood platelets, which revealed how PI 3-kinase modulates the activity of PLCγ2 under
conditions of FcγRIIA engagement [80,81], similar to those depicted by Cravatt’s group
with macrophages and microglia [40]. Among other interesting observations of the latter-
mentioned study, several pathological variants of PLCγ2 were found to display gain of
function, which will be interesting to keep in mind in understanding the pathophysiology
of some autoimmune and inflammatory diseases, as well as Alzheimer disease, as recalled
in Table 1. Thus, 2-AG production is not the only result of PLC-DAGL cascade, which can
also display strong interactions with eicosanoids [82].

For the sake of clarity, the main characteristics of PLC isoenzymes discussed above are
summarized in Table 2.

Table 2. Main characteristics of PLC isoenzymes possibly involved in 2-AG synthesis.

PLC Subtype Activation
Mechanism

Main Localization
Tested References

PLCβ1 Gαq Hippocampus [25]

PLCβ4 Gαq Cerebellum [35]

PLCδ1,δ2,δ3 Ca2+ (10 µM) Brain [36,70,72,73]

PLCη1,η2 Ca2+ (1 µM) Brain [70,71]

PLCε cAMP via Epac Ventral tegmental area [37]

PLCγ1 Tyr phosphorylation Brain [38,39]

PLCγ2 Tyr phosphorylation Myeloid cells [40]
Abbreviations: Gαq, heterotrimeric G-protein with αq subunit; Epac, exchange protein directly activated by cAMP;
PLC, phospholipase C.

As discussed below, the nature of DAGL involved in 2-AG synthesis deserves particu-
lar attention.

2.2. Duality between DAGLα and DAGLβ

As recalled in more detail in [13] and summarized in Table 1, two DAGL isoforms (α
and β) are the products of different genes [41], whose invalidation assigned a central role to
DAGLα in synaptic retrograde signaling described above [42,43]. This was fully confirmed
with the most specific irreversible inhibitors available so far [44]. On a functional point of
view, the genetic disruption of DAGLα gene, which was accompanied by a drastic fall of
brain 2-AG content, was found to reduce neurogenesis [42] and to reproduce alterations
of CB1 receptor signaling on anxiety [49,50], energetic metabolism, and food intake [51].
As reviewed by Oudin et al. [45], DAGLα also contributes to the regulation of axon
growth and guidance during development and to adult neurogenesis (Table 1). The very
recent identification of DAGLα mutations responsible for a neuro-ocular DAGLA-related
syndrome (NODRS) is a good example of a genetic disease linked to the EC system [52].
Interestingly, mutations identified in NODRS patients affected the C-terminal part of
the protein, leaving intact its catalytic activity but altering its subcellular localization,
which became perinuclear (instead of membrane-bound for the wild-type protein), at
least in a transfected model of HEK293T cells. This puts the accent on the importance of
DAGLα localization on the postsynaptic membrane, probably under the control of Homer
proteins, as recalled in the legend of Figure 1 [26–29]. Whether this is related to the possible
existence of different DAG pools involved in mGluR1-dependent retrograde signaling or
DSI, respectively, still remains an open question [83].
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Besides the well-established role of DAGLα in neurons, a low level of its gene expres-
sion was detected in a subpopulation of astrocytes [54], in agreement with the fact that
DAGLα is the isoform producing 2-AG in isolated astrocytes [84]. Conditional knockout
did not alter brain 2-AG content, but, as recalled in Table 1, this had profound behavioral
consequences such as depressive-like behavior, alterations in maternal care behavior, and
hedonic feeding [54,55]. This very interesting observation is thus to add to the possible
involvement of ECs in the interplay between astrocytes and neurons [58]. In another recent
study, DAGLα present in tanycytes was found to regulate the hypothalamic–pituitary–
thyroid axis, as recalled in Table 1 [56].

DAGLβ is also expressed in the brain, where it predominates in microglia [84], but also
displays more peripheral localizations such as the liver [41] or peritoneal macrophages [57].
Since the genetic or pharmacological inhibition of DAGLβ also alters the liberation of
arachidonic acid and its conversion into eicosanoids, this might indicate a main role of
this isoform in the regulation of inflammation. However, one cannot adopt such a simple
view when observing that DAGLα also exerts a duplicate function in the interconnected EC
and eicosanoid metabolism [44,57]. The link between the two families of lipid mediators
is provided by 2-AG hydrolysis, which allows the simultaneous regulation of the 2-AG
level and the liberation of arachidonic acid. This aspect is out of the scope of this review,
but, just to give an idea of the complexity of the various enzyme combinations, the action
of microglia DAGLβ seems to be coupled with intracellular MAGL for the production of
eicosanoids and with extracellular ABHD12 for the regulation of secreted 2-AG [84].

As recalled in Table 1, DAGLβ, which is the predominant DAGL in human and mouse
substantia nigra dopaminergic neurons, displays loss of function mutations responsible for
early onset Parkinsonism, opening an interesting field in our comprehension of Parkinson
disease pathophysiology [59]. The same enzyme was also identified as a cargo of AP-4 vesi-
cles and revealed a direct link between 2-AG production and a severe neurodevelopmental
and neurodegenerative disorder occurring in AP-4-deficient patients [60]. The two latter
studies bring substantial advances in the field of EC systems by combining specific cellular
or subcellular expression data to the identification of genetic diseases involving DAGLβ
itself or a protein partner such as AP-4.

2.3. A Nuclear PLCβ-DAGLα Cascade

In strong contrast with the need of PLC-DAGLα localization in the postsynaptic mem-
brane mentioned above, three isoforms of PLC (β1, β2, and β4) were detected together with
DAGLα in very specific domains of the nuclear matrix from rat cortical neurons [85,86],
in line with our previous studies on the nuclear phosphoinositide cycle [87]. The authors
provided in vitro evidence that efficient coupling between the two enzymes allowed pro-
duction of 2-AG and suggested two possible functional consequences as follows: either
direct interaction of 2-AG with transcription factor PPARγ or release of AA followed
by conversion into PGJ2, another ligand of PPARγ. Although this very interesting view
awaits further study, it adds to the large spatial and functional diversity of the PLC-DAGL
pathway described in the present review.

2.4. Other Lipases Possibly Involved in 2-AG Synthesis

Four other enzymes have been suggested to possibly achieve DAG conversion to
2-AG: ABHD6 was first identified as a MAGL but was found to also display DAGL activity;
ABHD11 and DDHD2 were purified on the basis of their in vitro activity; finally, hormone-
sensitive lipase (HSL) is well known as a main enzyme involved in lipolysis occurring in
adipose tissue. They are discussed in more detail below.
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2.4.1. ABHD6

In a model of the retinoic acid-induced differentiation of the murine neuroblastoma cell
line Neuro-2a, ABHD6 was found to display typical DAGL activity and to contribute, proba-
bly in conjunction with DAGLβ, to retinoic acid-induced 2-AG accumulation [61]. This was
a quite unexpected finding since ABHD6 was initially discovered as a MAGL contributing
to the regulation of the 2-AG level [17,88]. However, besides this dual MAGL/DAGL
character, ABHD6 is also active against other lipid substrates such as lysophospholipids or
bis(monoacylglycero)phosphate (BMP), also called lysobisphosphatidic acid (LBPA) [17,88].
So, further studies are still needed to understand the precise role of ABHD6 in 2-AG
metabolism, which might vary with cell localization.

2.4.2. ABHD11

Another hydrolase of the same family, ABHD11, was purified as a DAGL by the Sanofi
Research group [62]. Despite it rather high in vitro activity, mice bearing an invalidated
ABHD11 gene did not display any change in 2-AG level in various organs including the
brain, liver, muscle, or adipose tissue. This might simply reflect the fact that ABHD11 acts
on a minor pool of DAG, similar to astrocyte DAGLα discussed above [54]. Interestingly,
the mutant mice were revealed to be resistant to diet-induced obesity, albeit with no
evidence of change in EC tone. Apparently, the mechanism might involve an alteration
of bile acid synthesis, resulting in a reduced intestinal absorption of dietary lipids [62].
ABHD11 is localized in the mitochondrial matrix [62], where its specific interaction with
OGDHc (oxoglutarate dehydrogenase complex) regulates glutamine metabolism [89,90].
As illustrated in Figure 4, besides its classical positioning at the plasma membrane, CB1
has also been detected in mitochondria from brain cells, muscle, sperm, oocytes, and
adipocytes, where signaling involves heterotrimeric Gαi coupled to soluble adenylate
cyclase (sAC) and protein kinase A (PKA) (see [91,92] for recent references). Although
the DAG substrate of mitochondrial ABHD11 is absolutely unknown, it is thus tempting
to emphasize a possible link between mitochondrial ABHD11 and mitochondrial CB1, as
depicted in Figure 4 below. However, the role of ABHD11 in an alternative pathway of
2-AG synthesis remains an open question and other, even more complex mechanisms could
be emphasized [93].

2.4.3. DDHD2

Similar to ABHD11, DDHD2 was also purified to homogeneity by following its DAGL
activity and was logically suggested as a possible candidate involved in 2-AG synthe-
sis [63,64]. Recombinant DDHD2 is mainly active on DAG, but also hydrolyzes TAG and
PA as a phospholipase A1 (PLA1). However, further studies using DDHD2-KO mice and
cells transfected with DDHD2 bearing inactivating mutations found in a complex form of
hereditary spastic paraplegia (HSP) unambiguously revealed that DDHD2 behaves in vivo
as a TAG lipase [65,66]. Interestingly, our group was involved in the study of Sanfilippo
syndrome type B, also called mucopolysaccharosidosis type IIIB (MPSIIIB) [94,95]. A recent
report describing the simultaneous pathogenic mutations of DDHD2 and NAGLU (the
disease-causing gene in MPSIIIB) in a very consanguineous family, thus appears as a rare
interesting curiosity [96].
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Figure 4. Possible relationship between ABHD11 and mitochondrial CB1. Besides the canonical
pathway present in the plasma membrane (see also Figure 1), ABHD11 might be another source
of 2-AG for mitochondrial CB1 receptors. 2-AG (red triangles) from both origins is postulated
to interact with mitochondrial CB1, resulting in the sequential inhibition of sAC and PKA. The
scheme is inspired from previous representations found in the literature [97,98]. As commented
in the text, ABHD11 in mitochondrial matrix is associated with OGDHc. Abbreviations: 2-AG,
2-arachidonoylglycerol; ABHD11, ABHD, α/β-Hydrolase Domain-Containing; CB1, cannabinoid
receptor 1; DAG, diacylglycerol; DAGL, DAG lipase; Gαi, αi subunit of heterotrimeric G protein;
OGDHc, oxoglutarate dehydrogenase complex; PIP2, phosphatidylinositol 4,5-bisphosphate; PKA,
protein kinase A; PLC, phospholipase C; sAC, soluble adenylate cyclase.

2.4.4. HSL

Finally, a very recent study reported the presence of HSL in various regions of the
brain, both in neurons and glial cells, with a slightly higher abundance in postsynaptic
membranes [67]. For the record, HSL is a main enzyme of adipose tissue involved in
lipolysis. It displays TAG, DAG, and MAG lipase activities, but in vivo function involves
its DAGL activity operating between two reactions catalyzed by ATGL (adipose triglyceride
lipase) and classical MAGL, allowing the release of glycerol and of the three fatty acids
from stored TAG [99–101]. Interestingly, although HSL-specific DAGL activity is 20-fold
lower in the brain compared to adipose tissue, it represents around two-thirds of total
DAGL activity in all brain regions [67]. Among various non-significant differences, only the
brain 2-linoleoylglycerol levels were reduced by 20% in the hippocampus of HSL−/− mice,
this was limited to 13–14% for both linoleoylglycerol and 2-AG in cortex, but a number of
eicosanoids were also modified [67]. The invalidation of the HSL gene was accompanied
by the impairment of short-term and long-term memory in old mice, but not in young
mice [67,68]. As for ABHD11 and DDHD2, these interesting observations are difficult to
link to EC system and 2-AG synthesis, although the lack of lipidomic change can simply
reflect the involvement of a minor pool of 2-AG.

To conclude the point concerning other potential lipases, we want to mention a study
showing that brain slices incubated at 20 ◦C for almost 3 h accumulated huge amounts of
2-AG, which were detected only in the presence of MAFP (methylarachidonoylfluorophos-
phonate), a ‘broadly acting serine hydrolase inhibitor’ previously described as ‘a global
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inhibitor of 2-AG hydrolysis’ [102]. Most remarkably, this was accompanied by the activa-
tion of CB1, as shown by [35S]GTPγS autoradiography. 2-AG production was unchanged in
DAGLα-KO and DAGLβ-KO mice and was almost abolished by tetrahydrolipstatin (THL),
an irreversible inhibitor of the two lipases [41]. This suggested that other THL-sensitive
lipases were involved in 2-AG synthesis occurring under these conditions. Table 3 recapitu-
lates the literature data obtained mainly through activity-based protein profiling (ABPP)
with 35 different serine hydrolases [103].

Table 3. Effect of tetrahydrolipstatin (THL) on various serine hydrolases.

Serine Hydrolases Substrate Effect of THL References

DAGLα DAG Inhibited [41]

DAGLβ DAG Inhibited [41]

ABHD12 MAG, LysoPS Inhibited [103]

ABHD16A PS Inhibited [103]

TPP2 Tripeptide Inhibited [103]

PLA2G7 PAF Inhibited [103]

HSL DAG > TAG > MAG No effect [103]

DDHD2 DAG > TAG Inhibited [63]
Abbreviations: ABHD, α/β-Hydrolase Domain-Containing; DAG, diacylglycerol; DAGL, DAG lipase; DDHD,
DDHD containing; HSL, hormone-sensitive lipase; MAG, monoacylglycerol; PAF, platelet-activating factor or
1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; PLA2G7, group 7 phospholipase A2; PS, phosphatidylserine;
TAG, triacylglycerol; TPP2, tripeptidyl peptidase 2.

In addition to DAGLα and β, DDHD2 thus appears as the only THL-sensitive lipase
acting on DAG and (or) TAG, with in vitro inhibition with DAG as a substrate occurring at
an IC50 of 7.8–10 nM THL [63]. Based on these data, HSL is probably not involved in 2-AG
accumulation occurring in brain slices; however, demonstrations showing that DDHD2 is
the only lipase candidate still requires demonstration.

As discussed by Aaltonen et al. [102], the massive production of 2-AG occurring in
incubated brain slices probably corresponds to what is observed following decapitation,
reflecting biochemical events occurring upon death [104,105]. Although far from physi-
ological conditions, cellular and biochemical mechanisms behind those changes would
deserve particular attention, since they might occur under pathological situations such as
ischemia or trauma. Among the hypothetical mechanisms possibly involved in massive
2-AG production, AlterAGs could be emphasized, as discussed further and as already
suggested [102]. It would also be important to identify from which lipid pool 2-AG origi-
nates: phosphoinositides via the action of PLCs preceding that of lipases, PC converted
into DAG through reversible reaction of phosphocholine transferase [106], or even TAG
hydrolyzed by DDHD2, as discussed earlier. In this context, a very careful study conducted
on gerbil cerebral cortex during ischemia indicated that DAG issued from phosphoinosi-
tide hydrolysis was the main source of stearic acid, whose liberation preceded that of
arachidonic acid [107]. Remarkably, that study was performed before the discovery of the
EC system and would justify novel investigations using modern possibilities offered by
lipidomic analysis. One major interest would be to reveal biochemical mechanisms result-
ing in massive brain accumulation of 2-AG, with two possible consequences: i) modulation
of ischemia–reperfusion damages by CB1; ii) consciousness changes preceding death as
suggested by near-death experiences [108].

To conclude this section, several lipases other than DAGLα and β can be emphasized
in some pathways leading to 2-AG synthesis. Their possible role in putative metabolic
pathways will be discussed further in Section 4. However, another possible origin of
the DAGL substrate might involve PA generated by the PLD hydrolysis of PC and is
described below.
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3. The PA and PC Pathways

Using the mouse neuroblastoma cell line N18TG2 stimulated with the calcium ionophore
ionomycin, Bisogno et al. [109] provided evidence that the DAGL substrate was derived
from a pool of PA dephosphorylated by PA phosphatase, as deduced from the inhibitory
action of propranolol and N-ethyl-maleimide. As shown in Figure 2, this reaction would
be catalyzed by one isoform of lipins, the novel name of PA phosphatases [110–113].
However, the origin of PA could not be clearly identified. A very similar conclusion was
reached with the rat microglial cell line (RTMGL1), where 2-AG synthesis was unaltered by
PLC inhibitor U73122 but was strongly reduced by propranolol [114]. However, the first
evidence for a functional pathway involving the successive actions of a PC-specific PLD
(likely PLD2 in this case), lipin, and DAGL (see Figure 2) was provided by Zhang et al. [115]
in rat thalamic paraventricular nucleus neurons displaying unique electrophysiological
properties modulated by intracellular CB1, and probably CB2, receptors.

As also shown in Figure 2, the generation of DAG upon the hydrolysis of PC (or other
glycerophospholipids) by a putative PLC is currently suggested from the use of a specific
inhibitor of Bacillus cereus PLC, tricyclodecan-9-yl-xanthogenate (D609) [116]. D609 was
found to be ineffective in brain slices, where PIP2-specific PLC is involved [11], but inhibited
2-AG production in a model of local mouse ear inflammation induced by the topical
application of 12-O-tetradecanoylphorbol-13-acetate (TPA) [117]. As indicated in Figure 2,
this reaction, which might concern not only PC but other glycerophospholipids such as PE,
could be catalyzed by one of the three SPS, which have been recently recognized for their
PLC activity [118–122]. However, TPA-induced 2-AG synthesis upon ear inflammation
also involved PIP2-specific PLC and PLD–lipin pathways, as shown by the use of various
pharmacologic inhibitors, in a model leading to the production of several other MAG
species [117].

Using mouse microglial cells in primary culture and a DAGK inhibitor, Witting
et al. [123] observed that DAGK shunted DAG from the DAGL pathway, thus reveal-
ing a possible regulation mechanism of the DAG level. Whether this is related to the
reported interaction of SMS with DAGK might thus deserve to be questioned [124,125].

In conclusion of this section, the various reactions involving PC and (or) PA have
been suggested mainly from studies based on the use of pharmacological inhibitors, whose
specificity might not be absolute, at a time when the corresponding enzymes (PLDs,
lipins, DAGKs, SMS) were not identified at the molecular level. It is thus difficult to
draw very strong conclusions in the absence of data concerning their expression in the
investigated models and of experiments based on the specific knockdown or knockout of
the corresponding genes. These points could be investigated in future studies.

4. The Metabolic Pathway of 2-AG Synthesis

The term was coined by Baggelaar et al. [13], referring to the discussion by Stella
et al. [11] showing 2-AG as the main EC involved in modulating long-term potentiation.
Current knowledge on lipolysis indicates that TAG hydrolysis occurs on the surface of
intracellular lipid droplets essentially through the action of two lipases, i.e., PNPLA2,
also called ATGL (adipose triglyceride lipase), and DDHD2 [99–101,126–128]. Both are
indicated in Figure 2, knowing that PNPLA2 predominates in adipose tissue but also
displays a very broad expression profile, including the brain, whereas DDHD2 is specific
to nervous tissue [99,100,128]. In the second step dealing with DAG hydrolysis, HSL
appears as a possible candidate, as discussed in the previous paragraph. ABHD11 was not
considered owing to its intramitochondrial localization (Figure 4). However, we also added
DAGLβ, which was found to display a specific interaction with lipid droplets in Neuro-2a
cells, in contrast to the typical positioning of DAGLα in the plasma membrane [46].

There is no experimental proof that the metabolic pathway is really involved in the
generation of 2-AG. One argument against this hypothesis is the poor content of arachidonic
acid in adipose tissue TAG (in the range of 0.3–0.5 mol percent, allowing the prediction of a
maximum of 1% of TAG molecules being possibly converted into 2-AG) [129]. Also, in the
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brain of DDHD2−/− mice, arachidonate-containing molecular species of accumulated TAG
do not exceed 2% [65]. This casts some doubt on the real in vivo efficiency of the metabolic
pathway in 2-AG synthesis. Indeed, studies dealing with adipocyte differentiation and the
development of insulin resistance occurring in obesity related to overactive EC systems
are focused on DAGLα rather than HSL [130,131]. A particularly attractive case might
have been bone marrow adipocytes, which lack expression of MAG lipase, resulting in
the accumulation of MAG [132]. However, 2-AG was not detected in that peculiar case.
The same argument could be used for the synthesis of anandamide, whose first step
involves the transfer of a fatty acid esterifying sn-1 position of PC, where AA is hardly
present, to the amino group of PE (phosphatidylethanolamine), thus producing NAPE
(N-acyl-PE) [133–136]. Although NAPE can then be converted to anandamide by multiple
pathways, this step is currently considered as the unique obligate enzymatic reaction
leading to anandamide synthesis.

A last argument against the metabolic pathway comes from the study comparing
DAGL α and β in Neuro-2a cells differentiated by retinoic acid [46]. In that case, neurite
outgrowth promoted by DAGLα is inhibited by a CB1 antagonist, according to the classical
mechanism involving 2-AG, whereas the effect of DAGLβ, which is colocalized with lipid
droplets, is independent of the 2-AG-CB1 axis. Although still hypothetical, we suggest
that, in the latter case, TAG hydrolysis might contribute to other mechanisms involved in
neurogenesis such as a balance between TAG and phospholipid biosynthesis [137].

5. The De Novo Synthetic Pathway

Turcotte et al. [138] reported a quantitative conversion of AA into 2-AG by human
blood neutrophils in the presence of the serine esterase inhibitor MAFP (already mentioned
in Section 2.4.4 [102]), i.e., under conditions affording the total inhibition of 2-AG hydrol-
ysis. Other polyunsaturated fatty acids were also incorporated, with a maximum level
for docosahexaenoic acid (DHA). Arachidonoyl-LPA (A-LPA) accumulation preceded that
of 2-AG, suggesting the sequence of reactions described in Figure 2, i.e., the acylation of
G3P followed by dephosphorylation by a phosphatase. Indeed, 2-AG production was
almost abolished by inhibitors of arachidonoyl-CoA synthase and acyl-CoA transferase,
triascin C, and thimerosal, respectively. The authors suggested the involvement of two acyl-
transferases, MBOAT5 and 7. The two enzymes actually correspond to lysophospholipid
acyltransferases (LPLAT12 and LPLAT11, respectively, in a novel nomenclature [139,140]).
These enzymes specifically acylate LPL, so that they do not appear as good candidates
to synthesize 2-arachidonoyl-LPA. One attractive hypothesis would be the involvement
of G3P acyltransferase2 (GPAT2), the mitochondrial enzyme displaying strong selectiv-
ity for AA, although its expression level in neutrophils is much lower than in spermatic
cells [141,142].

Whereas the involvement of a lipid phosphatase could not be demonstrated using five
different inhibitors, a very recent study provided some good evidence that the cytosolic
enzyme PHOSPHO1, which dephosphorylates phosphocholine and phosphoethanolamine,
would also be able to convert 2-arachidonoyl-LPA into 2-AG [143]. This is indicated in
Figure 2. However, it still remains to be understood why 2-arachidonoyl-LPA would
be converted into 2-AG rather than to AA-containing TAGs or PLs [142]. Indeed, in the
de novo pathway of glycerolipid synthesis, LPA does not accumulate owing to the high
activity of acylglycerol-3-phosphate acyltransferases (AGPATs). Confirming this fact, the
pathological accumulation of LPA occurs in the liver and adipose tissue of rats upon the
knockdown of Agpat2 (Lplat2 in the novel nomenclature [139,140]), thus affording an
experimental model of the most common congenital lipodystrophy caused by inactivating
mutations of the AGPAT2 gene (see Figure 2) [33].

Independently of the former study [138], GPAT2 was found to convert exogenous
G3P into LPA in bone and bone marrow, revealing that both compounds behaved as
extracellular messengers in a complementary way [144]. However, the latter study did not
report a possible enrichment of LPA in AA nor the conversion of LPA into 2-AG. So, further
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investigations are required to clarify the possible role of the first step of glycerolipid de novo
synthesis in the production of LPA and 2-AG. But, this remains an attractive hypothesis
with possible pathophysiological relevance: (i) complementarity between kidney and bone
in mineral metabolism [144]; (ii) the development of MAG hydrolysis inhibitors able to
turn neutrophils into anti-inflammatory effectors through the production of 2-AG [138].

In a reverse way (see Figure 2), 2-AG and other MAGs can be phosphorylated into cor-
responding LPAs, as suggested in our former paper [76] and reviewed elsewhere [75,145].
Based on two studies characterizing purified proteins phosphorylating both diacyl- and
2-acyl-glycerols [146,147], Nakane et al. [148] also suggested the intracellular conversion
of 2-AG into 2-A-LPA, which was currently included in reviews devoted to 2-AG synthe-
sis [4,10,12,13,15]. In the light of the presently available knowledge, two types of enzymes
can catalyze 2-AG phosphorylation: (i) among ten DAG kinases grouped in five different
families (I to V), seven of them belonging to families I–III display significant activity (from 8
to 19% of DAG kinase activity) specifically towards 2-acyl-glycerol, with 1-acyl-sn-glycerol
being a very poor substrate [149,150]; (ii) AGK was discovered as a multi-substrate lipid
kinase (among which 2-AG) [151,152], is involved in cell proliferation and cancer [152,153],
protein import into mitochondria [154], thrombopoiesis and thrombosis [155,156], and
antitumor activity of CD8 T-cells [157], and is mutated in a rare recessive autosomal dis-
ease called Sengers syndrome [158]. It will thus be rather complex to decipher which of
these enzymes might be involved in 2-AG phosphorylation in a given tissue. For instance,
platelets, which have been the first example of an intact cell producing significant amounts
of LPA [75,76,145], were found to express six different DAGKs [159] as well as AGK [156].

In this context, a recent study reported that the activation by orexin-A (OX-A, also
called hypocretin 1 or HCRT1) of orexin receptor 1 (OX-1R) in cultured hypothalamic
neurons induced the production of 2-A-LPA by a series of reactions involving the canonical
pathway of 2-AG synthesis followed by the phosphorylation of the latter [160]. Tau
phosphorylation was induced by both OX-A and 2-A-LPA in primary neuronal cultures and
by 2-A-LPA in the hippocampal CA1 area upon intraperitoneal injection in a mechanism
implying LPA1 receptor. Since OX-A, 2-AG, and 2-A-LPA concentrations were coordinately
increased in plasma from Alzheimer patients, the authors pointed attention towards the
possible involvement of that signaling pathway in relation to sleep disturbances occurring
in Alzheimer disease [160,161], knowing the involvement of the orexin-orexin receptor
system in the pathophysiology of narcolepsy type 1 [162]. A more recent study described
the occurrence of the same pathway in hypothalamic neurons from arcuate nucleus, where
decreased leptin signaling also led to 2-A-LPA synthesis, revealing its involvement in the
regulation of appetite with obvious consequences on the development of obesity [163].

It thus appears that LPA and 2-AG metabolism can be closely related. This will also be
obvious later when considering the AlterAG-2 pathway. However, as a main difference,
enzymatic reactions described in Sections 2–5 and in Figure 2 all display intracellular
localization, whereas the last step of the three AlterAG pathways occurs on the cell surface
and involves membrane ectoenzymes. In the first case, this implies that 2-AG has to cross
the membrane to fulfill its function at the level of cannabinoid receptors. As discussed in
several reviews [7–10], this can occur by simple diffusion but might also involve several
proteins involved in intracellular transport (FABP5 or fatty acid-binding protein 5 [164,165]),
transmembrane transport by still unidentified putative EMT (endocannabinoid membrane
transporter [166,167]), or the release of EVs (extracellular vesicles [168–171]). As to the
extracellular pathways presented in Figure 3, their detailed description in Section 7 will
require the discussion of the importance of the sn-2 position of AA in 2-AG and its putative
lysophospholipid precursors.



Molecules 2024, 29, 3694 16 of 59

6. Importance of sn-2 Position of AA in 2-AG and LPLs

As shown in Figure 5, both MAG and LPLs undergo spontaneous migration of their
unique acyl group to the vicinal hydroxyl group(s) of glycerol. Acyl migration leading
to the formation of regioisomers was first reported by Emil Fischer, the famous chemist
awarded the Nobel Prize in 1902 [172,173]. Since then, a large body of literature has been
devoted to this problem (see, for instance, [174–177]). From these previous and from more
recent studies [178–181], a consensual view has emerged: thermodynamic equilibrium
corresponds to about 90% of 1(3)-AG or 1-acyl-LPLs versus 10% 2-AG or 2-acyl-LPLs; acyl
migration occurs with first-order kinetics, is acid- or base-catalyzed, and has a maximal
stability occurring at pH 4.0–5.0; 2-acyl compounds are more stable in a hydrophobic
environment afforded by solvents or upon inclusion in membrane bilayers. In contrast,
na aqueous medium accelerates migration, which is still more efficient in the presence
of albumin. As a consequence of this, migration in LPLs was found to be the highest in
serum compared to tissues [179]. This infers that even 1(3)-acyl glycero(phospho)lipids
display some instability, since around 10% of them will spontaneously isomerize into their
corresponding regional isomers under conditions used in functional assays, with most of
them favorizing acyl migration (pH 7.4, presence of albumin). However, it is noteworthy
that migration strongly decreases with the degree of unsaturation of the acyl chain [181].
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These properties create a double issue: (i) one concerns the analytical tools necessary
to determine the precise balance between regioisomers present in native biological media;
(ii) the other one is to differentiate whether those isomers display regioselectivity towards
specific enzymes and receptors. The two problems must be resolved to understand the
biological relevance of a given metabolic pathway. Appropriate solutions to analytical
problems are now available for LPLs and 2-AG as well [182–185], and we previously
applied one of these methods [185] to successfully distinguish 2-AG from 1-AG [32]. On
the other hand, precautions necessary to minimize acyl migrations have allowed us to
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draw conclusions about regioisomer reactivity towards various receptors and enzymes.
The main available data are reported in Table 4.

Table 4. Compared biological properties of 2-AG and LPL regioisomers.

Receptors Ligand or Substrate Preference References

CB1 2-AG > 3-AG > 1-AG [11,186–191]

CB2 2-AG > 1-AG = 3-AG [192]

TRPV1 2-AG = 1(3)-AG [193–195]

GPR55 2-A-LPI most potent among LPI species [196–198]

LPA3 2-acyl-LPA > 1-acyl-LPA (2-arachidonoyl-LPA <
2-oleoyl-LPA) [199–202]

LPA6 2-acyl-LPA > 1-acyl-LPA (2-arachidonoyl-LPA <
2-oleoyl-LPA) [199,200,203–207]

GPR34 2-acyl-LPS > 1-acyl-LPS [208–210]

Enzymes

MAGL 3-AG > 2-AG > 1-AG; 1(3)-AG = 2-AG [188,211]

ABHD6 1-AG = 3-AG > 2-AG [188,211]

ABHD12 1(3)-AG > 2-AG [211,212]

FAAH 1-AG = 2-AG = 3-AG [188]

PLRP2 1(3)-acyl-sn-glycerol > 2-acyl-glycerol =
0;1-acyl-LPC >> 2-acyl-LPC = 0 [213,214]

LYPLA1/LYPLA2 1(3)-AG >> 2-AG = 0;1-palmitoyl-LPC >>
2-palmitoyl-LPC = 0 [215,216]

ABHD16A 1(3)-linoleoyl-sn-glycerol > 2-linoleoyl-glycerol [217]

LPP1–3 LPP1 non stereospecific [218,219]

GDE3 2-acyl-LPI = 1-acyl-LPI [32]

ENPP6–7 Not determined

ATX/ENPP2 1-O-alkyl-LPC >> 2-O-alkyl-LPC [220]
Abbreviations: ABHD, α/β-Hydrolase Domain-Containing; AG, arachidonoylglycerol; ATX, autotaxin; CB,
cannabinoid receptor; ENPP, ecto-nucleotide pyrophosphatase/phosphodiesterase; FAAH, fatty acid amide
hydrolase; GDE3, glycerophosphodiesterase 3; GPR, G-protein-coupled receptor; LPA, lysophosphatidic acid;
LPA3 or LPA6, LPA receptors 3 or 6; LPC, lysophosphatidylcholine; LPI, lysophosphatidylinositol; LPP, lipid
phosphate phosphatase (types 1 to 3); LPS, lysophosphatidylserine; LYPLA1 or 2, lysophospholipase A1 or 2;
MAGL, monoacylglycerol lipase; PLRP2, pancreatic lipase-related protein 2; TRPV, transient receptor potential
cation channel subfamily V.

6.1. Regioselectivity of Various Receptors
6.1.1. CB1 Receptor

Despite some variations between studies, it seems to be generally agreed upon that CB1
displays regioselectivity towards 2-AG, with differences in potency of 2- and 1(3)-isomers
varying between three- and ten-fold. This might reflect the use of different signaling events
such as increases in cytoplasmic free [Ca2+] [186], [35S]GTPγS binding [187], or cAMP
production [188]. In the latter study, Farah et al. reported EC50 of 96 nM, 480 nM, and
1450 nM for 2-AG, 3-AG, and 1-AG, respectively, indicating stereospecific recognition of the
enantiomers 1- and 3-AG. A recent study [189] measuring the inhibition of EPSCs (excitatory
postsynaptic currents) by 2- or 1(3)-AG in autaptic hippocampal neurons challenged the
previous data of Stella et al. [11]. They concluded a total lack of activity of 1(3)-AG,
whose apparent effects (at least 10-fold lower) might be attributed to the unavoidable
10% contamination by 2-AG occurring through acyl migration. However, one argument
makes a case for a significant activity of 1(3)-AG. This concerns the comparison by Sugiura
et al. [186] of the two ether-linked analogs of 2-AG and 1(3)-AG, where chain migration does
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not occur and which display the same relative difference in potency, albeit being both less
powerful than their acyl counterparts. Finally, an intriguing but very carefully conducted
study [190] reported that the mixture of 1(3)-AG and 2-AG formed within minutes upon
acyl migration kept almost the same potency towards CB1-induced calcium mobilization as
the initial 2-AG solution. Although three-fold less potent than 2-AG when tested alone, 1(3)-
AG exerted with 2-AG additive effects which might be involved in situations of tonic CB1
receptor activation requiring prolonged incubations. In strong contrast, 1-AG was found
completely inactive under conditions where 2-AG promoted cholecystokinin secretion from
enteroendocrine cells [191]. However, this occurred in 60 min incubations at surprisingly
high 2-AG concentrations (100 µM).

So, taking into account all these data is somewhat confusing and might lead to the idea
that 2-AG acyl migration is not so important to consider in the context of its physiological
function. However, this is only true if 2-AG is synthesized by the canonical pathway
described above, where only the 2-isomer is initially produced. As we will discuss later,
alternative pathways directly producing 1-AG would lead to a rather poorly active mediator
displaying one order of magnitude lower potency. Since the three alternative pathways
that will be discussed involve the conversion of LPLs to 2-AG, only 2-acyl-LPLs will be
considered for our purposes.

6.1.2. CB2 Receptor

At variance with CB1, we are aware of only one study comparing 2-AG and 1(3)-AG
activity at CB2 (Table 4). The experimental approach conducted by Sugiura et al. [192] was
essentially the same as that on CB1 [186], except that the neuronal cell line NG108–15 was
replaced by HL-60 cells. Besides the demonstration of a regioselectivity of CB2 towards
2-AG isomers, this study clearly confirmed 2-AG as a full agonist of CB2, in contrast to
anandamide. This reinforced the idea that 2-AG should play an important role in the
immune system as well.

6.1.3. TRPV1 Receptor

TRPV1 belongs to a large family of twenty-right transmembrane ion channels, six of
them, including TRPV1, being activated by various cannabinoids. They are thus considered
as ‘ionotropic endocannabinoid receptors’ [193]. By measuring Ca2+ influx in TRPV1-
expressing HEK293 cells, Iwasaki et al. [194] reported the activation of TRPV1 by a number
of MAG-bearing unsaturated fatty acids, including 2-AG and 1(3)-AG, which displayed
identical activities. The latter conclusion on the lack of regioselectivity of 2-AG was
confirmed by Zygmunt et al. [195]. So, ligand structural requirements and thus possible
metabolic pathways leading to TRPV1 activation do not display the same strictness as in
the case of metabotropic CB1 and CB2 receptors.

6.1.4. GPR55 Receptor

An apparently broad specificity was also described for GPR55 towards various LPI
species, including saturated and unsaturated long-chain fatty acids [197]. In fact, 2-
arachidonoyl-LPI revealed to be around eight- to fifteen-fold more potent than other species
and displayed a biological activity three times greater than that of 1-arachidonoyl-LPI,
suggesting that 2-arachidonoyl-LPI might be the natural ligand of GPR55. However, that
view was challenged by the observation that lysophosphatidyl-β-D-glucose (Lyso-PtdGlc),
a novel lipid mediator involved in spinal cord sensory axon guidance, displayed an about
seven-fold higher potency than LPI (respectively, EC50 16 nM and 110 nM), inferring that
LysoPtGlc rather than LPI would be the natural ligand of the recently deorphanized GPR55
receptor [198]. However, that comparison was carried out between 1-stearoyl species of
both LysoPtdGlc and LPI, whereas the 2-arachidonoyl species of the latter would have
been about 10-fold more potent [197]. By this time, the available information leaves open
the possibility that both 2-arachidonoyl-LPI and LysoPtdGlc (and perhaps other saturated
1-acyl-LPI species) could be natural ligands of GPR55. Deciphering the peculiar enzymes
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responsible for their production might be the first step to allowing the precise description
of their possible biological function in using appropriate models of knockout mice. This
will be discussed further in the section on AlterAG pathways.

6.1.5. LPA Receptors

Six different GPCR (LPA1–6) are now recognized as LPA receptors [199,200]. Although
there is no strict rule in the definition of LPA species acting as ligands, two receptors display
some preference. As recalled in Table 4, LPA3 (also called Edg7) and LPA6 (previous name,
P2y5) both display a preference for 2-acyl-LPA, at a variance with the four other LPA
receptors [201,203]. However, 2-arachidonoyl-LPA revealed to be at least 10-fold less
potent than LPA bearing a ∆9 cis bond such as 2-oleoyl- or 2-linoleoyl-LPA [201,203]. Very
surprisingly, the unnatural enantiomer of a phosphorothioate analog of LPA, (2S)-1-oleoyl-
2-O-methyl-glycerophosphothioate ((2S)-OMPT), was found to be five- to twenty-fold
more active than (2R)-OMPT [221]. Interestingly, the LPA3 tissue expression profile is very
similar to that of membrane-associated PA-specific PLA1α (mPA-PLA1α), also known as
lipase H (LIPH), which was found to couple 2-acyl-LPA production with LPA3 activation
in an in vitro system [202]. Still, more obvious coupling between LIPH and LPA6 was
found in hair follicles, where homozygous mutations of either LIPH or LPA6 result in a
congenital hair deficiency called wooly hair/sparse hair or hypotrichosis (see [204] for
a very elegant description of the pathophysiological mechanisms underlying that hair
disorder and for references to discovered human mutations). Another involvement of
LPA6 concerns differentiation into goblet cells of the colon carcinoma cell line HT-29, where
LPA6 displays inhibitory effects, in strong opposition to LPA5 [205]. Differences in the
reactivity of LPA6 and LPA5 were observed by using selective ligands (1-arachidonoyl-
LPA and 1-O-alkyl-LPA for LPA6 and LPA5, respectively). However, 2-arachidonoyl-LPA
would have been a more specific agonist of LPA6 [203]. Finally, the determination of
the LPA6 structure combined to a docking simulation using 2-linoleoyl-LPA as a ligand
provided interesting conclusions concerning the specificity of LPA6 ligand recognition as
follows: whereas the phosphate group interacted with well-defined positive amino acid
residues, the acyl chain was detected in a bent conformation within a cleft located between
transmembrane domains TM4 and TM5 and was largely open to the lipid bilayer [206,207].
As discussed above, a direct transfer of 2-acyl-LPA to LPA6 within the lipid bilayer could
maintain the stability of the 2-regioisomer, whereas 1-acyl-LPA would be prominent in the
albumin-bound form present in the extracellular space, which is the preferential binding
mode of LPA to LPA1 [222].

6.1.6. LPS Receptors

Among the three LPS receptors identified in humans [208], LPS1 (also known as
GPR34) was the only one displaying a strong preference for 2-acyl-LPS [208–210]. This was
confirmed by comparing migration-resistant LPS analogs lacking sn-1 or sn-2 hydroxyl
groups [209,210] and brought a strong argument for a possible functional coupling between
LPS1 and PS-specific PLA1 (PS-PLA1) [223]. In a very recent and elegant study, LPS1’s
tridimensional structure was resolved by cryo-electron microscopy with 1-oleoyl-LPS
bound to the receptor, but did not provide any clue to explain the difference between sn-1
and sn-2 regioisomers [224].

6.2. Regioselectivity of Various Lipid Acyl Hydrolases
6.2.1. MAGL, ABHD6, and ABHD12

Besides the well-characterized MAGL, two other hydrolases (ABHD6 and ABHD12)
have been proposed as main enzymes regulating the 2-AG level in the brain [225,226].
Differences in cellular and subcellular localization might account for their complementary
contributions to EC system homeostasis. As shown in Table 4, MAGL was found to be
equally active against 2-AG and 1(3)-AG [211], which actually masked a stereospecificity
revealed in a latter study as follows [188]: surprisingly, the three-fold higher Vmax measured
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on 3-AG compared to 1-AG is coherent with the previous data. If we add the fact that the
affinity of MAGL was the highest towards 1-AG [188], it remains difficult to relate those pa-
rameters to the well-established role of the enzyme in both adipose tissue lipolysis [99–101]
and brain 2-AG homeostasis [225,226].

In contrast to MAGL, ABHD6 has a strong preference for 1- and 3-AG compared
to 2-AG [188,211]. As previously reviewed [17,88], ABHD6 also displays high lysophos-
pholipase activity against acidic LPLs such as LPG, BMP (also called LBPA), and possibly
LPI [227–230]. Although only 1-acyl-LPLs were tested in the latter cases, one can reasonably
extrapolate from MAG data that ABHD6 is less active on 2-acyl-LPLs.

The preference for external chains of MAG is also true for ABHD12 [211,212]. The latter
enzyme, whose sequence predicts a luminal/extracellular localization, was first shown to
catalyze extracellular 2-AG hydrolysis in microglia [84], in contrast to MAGL and ABHD6,
which are active in the cytosolic compartment. However, the elucidation of the genetic
defect responsible for the neurodegenerative disease PHARC (polyneuropathy, hearing
loss, ataxia, retinosis pigmentosa, and cataract) revealed that ABHD12 deficiency actually
resulted in the pathologic accumulation of LPS and, to a lower extent, of LPI [231,232].
The same in vivo accumulations can be partially reproduced using a specific inhibitor of
ABHD12 [233,234]. Although the regional specificity of the enzyme was not examined
on LPLs, the same preference for external chains can be inferred from data on MAG,
as discussed above for ABHD6. Finally, the selective hydrolysis of long-chain LPS by
ABHD12 seems to occur at an intracellular site, presumably the lumen of endoplasmic
reticulum [212], which differs from the extracellular role played against microglial 2-AG, as
recalled above [225].

6.2.2. FAAH

FAAH is another enzyme able to hydrolyze 2-AG, although its natural substrates
correspond to anandamide and its congeners N-acyl amides. As shown in Table 4, this
occurs in the absence of any regioselectivity [188].

6.2.3. PLRP2

PLRP2 was first described as a pancreatic lipase with high PLA1 activity [235] be-
fore being recognized as a member of the pancreatic lipase family, including a number
of extracellular PLA1 [75,223,236–238]. The enzyme is actually expressed in a variety of
tissues [239–244] and displays a rather broad substrate specificity, including neutral and
phospho-glycerolipids, galactolipids [245], BMP [246], acylated PI-mannosides from phago-
cytosed mycobacteria [247], and retinyl esters [240]. However, as illustrated in Table 4,
PLRP2 displays an exclusive specificity for the sn-1(3) positions, suggesting that it might
be unable to hydrolyze acyl ester bonds involving a secondary alcohol, as previously
discussed [214].

6.2.4. LYPLA1 and LYPLA2

Although LYPLA1 and LYPLA2 are essentially lysophospholipases, they are also
able to deacylate prostaglandin glycerol esters resulting from 2-AG oxygenation by cy-
clooxygenase 2 [215,216]. They also exert potent thioesterase activities catalyzing the
depalmitoylation of heterotrimeric Gα subunits and Ras proteins [248]. As recalled in
Table 4, the positional specificity of LYPLA2 towards arachidonoyl-glycerol and of both
enzymes against LPLs is restricted to the sn-1(3) position under conditions minimizing
acyl transfer.
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6.2.5. ABHD16A

ABHD16A was discovered in brain and macrophages as the major PS lipase producing
the LPS substrate of ABHD12 discussed above [249–251]. Besides a specific role in LPS
signaling, this activity, localized in endoplasmic reticulum [251], might be involved in
mitochondrial fission and fusion events occurring at endoplasmic reticulum mitochon-
drial membrane contact sites [252]. In addition, similar to LYPLA1/LYPLA2, ABHD12
also displays depalmitoylase activity against Interferon-inducible transmembrane (IFITM)
proteins [253]. In terms of regioselectivity, ABHD16A was described as a lipase directed
against long-chain MAG (including 15-deoxy-prostaglandin J2 glycerol esters) with a clear
preference for 1(3)-acyl regioisomers (Table 4, [217]). Whereas the latter finding might have
led to predictions of PS-PLA1 activity, ABHD16A was found to deacylate PS at both the
sn-1 and sn-2 position, as indicated by the fatty acid composition of LPS products [249]. To
further add some mystery to that situation, the very close ABHD16B protein was described
as a PS-specific PLA1 [254]. Whereas both isoforms contain a nucleophile motif essential to
hydrolytic activity, like all but one ABHD proteins (ABHD15), only ABHD16A also contains
an acyltransferase motif [255]. Whether such a structural difference has something to do
with opposite regioselectivities remains presently unknown.

In conclusion, the examination of the regioselectivity of a number of lipid acyl hy-
drolases, although not exhaustive, still reveals a very complex world of enzymes exerting
different enzymatic activities potentially corresponding to complementary functions. The
situation is much simpler in the case of lipid phosphatases and phosphodiesterases.

6.3. Regioselectivity of Various Lipid Phosphatases and Phosphodiesterases
6.3.1. LPPs

LPP1, LPP2, and LPP3 (gene names PLPP1, PLPP2, PLPP3) form a group (LPPs) of
integral membrane proteins able to dephosphorylate PA, LPA, sphingosine 1-phosphate
(S1P), ceramide 1-phosphate, and diacylglycerol pyrophosphate [256–259]. They belong
to a larger family of lipid phosphatases/phosphotransferases comprising five different
groups [256–258]. They will be discussed in more detail further with the description of
the AlterAG-2 pathway. As far as we know, the possible regioselectivity of LPPs was
never checked, but LPP1 was found to be non-stereospecific towards LPA itself [218] or a
synthetic analog, N-acyl-norleucinol-1-phosphate [219] (Table 4). These observations are
very coherent with the rather broad substrate specificity mentioned above; they suggest
that LPP1 probably does not display a preference towards LPA regioisomers, which can be
reasonably extended to LPP2 and LPP3.

6.3.2. GDE3

As for GDE3 (GDPD2 gene), its PLC activity is identical towards 1-acyl- and 2-acyl-LPI
(Table 4), indicating a total lack of regioselectivity, thus allowing this enzyme to degrade all
forms of LPI [32], as will be emphasized in the description of the AlterAG-1 pathway.

6.3.3. ENPP6 and ENPP7

ENPP6 is also an ectoPLC acting on both 1-acyl- and 1-O-alkyl-LPC, platelet-activating
factor sphingosylphosphorylcholine (SPC), N-acylethanolamine-O-phosphocholine, and
glycerophosphocholine (GPC), which might be its natural substrate [260–265]. Two iso-
mers, α-GPC (sn-glycero-3-phosphocholine) and β-GPC (sn-glycero-2-phosphocholine)
are equally degraded [265]. The ability of ENPP6 to hydrolyze LPC as well as GPC is
reminiscent of the activity of GDE3 on both LPI [31,32] and its deacylated product glyc-
erophosphoinositol [266]. ENPP7 is another PLC with sphingomyelin as its main substrate
(it is also named alkaline sphingomyelinase), together with LPC and PAF [260,261,267–269].
ENPP6 and 7 will be emphasized further as possible actors of the AlterAG-3 pathway upon
acting on 2-arachidonoyl-LPC. Given the great variety of choline-containing substrates
recognized by these enzymes, one can speculate that they lack regioselectivity, although
experimental proof is not available.
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6.3.4. ATX

ATX (ENPP2) is the only secreted member of the ENPP family [260,261]. Following
the discovery of its lysophospolipase D (lysoPLD) activity [270,271], it was universally rec-
ognized as the main enzyme involved in the last step of LPA production [260,261,272–284],
although a specific pathway leading to 2-acyl-LPA also exists [273]. Besides LPC, which
is the most abundant LPL in plasma, ATX can also hydrolyze LPE and LPS [285] as well
as SPC [286], at least in vitro. Such a substrate specificity fits with the ATX tridimensional
structure, which revealed a hydrophobic pocket, allowing the positioning of the acyl chain
of lipid substrates in the vicinity of the catalytic site [287–289] (see also [274] for a very
clear comprehensive review). As indicated in Table 4, one study revealed a relatively
high level of regioselectivity of ATX [220]. This was observed by comparing ATX activity
against 1-O-oleyl-sn-glycero-3-phosphocholine (lysoPAF-C18:1) and 2-O-oleyl-sn-glycero-3-
phosphocholine, with these two lysoPAF regioisomers being protected from spontaneous
interconversion by the stability of their O-alkyl bonds. This conclusion is in full agreement
with the data obtained with sn-2-labeled LPL [290]. Bolen et al. [220] suggested that a main
pathway of LPA production by activated platelets might involve the generation of 2-acyl-
LPLs through the PLA1 activity of LYPLA1, followed by their spontaneous conversion into
1-acyl-LPLs, then allowing for the production of 1-acyl-LPA by ATX. As discussed further
in Paragraph 7.2.5, this suggests that ATX might not be the most efficient way to generate
2-arachidonoyl-LPA as a precursor of 2-AG synthesis upon dephosphorylation by LPP. In
addition to its hydrophobic pocket and active site, ATX also contains a partially hydropho-
bic tunnel able to bind LPA, thus acting as an LPA chaperone favorizing the delivery of
the ligand to P2Y-type LPA receptors such as LPA6 [291]. There is no indication about a
possible regioselectivity of LPA binding to the tunnel, rendering it difficult to understand
the preference of ATX for the 1-acyl-LPC substrate and that of LPA6 for 2-acyl-LPA, as
discussed above [203].

At this stage of the discussion, it is interesting to note that a lysoPLD from Staphylococ-
cus aureus (lpgD gene) displays an absolute regioselectivity towards its 1-acyl-LPG substrate,
in relation to the fact that cyclic phosphatidic acid (cPA), whose formation requires an
sn-2-free hydroxyl group, appears in this case as an obligatory intermediate [292]. As very
elegantly shown by the authors, the catalytic site is too small to accommodate at the same
time that glycerol is released in the first step of the reaction where water is required to
hydrolyze cPA. Like other lysoPLD, ATX was found to produce cPA involving the sn-2
hydroxyl group of the LPL substrate and is also able to hydrolyze cPA into LPA [293,294]
(see the structures in Figure 6). As already suggested by Sano et al. [290], this might explain
the regional preference of ATX for 1-acyl-LPL. However, there is no evidence that the ATX
reaction mechanism involves a systematic cPA intermediate. The same question arises for
other lysoPLD such as GDE4 and GDE7, which display strong differences in their ability to
produce cPA [295,296]. But, there is no available indication yet for possible differences in
the regioselectivity of GDE4 and GDE7.

In conclusion, it seems rather clear that the production and degradation of 2-AG
requires specific attention being paid to the problem of regioselectivity. Its biological
significance is difficult to draw in a straight way, given the number of receptors and
enzymes concerned and described in the review. Still, the best example to illustrate possible
biological significance is offered by ATX. The latter enzyme represents the major pathway
of LPA production but displays an enzymatic activity almost restricted to 1-acyl-LPLs. In
the case of LPA production by platelets in the context of thrombosis, this means that the
production of LPA from 2-acyl-LPLs requires the delayed and progressive accumulation of
1-acyl-LPLs through acyl chain migration [220]. In addition, owing to its central role in LPA
production, especially in the fields of lung sclerosis and tumor progression, a number of
ATX inhibitors acting through various mechanisms have been developed, with an obvious
advantage to tunnel-binding inhibitors [291]. It would be interesting to explore whether
the ability of ATX to behave as an LPA chaperone involves regioisomerism or not. If this
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were not the case, such a dissociation might contribute to the different efficacy of inhibitors
targeting the active site compared to tunnel-directed compounds.
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A common feature of the three possible alternative pathways of 2-AG synthesis
described in the following part of this review will concern a final step converting an LPL
into 2-AG. This implies that only 2-arachidonoyl-LPL should be concerned.

7. AlterAG Pathways
7.1. AlterAG-1
7.1.1. In Vitro Identification of GDE3 and DDHD1 as Main Actors of AlterAG-1

Thirty years ago, Ueda et al. [297] reported the presence of a PI-specific phospholipase
A1 and a PLC degrading LPI into MAG in rat brains. After the identification of 2-AG as
a major EC [11,298,299] two years later, a number of reviews on the EC system presented
the sequence of a PLA1 and a lysoPLC as an alternative pathway producing 2-AG from
PI [4,12,13,15,16,18]. In previous and forthcoming studies, LPI-specific PLC was charac-
terized in various cells and tissues, including porcine platelets [300], fibroblasts [301,302],
glioma cells and astrocytes [301], the brain, and synaptic membranes [303,304]. LPI-specific
PLC was described as an ectoenzyme whose expression level was dramatically increased
upon growth arrest [301,302].

Glycerophosphodiesterases (GDEs) form a large family of highly conserved enzymes
from bacteria to mammalia [305–307]. Whereas mammalian enzymes share with their
bacterial counterparts the ability to hydrolyze glycerophosphodiesters, they display more
diverse substrate specificity. For instance, three members, GDE1 (GDE1 gene), GDE4
(GDPD1 gene), and GDE7 (GDPD3 gene), are also able to hydrolyze acylated forms of glyc-
erophosphodiesters, therefore catalyzing peculiar steps of N-acylethanolamine synthesis,
including anandamide [133–136,308]. GDE3 was first described as a phosphodiesterase
specific for glycerophosphoinositol but, at variance with GDE1, which acts as a PLD-like
enzyme releasing glycerophosphate and inositol, GDE3 displayed a PLC-like activity, thus
liberating glycerol and inositol 1-phosphate [266]. This prompted us to check the possi-
bility that GDE3 might be the LPI-specific PLC previously described. Using exactly the
same methodology as that described previously (i.e., [3H]inositol-labeled LPI as a sub-
strate) [301–304], we found that HEK293T cells transfected with cDNA coding for GDE3
acquired lysoPLC activity displaying the same properties as the enzyme described thirty
years ago: i) GDE3 is expressed in the plasma membrane; ii) it acts as an ectoenzyme; iii)
it displays an optimal pH of 7.4; and iv) it requires mM Ca2+ for full activity [32]. This
behavior is very similar to that already described with [3H]glycerophosphoinositol, in-



Molecules 2024, 29, 3694 24 of 59

cluding the abolition of activity upon R230A mutation and the lack of production of cyclic
inositol-1,2-phosphate, at a variance with classical PLC [32,266]. The activity of GDE3 is
limited to monomeric substrates, corresponding to the physiological concentrations of LPI
reported in the literature. As already mentioned (Table 4), GDE3 was equally active against
1-acyl- and 2-acyl-LPI, but remained inactive on other LPLs (LPC, LPE, LPG, and LPS).
The ectoenzymatic activity of GDE3 is fully coherent with its predicted transmembrane
arrangement which, at a slight variance with initial proposals [305,306,309], contains six
hydrophobic domains and an extracellular glycerophosphodiesterase domain [32,310,311]
(see scheme in Figure 7). This arrangement is shared by two other members of the GDE
family (GDE2 and GDE6). However, we were unable to detect PLC activity of GDE2 [32],
whereas, to the best of our knowledge, GDE6 was never checked for this.

During the preparation of our manuscript [32], Tsutsumi et al. [31], using both
lipidomic analysis and fluorescent substrates, reached the same conclusion with trans-
fected COS-7 cells expressing GDE3. They also detected PLC activity with fluorescent
diacyl-PI bearing a short chain, enabling them to insert in the outer layer of the surface
membrane, as previously used by Ting and Pagano [312,313].

On the other hand, DDHD1, which was first identified as a PA-preferring PLA1 [314],
was found to produce 2-arachidonoyl-LPI under conditions where PA played the role
of a specific activator [315]. In addition, the localization of DDHD1 close to the plasma
membrane (precisely focal adhesions) is regulated by phosphorylation of the protein [316].

Based on these findings, successive actions of DDHD1 and GDE3 can be proposed as
forming the AlterAG-1 pathway, as depicted in Figure 3. Following a previous proposal
concerning 1-acyl-LPI [317,318], this would require the involvement of the ATP-binding
cassette transporter ABCC1 to export 2-arachidonoyl-LPI from the cell interior, rendering
it available to the ectoenzyme GDE3 (see also [319,320] for reviews). Another possibility
might be the cleavage of PI by an extracellular PLA1 such as PLRP2, as we suggested
previously [32]. Whereas the majority of PI and other phosphoinositides seem to be
confined to the cell interior owing to membrane phospholipid asymmetry [75,321–323],
there is growing evidence that phosphoinositides such as PI 3-monophosphate (PI3P),
PIP2, or PI 3,4,5-trisphosphate (PIP3) can also be present in the external leaflet of plasma
membranes [324–327]. In this context, a PLA1 specific for PI3P was recently identified in
Vibrio cholerae [328].

A main advantage of the AlterAG-1 pathway that is shared with the canonical pathway
described in great detail above is the rather high abundance of arachidonic acid occupying
the sn-2 position of PI [20,21]. However, one argument in favor of AlterAG-1 relevance
would be to demonstrate the activity of its two enzymes in vivo.

7.1.2. Signaling Switch between GPR55 and Classical Cannabinoid Receptors

The substrate and product of GDE3 are the ligands of GPR55 and CB1 (or CB2),
respectively. As predicted, we have shown that the expression of GDE3 together with
GPR55 abolished the Ca2+ signal induced by LPI, whereas 2-acyl-LPI promoted the same
inhibition of adenylate cyclase as that evoked by 2-AG in CHO cells expressing both
GDE3 and CB2 [32]. We thus concluded that GDE3 should act as a switch between GPR55
and cannabinoid receptors, as illustrated in Figure 7. The same proposal was made by
Tsutsumi et al. [31], who suggested a possible role of GDE3 in bone remodeling through
the increased expression occurring during osteoblast differentiation [266,309]. However,
in vivo evidence for these suggested functions is still lacking. Furthermore, this might add
a level of complexity to the fact that CB1 or CB2 are able to interact with GPR55, mainly by
forming heteromers [329–339].
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7.1.3. Evidence That GDE3 and DDHD1 Are Functional In Vivo

GDE3 displays its highest expression levels in the spleen, small intestine, skin, bone,
and bone marrow [32,306,340,341]. In contrast to previous detections of LPI-specific PLC
activity in the brain mentioned above [297,303,304], GDE3 expression is much weaker in
mouse brains, resulting in PLC activity about 40-fold lower compared to the spleen [32].
In agreement with the latter result, spleens from GDE3-KO mice displayed a significant
accumulation of various LPI species associated with a decrease in 2-AG compared to wild
type animals, whereas no changes were observed in brains [32]. So, there is at least one
example indicating that GDE3 is active in vivo, giving some strength to the hypothesis of
GDE3 being involved in 2-AG synthesis through the AlterAG-1 pathway.

On the other hand, by comparing DDHD1+/+ and DDHD1−/− mice, Cravatt’s group
observed a significant decrease in the arachidonoyl-LPI level in the brain of mice lacking
DDHD1 and identified PI (and to some extent PS) as the natural substrate of DDHD1 in
the brain [342]. This conclusion is very important when considering that DDHD1 in vitro
activity is actually directed against a number of anionic phospholipids, including PI, PA, PG,
PS, and BMP, as reviewed by Yaginuma et al. [223]. Another striking but still unexplained
finding of this study was the observation that a rather minor species of polyunsaturated
PI (1-oleoyl-2-arachidonoyl-PI) appeared to be specifically degraded by DDHD1, whereas
no significant change occurred in the level of the major molecular species 1-stearoyl-2-
arachidonoyl-PI. Finally, concerning DDHD1 being present in the spleen, probably in
macrophages, it is interesting to note that 1-oleoyl-2-arachidonoyl-PI was increased in the
spleen of DDHD1-KO mice without any decrease in arachidonoyl-LPI, in strong contrast to
the brain. It is tempting to speculate that the high abundance of GDE3 in the spleen could
hide any LPI accumulation, at variance with a healthy brain. Despite some differences in
the data, another study comparing DDHD1+/− and DDHD1−/− fully confirmed the in vivo
activity of this protein as a PI-specific PLA1 [343]. A still more recent study identified a
specific increase in 1-oleoyl-2-arachidonoyl-PI in the plasma or serum of mice or humans
bearing deleterious mutations of DDHD1 [344].
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switch between GPR55 and CB1 or CB2 receptors. In AlterAG-2, LPPs also display an extracellular
catalytic site (green circles), allowing a similar signaling switch between LPA and cannabinoid
receptors. Among possible sources of LPA in AlterAG-2, the implication of mPLA1 (LIPH and LIPI)
is considered the most probable compared to lysoPLD, owing to the preference of ATX for 1-acyl
regioisomers [220] and the intracellular localization of GDE4 and GDE7, although GDE7 has also
been described as an ectoenzyme [345]. In AlterAG-3, ENPP6 is anchored to the membrane by a
glycosyl-PI anchor and allows the conversion of LPC into 2-AG. As not indicated here, ENPP6 is
actually a homodimer with the two 55 kDa subunits being joined by a disulfide bridge [346]. The same
reaction can also be catalyzed by ENPP7, which displays a single-pass transmembrane segment with
a short cytosolic C-terminal end. Moreover, both ENPP6 and ENPP7 can generate soluble forms upon
C-terminal partial proteolysis [262,264,347]. The signaling switch could occur between LPC receptors
GPR82, GPR119, or GPR132 (G2A) and CB1/CB2, but with a number of restrictions discussed
in the text. All the lysophospholipids described in this Figure are considered as 2-arachidonoyl
species. For the sake of clarity, the various pathways leading to their formation are not indicated,
except for LPA. Extracellular (EC) and intracellular (IC) faces of the plasma membrane are indicated.
Abbreviations: 2-AG, 2-arachidonoylglycerol; AlterAG, alternative pathway of 2-AG synthesis; ATX,
autotaxin; CB, cannabinoid receptor; ENPP, ecto-nucleotide pyrophosphatase/phosphodiesterase;
GPR, G-protein-coupled receptor; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; LPI,
lysophosphatidylinositol; PA, phosphatidic acid; GDE, glycerophosphodiesterase; LIPH and LIPI,
lipases H and I; LPP, lipid phosphate phosphatase; mPA-PLA1 (membrane-associated PA-selective
PLA1 (α or β); PI, phosphatidylinositol.

7.1.4. Possible (Patho)physiological Role(s) of GDE3 and DDHD1

Despite the fact that GDE3 is active in vivo, at least in one organ where it displays a
high expression level, the deletion of the GDE3 gene has not yet revealed any functional
defect characterizing a given phenotype of GDE3-KO mice.

In the case of DDHD1, deleterious mutations are responsible for a very rare recessive
hereditary spastic paraplegia, SPG28. Only 13 patients have been diagnosed and reported
in seven publications, which are perfectly summarized in the last study on the subject [348].

From three mouse models of DDHD1 gene deletion published so far [342,343,349],
only one reported behavioral alteration similar to those of SPG28 [343]. Those appeared
only in 24-month-old animals, well after the appearance of metabolic changes related
to DDHD1 deficiency. However, it is unclear whether the EC system is involved in the
pathophysiology of SPG28, which might rather imply structural and functional alterations
of mitochondria [349–352]. DDHD1 could also negatively regulate neurite outgrowth via
the regulation of endosome recycling [353]. Finally, a compound heterozygosity for two
canonical splice mutations in the DDHD1 gene was detected in a male individual with
autism spectrum disease, however, without any obvious relation to a defect in the EC
system [354].

On the other hand, there are preliminary data reporting DDHD1 expression changes
in some colorectal or esophageal cancers [355–358]. Corresponding discussions emphasize
possible relations to the pro-tumorigenic role of the LPI-GPR55 axis, which might also be
involved in tumor infiltration by T lymphocytes [356]. However, there are yet no available
data emphasizing a possible role of GDE3 and AlterAG-1 in cancer.

7.1.5. Other Activities of GDE3

A cutting-edge discovery was the demonstration that GDE2 acted as a PLC on glycosyl-
PI anchors, inducing the shedding of a number of ectocellular proteins from the mem-
brane [359]. Despite some variations between authors, transfected cells co-expressing
GDE2 and glycosyl-PI-anchored proteins allowed for the identification of several sub-
strates, among which were reversion-inducing cysteine-rich protein with Kazal motifs
(RECK) [359,360] and various glypicans, mainly GPC4 and GPC6 [359,361]. These sub-
strates have been validated in vivo using Gde2−/− mice [360,362], and their list has been
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either confirmed or even extended by proteomic data obtained from Alzheimer disease [360]
and amyotrophic lateral sclerosis (ALS) studies [363]. By involving either cell autonomous
or non-autonomous mechanisms, GDE2 was identified as an important factor in embryonic
neuronal [359] and non-neuronal [364] development, neurodifferentiation [361], neurode-
generation [360,362,363,365], and oligodendrocyte development [366,367].

The PLC cleavage of glycosyl-PI has also been recognized for GDE3 [310,359,368]
and GDE6 [359,368]. From a functional point of view, the GDE3-induced shedding of the
urokinase-type plasminogen activator receptor (uPAR) [310] and of the ciliary neurotrophic
factor receptor α (CNTFRα) [311] results in the decreased proliferation of breast cancer
cells and oligodendrocyte precursor cells (OPC), respectively. On the other hand, GDE6,
whose expression appeared to be restricted to testes [305–307,369], is also present in chicken
neural tube and controls its development [370].

From a biochemical point of view, cleavage by GDE-PLCs occurs in cis, i.e., in the
same plasma membrane expressing both enzyme and substrate. In this context, appropriate
trafficking to the plasma membrane of the protein is of crucial importance for proper
function, as shown for GDE2 [371]. In addition, GDEs display very subtle differences
in substrate specificity. For instance, uPAR shedding is promoted by GDE3 but remains
refractory to GDE2 [310]. Again, GDE2 is unable to cleave glycosyl-PI anchors of Tiki
proteins, in contrast to GDE3 and GDE6 [368]. Using homology modeling comparisons,
van Veen et al. [310] provided clear evidence for striking differences in the surface charge
distribution of GDE2 and GDE3, which might explain substrate selectivity.

These very important findings could cast some doubts on the possible role of GDE3 in
the AlterAG-1 pathway. In fact, there are other examples of enzymes displaying different
activities towards various substrates. For instance, cytosolic lysophospholipases LYPLA1-
LYPLA2 (Table 4) are also thioesterases catalyzing the depalmitoylation of heterotrimeric
Gα subunits and Ras proteins [215,216,248], whereas good evidence for a role of LYPLA1
as an extracellular PLA1 involved in the production of LPA during blood coagulation has
been provided [220]. In the same manner, ABHD6 was discovered as a MAGL, but was
also proposed to act as a DAGL as a lysophospholipase against BMP and other anionic
lipids and to control AMPAR receptor trafficking [17,88,227–230].

In the absence of any data concerning GDE6, LPI-PLC activity thus appears as a
unique property of GDE3 compared to GDE2. Another unique property of GDE3 resides in
its capacity to promote the release of a very well-defined class of extracellular vesicles (EVs)
from astrocytes [372]. The EVs are enriched in annexin-1 and GDE3, and the mechanism
of their production involves the interaction of the cytosolic N-terminal end of GDE3 with
actin cytoskeleton via Wiskott–Aldrich syndrome protein family member 3 (WAVE3).
Moreover, GDE3-specific EVs were found to regulate miniature excitatory postsynaptic
current (mEPSCs) amplitudes through an inhibitory action on mGluR1/R5. Interestingly,
the authors suggested that the effects of GDE3-EVs on postsynaptic membranes might
imply either the lysoPI or the glycosyl-PI PLC activity of GDE3 [372].

To close this part devoted to AlterAG-1, there are thus sufficient arguments justifying
the exploration of the possible occurrence of this pathway in physiology and pathophysiol-
ogy. In vivo data on spleen lipidomics and functional studies on astrocytes should justify
further investigations. However, other important sites of GDE3 production such as the
small intestine, skin, bone, and bone marrow could also be worthy of study.

7.2. AlterAG-2
7.2.1. Discovery of AlterAG-2 Pathway

The seminal study describing what we suggest to call AlterAG-2 was published in
2002 by Nakane et al. [148]. They provided evidence that 2-arachidonoyl-LPA (together
with 1-arachidonoyl species, probably upon acyl migration) represented 5.4% of the total
LPA in rat brains. Moreover, they reported the conversion of 2-arachidonoyl-LPA into 2-AG
by rat brain homogenates via a putative phosphatase, whose characterization was just
beginning. Like the PLA1-lysoPLC cascade described above under the name AlterAG-1,
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this pathway was regularly included in a number of reviews where the reverse reaction
catalyzed by a MAG kinase was also mentioned [4,10,12,13,15]. However, the knowledge
on lipid phosphatases available at that time [373] was not included in the field.

7.2.2. Signaling Switch between LPA and Classical Cannabinoid Receptors

As illustrated in Figure 7, there is a great similarity between AlterAG-1 and -2 in
the sense that the last step catalyzed by LPPs also leads to a switch between LPA and
cannabinoid receptors, as already suggested by Nakane et al. [148]. In this case, too,
consequences of this switch might reach an increased level of complexity when considering
the possible formation of heteromers between the two types of receptors, as shown for CB2
and LPA5 [374].

7.2.3. Properties of LPPs

As already discussed in Section 6.3.1, LPPs are lipid phosphate phosphatases with
broad substrate specificity. As recently summarized in one of the most recent reviews
on the subject [259], their structural arrangement involves six transmembrane segments
and a catalytic site formed by three conserved domains (C1 to C3) present in second and
third extracellular loops, also numbered III and V (Figures 7 and 8). LPPs are present
both in the plasma membrane, where they behave as ectoenzymes dephosphorylating the
lipid mediators LPA and S1P, and in the endoplasmic reticulum and Golgi network, where
their catalytic site faces the luminal side, with the PA being the presumed intracellular
substrate [259,375].

Evidence for ectophosphatase activity involving mainly LPP1 and limiting LPA-
induced biological responses was obtained in blood platelets [376,377] at a time where
LPA5 was not yet recognized as a main LPA receptor present in those cells [378]. How-
ever, the inhibition of LPP1 by the mM calcium concentration present in the extracellular
medium still remains somewhat mysterious when extrapolating to in vivo conditions [379].
In fibroblasts, LPP1 reduced LPA-induced cell migration by a dual mechanism involving
not only ectophosphatase activity but also the intracellular hydrolysis of PLD-generated
PA [380,381]. In endothelial cells, LPP3 was found to be specifically located at cell–cell
contact sites, thus restricting the stress fiber formation evoked upon LPA6 activation to non-
contact sites [382]. This provides a mechanism protecting endothelium from the alteration
of its barrier properties caused by circulating LPA.

In vivo evidence for the ectophosphatase activity of LPP1 has been provided by
measuring the increased plasma LPA concentration in hypomorphic mice displaying a low
expression of LPP1 in most organs except the brain [383]. Interestingly, for our purpose,
arachidonoyl-LPA occupied the second rank order among various LPA species detected
in plasma from KO mice. Global postnatal decreases in LPP3 using conditional knockout
under the control of an Mx1 promoter also resulted in increased plasma LPA [384]. On
the other hand, hepatic LPP3 seems to play a key role in the turnover of plasma LPA,
as revealed in mice with the conditional knockout of liver LPP3 [385]. In that case too,
oleoyl-LPA and arachidonoyl-LPA were the most abundant species. Finally, the specific
inactivation of cardiac LPP3 resulted in a three-fold increase in circulating LPA [386]. In
contrast, the overexpression of LPP1 in transgenic mice did not result in a significant
decrease in LPA plasma concentration [387], indicating that the mechanisms regulating
LPA homeostasis might be more complex than anticipated. Moreover, a lack of gross
modifications arising at the level of the whole animal might remain compatible with more
subtle alterations occurring at very specific sites.

7.2.4. (Patho)physiological Roles of LPPs

Despite some differences in the level of individual expression, LPPs are present in
most tissues; however, they do not display redundance from a functional point of view.
For instance, LPP1 and LPP2 knockout do not alter mouse viability [383,388], whereas
LPP3 knockout induces embryonic lethality due to a defect in extraembryonic vasculogene-
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sis [389]. Moreover, in a model of polarized MDCK cells, LPP1 and LPP3 are selectively
addressed to apical and basolateral membrane, respectively, via specific motifs identified
in their sequence [390]. They are also detected in different lipid rafts [391]. Finally, there is
compelling evidence that LPP1 and LPP3, which are decreased in a number of tumors, have
a protective role against tumor development and metastasis, probably by acting on both
extracellular (mainly LPA) and intracellular substrates (for instance PA) (reviewed in [259]).
In contrast, LPP2 might function as a tumor promoter, for still incompletely understood
reasons [259,392]. As another difference, a recent study on breast cancer revealed that LPP1
and LPP3, whose expression is decreased, are mainly present in the tumor microenviron-
ment (endothelial cells and cancer-associated fibroblasts), whereas LPP2 was concentrated
and overexpressed in tumor cells [393].

On the other hand, in line with its role in embryonic vasculogenesis, LPP3 seems
to play a key role in cardiovascular and metabolic diseases [394–397]. This is supported
by several studies based on the conditional knockout of the PLPP3 gene in various ac-
tors involved at various steps of atherosclerosis such as endothelial cells, myeloid cells
(monocytes-macrophages), smooth muscle cells (SMCs), and cardiomyocytes [386,398–400].
One should add liver-specific knockout, resulting in an altered plasma lipid composition
able to worsen atherogenesis in apoE−/− mice [385]. These data are relevant to human
pathology, with PLPP3 being identified as a locus associated with coronary artery disease
susceptibility, as reviewed in [394–396]. In addition, LPP3 expression is reduced in the
human heart and adipose arterioles from patients with coronary artery disease [401]. As to
possible mechanisms, one could recall the protective effect of LPP3 towards the endothelial
barrier mentioned above [382]. A very interesting study reported that LPP3 displays a
mechanosensitive expression under the control of microRNA-92a and transcription factor
KLF2, with decreased expression occurring in response to disturbed flow and contributing
to the altered local protection of endothelium through increases in available LPA [402]. In
addition, LPA accumulated in atherosclerotic plaques was shown to trigger mastocyte-
dependent plaque destabilization [403]. Surprisingly, in contrast to the atherogenic effect
of LPA discussed above, its increase subsequent to LPP3-specific deletion in SMCs protects
from angiotensin II-induced abdominal aortic aneurysm formation, probably by inducing
the dedifferentiation of SMC into a fibroblast-like phenotype [404]. It is also interesting to
note that the local and systemic application of 1-arachidonoyl-LPA promotes atherosclerosis
in a mechanism involving LPA1 and LPA3, whereas stearoyl-LPA remains inactive in the
same model [405]. Whether this could be replied with 2-arachidonoyl-LPA is presently
unknown, but we will now discuss how 2-arachidonoyl-LPA could be produced in the
context of the AlterAG-2 pathway.

7.2.5. PLA1 (LIPH and LIPI) as a Major Pathway of 2-Arachidonoyl-LPA Production

As already discussed in paragraph 6.3.4., while ATX is broadly considered as the
main pathway leading to LPA production, it might not be the privileged route to produce
2-arachidonoyl-LPA owing to its rather high selectivity for 1-acyl LPL species. This might
also be true for other lysoPLDs such as GDE4 and GDE7, so the lysoPLD pathway is
represented with a dotted line in Figure 7.

In contrast, another pathway based on PA-specific PLA1 has also been proposed [273]
and regularly included in other reviews on the EC system [4,12,13,15]. That pathway was
firmly recognized following the discovery of two specific PLA1, mPLA1α and mPLA1β,
also called LIPH and LIPI [202,406–408]. Both enzymes belong to the pancreatic lipase gene
family; they are membrane-associated and display an extracellular localization [223,237].
Both proteins show an affinity for heparin, suggesting that their membrane attachment
might involve binding to heparan sulfate glycans, possibly glypicans [406]. The higher affin-
ity of LIPI compared to LIPH seems to be related to the presence in the former of a region
with higher contents of basic amino acid, similar to that found in other heparin-binding
lipases such as endothelial lipase or lipoprotein lipase [409]. Interestingly, this interaction
with glypicans might explain their specific localization in membrane microdomains (lipid
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rafts) [406], which has also been described for LPPs [391,410,411]. The concentration of
LIPH/LIPI and LPP1/LPP2 in the same membrane microdomains, which also contain
PLD2 [410], might allow strong coupling between the two enzymes of the AlterAG-2 path-
way and their PA precursor. However, as discussed further, another major source of PA as a
substrate of LIPH and LIPI might derive from phosphoinositides via PLC and DAG kinase.

LIPI shows a very selective localization in testes, where it is bound to the “connecting
piece” of sperm, suggesting a specific function in male reproduction [406]. In line with this,
LIPI was identified as a cancer/testes antigen (CTA), i.e., a group of immunogenic proteins
showing predominant expression in gametogenic tissues and cancer and considered as
interesting targets for anti-cancer vaccines [412,413]. It shows an almost exclusive over-
expression in Ewing sarcomas [414]. Surprisingly, a deletion of Lipi exon 10 (ldl locus) in
mice induces hepatic steatosis accompanied by hypertriglyceridemia, in keeping with a
significant but low hepatic expression level [415]. The same study also reported several
human mutations associated with altered plasma triglyceride or HDL cholesterol levels,
suggesting “that mPA-PLA1b or its enzymatic products have a role in the metabolism
in neutral lipids”, as commented by Aoki et al. [237]. A role of LPA in those metabolic
regulations can thus be reasonably suggested, in agreement with data of hepatic LPP3
conditional knockout [385].

LIPH shows a much broader expression profile with the highest levels in the prostate,
testes, ovary, colon, pancreas, kidney, lung, and platelets, but lower levels in the spleen,
brain, and heart [202]. It is overexpressed in a number of cancers with a poor progno-
sis, probably related to the increased LPA production (see, for instance, [416–419]). As
discussed in Paragraph 6.1.5 and reviewed in [273], an obvious function of LIPH is the
specific activation of the LPA6 receptor by 2-acyl-LPA in hair follicles, as revealed by
the homozygous inactivating mutations of either LIPH or LPA3 occurring in recessive
wooly hair/hypotrichosis [204]. This can be reproduced in mice upon the knockout of Liph
gene [420].

LPA production by activated platelets involves numerous enzymes including, among
others, LYPLA1, ATX, and LIPH [220,285,290] (see also [75,421] for reviews). Instead of
the previously suggested sPLA2 [422,423], the pathway leading to the successive forma-
tion of DAG, PA, and LPA through the actions of PIP2-specific PLC, DAG kinase, and
LIPH thus appears as a privileged route ending with 2-arachidonoyl-LPA. It thus seems
logical to consider the possibility of 2-AG production by LPP1 present at the surface of
platelets [376,377]. Although further studies are required to quantitatively evaluate the
contribution of LIPH (or LIPI) to 2-arachidonoyl-LPA synthesis, this pathway is indicated
with a full line in Figure 7.

7.2.6. The Enigmatic and Fascinating Case of LPR-4/PRG-1

In addition to LPP1–3, the integral membrane lipid phosphatase/phosphotransferase
family includes a subfamily of five LPP-related proteins (LPR1 to 5, names of gene LPPR1
to 5), which are also called PRGs (plasticity-related genes) [256,257,424,425]. To limit our
purpose to the field of the present review, we will focus on one isoform (PRG-1 or LPR-4),
which is specifically located in the postsynaptic compartment (“postsynaptic density”) of
glutamatergic excitatory synapses from both the hippocampus [426,427] and cortex [428].

As shown in Figure 8, three main differences with LPPs can be outlined as follows:
i) the presence in PRG-1 of a 400–430 amino acid cytosolic C-terminal end able to bind
calmodulin (CaM) [427] and PP2A protein phosphatase [429], promoting, in the last case,
an LPA-induced increase in spine density as well as the modulation of synaptic plasticity
and spatial memory; ii) two vicinal cysteines (C146–147), whose palmitoylation evoked
by chemical long term potentiation appears to increase the insertion of AMPARs in the
postsynaptic membrane [430]; and iii) the conservation of the three domains C1 to C3
forming the catalytic site, still with at least four point mutations of amino acid residues
previously shown to be absolutely required for LPP1 phosphatase activity [431].
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In contrast to previous conclusions [432,433], there is now a general consensus to admit
that PRG-1 is devoid of lipid phosphatase activity [256,257,424–426,428]. Figure 8 recalls
the mechanism by which LPPs promote the transmembrane transfer of LPA. This process
was previously dissected using short-chain fluorescent PA which is able to intercalate in
the outer monolayer of the cell membrane [434–436], but we infer that the same sequence
of events might apply to LPA itself, since the spontaneous transmembrane movement
of MAG is well established from the example of 2-AG (see various discussions above).
However, the inactive phosphatase PRG-1 is also required for the same transfer to occur, as
shown using either short-chain fluorescent PA [426] or fluorescent LPA [428]. Translocation
activity disappears in neurons from PRG-1−/− mice [426] or in transfected HEK293 cells
upon the mutation of His252 [428], which is thought to be necessary for PA or LPA recogni-
tion by PRG-1. Interestingly, LPA internalization is also accompanied by the intracellular
appearance of its metabolite MAG, in a way very similar to the mechanism involving LPP
depicted in Figure 8. There is no definite explanation allowing the understanding of the
ability of PRG-1 to internalize LPA, which might involve PRG-1-catalyzed translocation,
PRG-1-driven endocytosis, or complementarity with an endogenous LPP. The latter hypoth-
esis could be borrowed from the example of myotubularin 3-phosphatases, whose activity
on PI3P and PI(3,5)P2 can be regulated by association with “dead enzymes” [437,438], as
also described for other pseudoenzymes [439].
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In this context, a single nucleotide polymorphism (SNP) present as a monoallelic 
form in 0.6% of population (representing about 5 million people among European and US 
citizens) introduces a point mutation (R345T) inducing a loss of function of PRG-1 (see 
Figure 8). The electrophysiological exploration of two transgenic models (heterozygous 
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Figure 8. Comparative membrane insertion and functions of LPP and PRG-1. The three domains C1
to C3 forming the catalytic site of LPP (green) are colored in red to indicate the loss of phosphatase
activity occurring in PRG-1 owing to several point mutations. H in domain C2 corresponds to His252,
whose mutation abolishes interactions with LPA. R345T mutation produces a loss of function of PRG-1
by altering cytosolic O-glycosylation of neighboring S346 (as shown in a mouse model involving
homologs R346T and S347A [428,440]. The lipid phosphatase activity of LPP converts LPA into MAG
in the outer half of the plasma membrane. This is followed by the spontaneous translocation of
MAG to the inner layer, allowing its possible reconversion into LPA by MAG kinase activity and the
diffusion of both lipids to other intracellular membranes. The large cytoplasmic domain of PRG-1
was found to interact with CaM [427] and PP2A phosphatase, resulting in the last case in β1-integrin
activation and allowing to maintain spine density [429]. Extracellular (EC) and intracellular (IC) faces
of the plasma membrane are indicated. Abbreviations: CaM, calmodulin; LPA, lysophosphatidic acid;
LPP, lipid phosphate phosphatase; MAG, monoacylglycerol; PP2A, protein phosphatase 2A; PRG1,
plasticity-related gene 1.
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Whatever the precise mechanism, the PRG-1-dependent uptake of LPA contributes
to reducing LPA concentration in the synaptic cleft. As summarized in Figure 9 and as
supported by a series of studies [426,428,441–446], astrocytes stimulated by glutamate via
ionotropic receptors release ATX, resulting in the accumulation of LPA, which increases
the probability of glutamate secretion via presynaptic LPA2 receptor. By removing the
excess of LPA, PRG-1 thus reduces or even suppresses hyperexcitability without altering
basal glutamatergic activity. Within the numerous studies cited above, experimental
models and translational investigations demonstrate the main interest of this regulation in
several pathological states, including psychiatric disorders [428,442–444], epilepsy [447],
aging [445], stroke-induced damages [440], or even hyperphagia [446]. They also open
interesting perspectives about the possible use of ATX or LPA2 inhibitors in those various
pathologies.

In this context, a single nucleotide polymorphism (SNP) present as a monoallelic
form in 0.6% of population (representing about 5 million people among European and US
citizens) introduces a point mutation (R345T) inducing a loss of function of PRG-1 (see
Figure 8). The electrophysiological exploration of two transgenic models (heterozygous
deletion in PRG-1+/− mice [426] or PRG-1R346T mice reproducing the human SNP [428]) as
well as human PRG-1R345T mutation carriers [428,444] provided strong evidence that SNP
significantly altered cortical excitation/inhibition balance.

To come back to 2-AG synthesis, there is an apparent link between PRG-1 and the
EC system, since 2-AG produced by the canonical pathway also contributes to modulate
glutamatergic hyperexcitability (Figure 9). However, a main difference between the two
systems is the absence of LPA2 in GABAergic terminals, where CB1 is also expressed,
giving rise to DSI, in addition to DSE (see Sections 1 and 2).

Another question raised by the comparison of the two pathways concerns the pos-
sible relationship between MAG accumulated in the postsynaptic membrane and 2-AG
produced by the canonical pathway. Both PRG-1 [426] and DAGLα [26–29] are present at
the postsynaptic density of glutamatergic synapses, in interaction or in close proximity
with the scaffold proteins Homer. As already discussed, ATX might not be the best enzyme
to generate 2-arachidonoyl-LPA and indeed oleoyl-LPA rather than arachidonoyl-LPA
accumulates in cerebrospinal fluid (CSF) under conditions (overnight fasting) inducing an
ATX-sensitive increase in cortical excitability [446]. However, the question still remains as to
whether PRG-1-derived MAG and 2-AG are mixing in the same leaflet of the postsynaptic
membrane and why (and how) 2-AG is able to diffuse through the synaptic cleft to reach
CB1, as already discussed at the end of Section 5.

As can also be discussed for the EC system, the role of PRG-1 might not be restricted
to excitatory neurons, since it is also expressed in gastric cancer, promoting peritoneal
metastasis [448] and in vascular smooth muscle cells, where it inhibits LPA-induced cell
migration and proliferation [449]. The discussion of the latter paper is particularly in-
teresting in relation to the role of unsaturated LPA species, including arachidonoyl-LPA,
in atherosclerosis.

Finally, it is our duty to mention that, using either hypoglossal motoneurons [450],
hippocampal CA1 pyramidal neurons [160], or orexin-A-expressing neurons from lateral
hypothalamus [163], two other teams reported that LPA can act as an inhibitory retrograde
messenger at presynaptic terminals in a mechanism involving LPA1 instead of LPA2
receptor. Together with the fact that an LPA1-driven inhibition also seems to be present in
GABAergic terminal [450], these data are contradictory to those summarized in Figure 9.
However, no comments about this obvious discrepancy are found in the corresponding
papers, including a review devoted to glutamatergic transmission [451]. Further studies
are thus needed to explain such differences.
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Figure 9. Regulation of excitation/inhibition balance at glutamatergic synapses by opposite effects of
LPA and 2-AG. Glutamate released from synaptic vesicles activates postsynaptic neurons by interact-
ing mainly with its ionotropic receptors AMPAR and NMDAR, which results in the depolarization of
postsynaptic neurons, allowing Ca2+ influx through NMDAR (as well as voltage-gated Ca2+ channels,
not represented here). In the left part of this Figure, the canonical pathway of 2-AG synthesis (as
described in Figure 1) allows 2-AG to reduce glutamate secretion upon interaction with presynaptic
CB1. In addition, 2-AG can also increase excitability by suppressing inhibitory GABAergic signals
(not represented here). In the right part of this Figure, LPA produced through LPC hydrolysis by
ATX secreted from astrocyte induces hyperexcitability upon binding to presynaptic LPA2 receptor.
However, this effect is counteracted by the removal of LPA from the synaptic cleft by postsynaptic
PRG-1. Thus, both DAGLα (via CB1) and PRG-1 (upon removing pro-excitatory LPA) contribute to
reduce hyperexcitability at glutamatergic synapses. The same localization of DAGLα and PRG-1 in
postsynaptic membrane generates the question of a possible mixing of 2-AG and of MAG produced
as the consequence of LPA internalization by PRG-1 (curved dotted double arrow). Abbreviations:
2-AG, 2-arachidonoylglycerol; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid
receptor; ATX, autotaxin; CB1, cannabinoid receptor 1; DAG, diacylglycerol; DAGLα, DAG lipase
α; LPA, lysophosphatidic acid; LPA2, LPA receptor 2; LPC, lysophosphatidylcholine; NMDAR,
N-methyl-D-aspartate receptor; PIP2, phosphatidylinositol 4,5-bisphosphate; PLCβ1, phospholipase
C-β1; PRG1, plasticity-related gene 1.

7.3. AlterAG-3

A third extracellular pathway able to synthesize 2-AG might be the direct conversion
of 2-arachidonoyl-LPC by PLC. On a theoretical basis, two enzymes, ENPP6 and ENPP7,
could achieve this task, as illustrated in Figure 7. As already mentioned in Paragraph
6.3.3., both proteins are ectoenzymes, with ENPP6 possessing a glycosyl-PI anchor, whereas
ENPP7 displays a single membrane pass with a short cytosolic C-terminal end [260,261].
We speculated that they lack regioselectivity, with LPC remaining a common substrate
within a rather broad list of choline-containing phospholipids. However, in contrast to
AlterAG-1 and -2, there is yet neither in vitro nor in vivo evidence that ENNP6 or 7 could
contribute to 2-AG synthesis.
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7.3.1. Availability of Arachidonoyl-LPC as Substrate of ENPP6 and ENPP7

LPC occurs in plasma from normal human controls in the range of 150–300 µM, with
5–8 µM arachidonoyl-LPC [452–455]. The majority of plasma LPC is secreted by the liver,
with arachidonoyl-LPC being the most abundant [456,457], but 2-acyl-LPC can also be gen-
erated in the intravascular compartment by the PLA1 cleavage of PC by enzymes such as
hepatic lipase and endothelial cell-derived lipase (LIPC and G, respectively) [223,237,458],
or LYPLA1 [220]. The production of 2-arachidonoyl-LPC can occur by additional mech-
anisms in other sites, for instance, upon the chemical degradation of choline plasmalo-
gens by hypochlorous acid generated by myeloperoxidase in atherosclerotic lesions [459].
Among other biological fluids, CSF contains much lower concentrations of LPC [460].
However, LPC is the molecule engaged in the efficient transport of polyunsaturated fatty
acids through the blood–brain barrier via Mfsd2a (major facilitator superfamily domain-
containing protein 2A) [458,461–464]. LPC, together with other LPL, is also present in
significant amounts in peritoneal fluid, as illustrated, for instance, in a model of carcinoma-
tous peritonitis [465].

7.3.2. Present Status of GPCRs Recognizing LPC as Specific Ligand

As for AlterAG-1 and -2, a signaling switch between LPL and cannabinoid receptors
could be suggested, as indicated in Figure 7. However, the situation is not so clear for
LPC receptors belonging to the class of GPCRs. For instance, GPR82 was described as an
apparently constitutively active Gi-coupled receptor recognizing LPC as well as LPE as
inverse agonists. Edelfosine (1-O-octadecyl-2-O-methyl-sn-GPC) was significantly more
potent than 1-oleoyl-LPC [466], but nothing is known about the possible activity of 2-
arachidonoyl-LPC on GPR82.

The best argument for GPR119 as an LPC receptor was the identification of endogenous
LPC in the GPR119-Gs complex observed by cryo-EM [467]. Confirming or preceding
several reports [468–470], LPC was found to activate adenylate cyclase [467], resulting
in a potentiation of insulin release by pancreatic β-cells [468–470]. On the other hand, a
much higher efficiency was obtained with APD668, a clinical drug candidate for type 2
diabetes [467]. In addition, 2-arachidonoyl-LPC was not identified among the molecular
LPC species spontaneously bound to GPR119 [467]. However, as shown by others, GPR118
can bind various other lipidic ligands such as 2-oleoyl-glycerol, N-oleoyl-ethanolamine, or
N-oleoyl-dopamine ([471] and references herein), putting the accent again on oleoyl rather
than arachidonoyl side chain.

The situation is somewhat more confusing with GPR132 (also called G2A), which,
together with GPR4, was initially recognized as an LPC receptor in two papers that were
later retracted. As reviewed in [472,473], GPR132 and GPR4 actually belong to a group of
proton-sensing receptors, with GPR132 regulation involving rather lactate molecules, with
interesting implications in the interaction of macrophages with tumor [474] or apoptotic
cells [475]. However, there is accumulated evidence that LPC exerts various biological
effects in cells expressing GPR4 [476] or GPR132 [477–481], including T cells, macrophages,
neutrophils, and endothelial cells. In line with these in vitro data, GPR132 gene invali-
dation increases susceptibility to late-onset autoimmunity or to atherosclerosis [482,483],
whereas LPC displays protective effects against sepsis [484,485]. One possible mechanism
of LPC interaction with G2A might involve an indirect effect on the membrane [480] and
(or) the redistribution of the receptor by modulating its intracellular trafficking [480,486].
Adding more complexity to the problem, oxidized derivatives of linoleic and arachidonic
acid [487], various N-acylamides [488], or commendamide (3-hydroxy-N-palmitoyl glycine,
produced by human microbiome [489]) are also able to activate GPR132, with a role in
hematopoiesis [490] and type 2 diabetes [491]. There is still an abundance of literature on
G2A/GP132, whose exhaustive description would be out of the scope of the present review.

Finally, both agonistic and antagonistic activities of LPC towards Toll-like receptors
have been described [492] but are not indicated in Figure 7.
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7.3.3. Properties of ENPP6 and ENPP7

The tissue expression of ENPP6 is the highest in the brain, cerebellum, kidney, testes,
prostate, and ovary [493]. Morita et al. [265] provided good evidence for GPC being its
natural substrate, allowing oligodendrocytes to acquire the choline necessary for myelin
biosynthesis. On the other hand, the same ectoenzyme present in epithelial cells from
kidney proximal tubules might allow choline reabsorption from primary urine. Although
poorly expressed in the liver, ENPP6 is still present on the surface of sinusoidal endothelial
cells, allowing choline uptake by hepatocytes. In line with this, Enpp6 gene invalidation
induced fatty liver and demyelination, which are hallmarks of choline deficiency [265]. In
this context, ENPP6 expression in newly forming oligodendrocytes was found to play a
critical role in motor skill learning [494], whereas genetic or proteomic data revealed some
interesting links between ENPP6 and Alzheimer disease [495,496].

ENPP6 is also present in matrix vesicles participating in mineralization. There is
good in vitro and in vivo evidence that a cascade involving PLA2, ENPP6, and PHOS-
PHO1 would generate the inorganic phosphates necessary for mineralization [497,498].
However, it remains to be understood how ectoenzyme ENPP6 and cytosolic phosphatase
PHOSPHO1 (see the preceding discussion in Section 5) might act in concert. This probably
involves specific transporters.

As to ENPP7, it is the only enzyme from the ENPP family able to hydrolyze sphin-
gomyelin and was discovered as alkaline sphingomyelinase [260,261,267–269]. It is located
in the apical membrane of enterocytes [499], from which it can be solubilized upon partial
cleavage by trypsin [347]. Solubilized enzymes acquire higher in vitro activity, suggest-
ing that they might be involved in sphingomyelin digestion, with a membrane-bound
enzyme generating ceramide from mucosal sphingomyelin [347]. However, both forms
are probably involved in sphingomyelin digestion, as clearly demonstrated with ENPP7-
KO mice [500]. The same mouse model allowed the demonstration of a protective role
of ENPP7 against colonic tumorigenesis [499] and dextran sulfate sodium-induced coli-
tis [501], the latter study confirming previous data in rats [502]. As reviewed by Duan [503],
three mechanisms might be involved in the increased susceptibility of ENPP7-KO mice
to cancer and inflammation as follows: decreases in apoptotic ceramide accumulation,
increases in proinflammatory PAF, another substrate of ENPP7 [269], and a lack of LPC
degradation into monoacylglycerol [268], leading to the stimulated production of LPA by
ATX. Although not emphasized in previous studies, the possible production of 2-AG from
2-arachidonoyl-LPC by ENPP7 could also be considered, the latter substrate being poten-
tially produced upon the hydrolysis of dietary PC by PLRP2 [75,214,235–238]. As already
mentioned in Paragraph 7.1.3, GDE3 is highly expressed in enterocytes from the small
intestine [32,305,340,341], although its presence in either apical or basolateral membrane
has not yet been defined. This point would deserve further investigation in order to check
whether the two lysoPLCs (ENPP7 and GDE3) do play, or not, complementary functions in
intestinal 2-AG synthesis.

ENPP7 is also present in the human liver (see [503] for review), and we briefly mention
recent studies describing phenotypic modifications occurring in ENPP7 KO mice, including
intestinal and liver transcriptome [504,505], as well as the homeostasis of intestinal T
lymphocyte populations [506]. Finally, possible links between the ENPP7 gene and type 2
diabetes [507] or gastric cancer [508] were recently reported.

To obtain AlterAG-3, in vivo evidence of its involvement in 2-AG synthesis is still
lacking. The last paragraph below will pay attention to the possible use of ENPP6 and
ENPP7 KO mice, which revealed interesting phenotypes. Lipidomic analysis would thus
be worth performing in order to check the possible involvement of the EC system in the
observed functional modifications.
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8. Concluding Remarks and Potential Future Research Directions

This review thus provides an enormous amount of information, largely wider than
the simple problem of 2-AG synthesis. By linking endocannabinoid to LPL metabolism and
signaling, it extends the already rather complex world of LPL mediators [509]. Obviously,
most of the proposals concerning AlterAG pathways are still hypothetical and require
further investigations, taking advantage of the existence of specific KO mice models such as
those dealing with GDE3, ENPP6, or ENPP7. This has been already performed with LPPs,
but conclusions were mainly, if not exclusively, focused on the possible consequences of LPA
accumulation. In other words, any further investigation should consider the possibility of a
double effect of GDE3, ENPP6, ENPP7, or LPP suppression. We can reasonably predict that,
depending on the case and on the tissue, either increased LPL levels or 2-AG suppression,
or both, might be responsible for the observed functional changes. Any clarification should
involve either pharmacological probes or the use of double-KO mice models (for instance
GDE3 and CB1 (or CB2) double KO, as well as GDE3 and GPR55 double KO).

In addition to the use of mouse transgenic models, which should clarify the potential
pathophysiological functions of AlterAG pathways, this field could take great advantage
of modern imaging methods able to localize 2-AG and LPLs in tissues, for instance, by
mass spectrometry imaging [24,403] or spatiotemporally resolved in vivo imaging using
genetically engineered fluorescent sensors [22,23] (see also [5] for review).

Another striking observation stemming from this survey concerns possible functional
redundancy between LPL and 2-AG signaling. This is, for instance, the case depicted
in Figure 9, where 2-AG synthesis and LPA removal will both contribute to regulating
excitation–inhibition balance at glutamate synapses in a process where the two metabolic
pathways are or not related.

Redundancy was also noted between different activities displayed by the same protein;
this is the case for ABHD6 (MAG but also DAG lipase and lysophospholipase) and LYPLA1
(lysophospholipase, thioesterase, and PLA1). This renders conclusions difficult to draw,
especially when using inhibitors [510], but can correspond to multiple functions of those
enzymes. It is also the case of GDE3 when considering PLC activity towards LPI and
glycosyl-PI anchors.

It is tempting and reasonable to explore functional consequences of GDE3, ENPP6,
or ENPP7 knockout in those tissues displaying the highest expression level of the corre-
sponding enzyme. However, opposite situations might also exist. For instance, GDE3 is
hardly expressed in the lung, while the role of GDE3 present in club cells was revealed in
a model of allergic airway inflammation [511]. Among many possibilities of interesting
studies to develop, we reasonably can expect that the field covered by AlterAG pathways
will provide a number of interesting discoveries in the coming years. One can speculate
that some of these discoveries might reveal the involvement of AlterAG pathways in the
pathophysiology of various diseases already known to imply endocannabinoids and (or)
lysophospholipids, from psychiatric disorders to inflammation, cancer, or cardiovascular
diseases. As an illustration of these possibilities, a study was published just after the
submission of our review, showing that soluble epoxide hydrolase (sEH, gene name Ephx2,
or Abhd20), a cytosolic bifunctional enzyme bearing N-terminal lipid phosphate phos-
phatase and C-terminal epoxide hydrolase activities [512–514], was involved in the balance
between LPA and 2-AG, specifically in the olfactory bulb [515]. This was shown by the
selective genetic deletion of the lipid phosphate phosphatase activity of sEH, resulting
in a depressive-like behavior of mice bearing the mutation [515]. The same approach in
the rat revealed that sEH knock-in prevented obesity and cardiac ischemia–reperfusion
injury [516]. Interestingly, the EPHX2 gene was also recently identified by Mendelian
randomization as a therapeutic target for Alzheimer disease [517]. These unexpected data
are a good example of what can be reached with functional studies on AlterAG pathways.

The latter finding is so important that we included sEH in Figure 2 as the most
probable enzyme achieving the intracellular conversion of 2-arachidonoyl-LPA to 2-AG.
That pathway is somewhat different from AlterAG-2, which displays an extracellular



Molecules 2024, 29, 3694 37 of 59

localization, but the relationship between the two pathways will deserve peculiar attention
in the near future.
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OX-A, orexin-A; OX-1R, orexin receptor 1 PRG1 to 5, plasticity-related genes
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PAF, platelet-activating factor or 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine RECK, reversion-inducing cysteine-rich protein with Kazal motifs
PC, phosphatidylcholine S. nigra, substantia nigra
PE, phosphatidylethanolamine sAC, soluble adenylate cyclase
PG, phosphatidylglycerol sEH, soluble epoxide hydrolase
PHOSPHO1, phosphocholine and phosphoethanolamine phosphatase SMS, sphingomyelin synthase
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