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Abstract: Postbiotics are defined as a preparation of inanimate microorganisms and/or their compo-
nents that confers a health benefit to the host. They range from cell wall fragments to metabolites,
bacterial lysates, extracellular vesicles, and short-chain fatty acids (SCFAs). Postbiotics may influence
carcinogenesis via a variety of mechanisms. They can promote homeostatic immune responses,
reduce inflammation, induce selective cytotoxicity against tumor cells, as well as the enabling the
control of tumor cell proliferation and enhancing intestinal epithelial barrier function. Therefore,
probiotics can serve as an adjunct strategy in anticancer treatment together with chemotherapy and
immunotherapy. Up to now, the only relevant postbiotics used as interventions in oncological patients
remain vitamin K molecules, with few phase-II and III trials available. In fact, postbiotics’ levels
are strictly dependent on the gut microbiota’s composition, which may vary between individuals
and can be altered under different physiological and pathological conditions. Therefore, the lack of
consistent clinical evidence supporting postbiotics’ efficacy is due to their poor bioavailability, short
half-life, and fluctuating levels. Synbiotics, a mixture of prebiotics and probiotics, are expected to
have a more homogeneous bioavailability with respect to postbiotics and may have greater potential
for future development. In this review, we focus on the role of postbiotics as an adjuvant therapy in
cancer treatment.
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1. Introduction

The human gut is home to millions of bacteria and is termed the “gut microbiota”
in reference to this diverse population of organisms [1]. Within the gastrointestinal tract,
the large intestine is the most heavily colonized by bacteria, with 500 different types of
anaerobic bacteria. This human organ contains 1011–1012 bacterial cells per gram [2]. The
interplay of trillions of bacterial, viral, and fungal components allows the gut microbiome to
remain in homeostasis, which is pivotal to the function of the human body, the regulation of
energy, and the body’s overall well-being [3]. Apart from digestion and nutrient absorption,
the microbiome of the gut plays a pivotal role in supporting general health and well-being.
This is maintained through a balance of microbiota which increases the integrity of the gut
barrier and strengthens the immune response [4]. Subsequently, robust immunity prevents
against pathogen invasion.

Dysbiosis, or the dysregulation of the gut microbiota, is the perturbation in function,
composition, and lack of diversity in the microbiome [5]. This disequilibrium can lead to
chronic inflammation and impact gut permeability, resulting in increased susceptibility
to health conditions such as type 2 diabetes, irritable bowel disease, Parkinson’s disease,
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and cardiovascular diseases [6]. Alterations made in the gut microbiota are due to diet,
lifestyle changes, genetics, psychological states, prebiotics, pharmaceutical treatments, and
postbiotics [7].

Specifically, postbiotics are products with a low molecular weight which are fragments
resulting from the fermentation process of intestinal live bacteria. Postbiotics are believed
to contribute to various health benefits similar to probiotics, such as supporting gut health,
modulating the immune system, and potentially influencing metabolic processes [8,9]. In
comparison to probiotics, which include live microorganisms, postbiotics do not contain live
bacteria. They also have clear chemical structures, safety dose regulations, and a long shelf
life, providing the required stability for use in certain food products and supplements [10].
Research has shown that postbiotics have effective absorption, metabolism, and excretion
features, indicating their high capacity to signal different organs and tissues in the host,
thus eliciting several biological and physiological responses [11].

Recently, evidence has shown that postbiotics have the ability to strengthen and fortify
gut microbiomes, and potentially serve as an oncological therapeutic plan [12]. In this
review, we synthesize the collected data to provide a coherent analysis conveying an
understanding of postbiotics, their features, and their potential benefits as an adjuvant
therapy in the management of cancer patients.

2. Materials and Methods

The authors conducted an electronic search across the PubMed, Medline, C Google
Scholar, and Embase library databases for peer-reviewed articles and reviews published
after the year 2000. The following MeSH terms were used: probiotics, cancer, postbiotics,
microbiome, cancer therapy, short-chain fatty acids, extra-cellular vesicles, AND models.
Case reports were excluded. The results were further screened by title and abstract for
studies performed in rodents and humans, at which time full-text articles in English
language were screened for eligibility.

3. Prebiotics, Probiotics, and Postbiotics: An Overview

In the realm of gut health and overall well-being, prebiotics, probiotics, and postbiotics
play crucial roles [13]. These terms are often used interchangeably, but even though all
three can be taken through the diet or supplementation, they represent distinct concepts
with diverse impacts on human health.

Prebiotics are substances that the human digestive system is unable to digest and
which are therefore, when remaining in the intestinal lumen, metabolized by the beneficial
bacteria of the intestine and promote their growth and activity [14]. Essentially, they serve
as food for probiotics, helping them to thrive and carry out their beneficial functions [15].
Common prebiotics include nondigestible polysaccharides such as inulin, oligosaccharides,
fructooligosaccharides, and galactooligosaccharides [16]. The healthiest, most common and
easiest way to take prebiotics is through the diet. Only in some cases where, due to specific
pathological conditions, the individual is unable to satisfy his fiber needs may supplements
be used [17]. Prebiotics can be useful for keeping the intestinal microbiota healthy and
therefore regulating digestion, and also for supporting the immune system [18]. Prebiotics,
however, are not recommended in cases of IBS (irritable bowel syndrome) and in cases of
lactose intolerance [19]. Probiotics are live microorganisms, typically strains of bacteria
or yeasts, that manage to reach the intestine still alive and active, and they offer health
benefits as they create a balance in the intestinal microflora when consumed in adequate
amounts [20]. Common probiotics include Lactobacillus and Bifidobacterium. They are
found in fermented foods and in supplement form [21].

Probiotics can be easily consumed in food, making sure to include fermented foods
such as yogurt and kefir in the diet [22]. Natural food is always preferable to taking probi-
otics, but in cases where this is not possible or after and during antibiotic therapies which
are very harmful to the microbiota, it is recommended to take them via supplements [23].
Probiotics can help to restore the balance of the intestinal flora which can be altered due to
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unbalanced diets, drug therapies, or certain types of pathologies. Their consumption can
improve digestion [24], strengthen the immune system [25], and even positively influence
mental health [26]. They have no contraindications for those suffering from irritable bowel
syndrome or lactose intolerance; on the contrary, they can help to reduce the symptoms of
these problems [27].

Postbiotics are a preparation of inanimate microorganisms and/or their components
that confers a health benefit to the host [8,28]. These may include substances such as
organic acids, enzymes, peptides, and polysaccharides that are produced during the fer-
mentation process. Postbiotics are present in fermented foods but can also be taken via
supplements. They can offer similar benefits to probiotics but without the need to introduce
live microorganisms into the gut [29].

In conclusion, while prebiotics, probiotics, and postbiotics work together to promote
gut health, each has a unique role and offers distinct benefits, as described in Table 1.
Incorporating all three into the diet can help to maintain a healthy balance of the gut flora
and promote overall well-being.

Table 1. This is a comparative table outlining the features of prebiotics, probiotics, and postbiotics.

Characteristics Prebiotics Probiotics Postbiotics

Origin Nondigestible fibers Live microorganisms Inanimate, dead or inactivated
microorganisms

Sources Vegetables and fruits Yogurt, kefir, kimchi, miso, tempeh Kefir, kombucha, yogurt, miso,
tempeh, kimchi, butter

Primary Role Provide nourishment to
probiotics

Improve digestion, strengthen the
immune system and positively
influence mental health

Offer similar benefits of probiotic
without the introduction of live
microorganisms

4. Types of Postbiotics

Postbiotics range from cell wall fragments to metabolites, bacterial lysates, extracel-
lular vesicles, and short-chain fatty acids (SCFAs). They are classified by their chemical
composition, origin, and functional properties [30] (Figure 1).
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Figure 1. Factors that modify the gut microbiome, including the various types of postbiotics. Our own
elaboration based on the data in [8,11–13]. This figure was created using Biorender.com (accessed on
1 July 2024).

Short-Chain Fatty Acids (SCFAs): SCFAs are organic acids with a carbon chain length
of six carbons or less [31]. They are the main metabolites created by intestinal bacteria
during the fermentation of plant polysaccharides. Common SCFAs include acetic, propionic,
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and butyric acids, which can form the fatty acid salts acetate, propionate, and butyrate,
respectively [32]. SCFAs are vital in sustaining and maintaining gut health, regulating
immune responses, and metabolism. Specifically, butyrate is an energy source used mainly
by enterocytes to regenerate and revive the intestinal epithelium, and has also been shown
to have immunosuppressive characteristics [33]. This specific SCFA also regulates gene
expression through the suppression of histone deacetylases [34].

Bacterial Cell Wall Components: Bacterial cell wall components include the compo-
nents of bacterial cells such as peptidoglycans, lipopolysaccharides cell surface proteins,
and nucleic acids which interact with the host immune system to regulate immune re-
sponses [35]. Bacterial lipoteichoic acid (LTA) is an immunogenic component of the cell
walls of Gram-positive bacteria [36]. LTA has demonstrated immunostimulatory properties
such as inducing a reduction in IL12 production and the production of cytokines with
immunoregulatory activity [37]. Studies have shown LTA to be beneficial in treating skin
infections. The topical use of LTA increases barrier defense mechanisms and the release of
peptides such as human β-defensin and cathelicidin prevents infections [38].

Bacterial lysates (BLs): BLs are soluble substances that are released during the degra-
dation of Gram-positive and Gram-negative bacteria during bacterial cell lysis [39]. Lysates
have been beneficial in decreased inflammatory diseases like ulcerative colitis and Crohn’s
disease [40]. They replenish the gut microbiome, strengthen intestinal barrier integrity,
control immune responses, regulate immune cells functions, and decrease the growth of
pathogens [41].

Metabolites: The gut microbiota consists of a variety of molecules such as vitamins,
enzymes, and bioactive compounds. Vitamins, in particular, have a high bioavailability
with antioxidant properties which aid in host–microbome interaction [42]. Folate is taken
up by the colon and is vital for physiological processes and is incorporated in the host tissue
for DNA replication, repair and methylation [43]. Intestinally produced folate delivers a
beneficial systemic function. Studies have shown those living in countries with fortification
folate in their foods had a decreased risk of stroke compared to the controls [44]. Enzymes
also possess defense mechanisms in protecting proteins, nucleic acids, and lipids against
oxidative stress [45]. Antioxidant enzymes such as superoxide dismutase, glutathione
peroxidase, NADH-oxidase, peroxide dismutase, and catalase help to protect organs and
tissues from reactive oxygen species. Lactobacillus lactis is a postbiotic enzyme expresses
catalase which has been shown to inhibit the metastasis of colon cancer, while L. plantarum
postbiotics have been observed to increase concentrations of glutathione peroxidase in
serum [46].

Extracellular vesicles (EVs): EVs are produced by the intestinal microbiota and are
membrane-bound vesicles, lipid bilayers containing proteins, lipids, nucleic acids, and
metabolites [47]. EVs are dependent upon the type of bacteria. Gram-negative bacteria
produce larger (20–200 nm) outer membrane vesicles (OMV) and are more intricate in
structure than those released by Gram-positive bacteria [48]. Lactobacillus spp. are types of
bacteria which form extracellular vesicles that have characteristics and properties that aid
in the prevention of the formation of tumors [49]. With regard to colorectal cancer, specific
Lactobacillus species—L. casei, L. rhamnosus GG, and L. acidophilus—have been studied to
reveal their therapeutic anti-cancer effects, probably through the help of EVs due to the
DNA and proteins encompassing these vesicles [50].

5. Role of Postbiotics in Gut Microbiotic Health and Cancer Microbiotic Health

Studies have shown that in disease states including cancer, there is a decrease in
beneficial bacteria—Bifidobacterium, Lactobacillus, and Bacteroides—and an increase in proin-
flammatory bacteria—Escherichia coli, and Clostridium difficile [29]. In the development of
colorectal cancer (CRC), an abundance of toxic, opportunistic bacteria such as Bacteroides
fragilis, Enterococcus faecalis, and Streptococcus gallolyticus are found in patients. The intesti-
nal microbiota aids in cancer progression by damaging the mucosal barrier, influencing the
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cell cycle of cancer cells, promoting DNA damage, inducing inflammatory reactions, and
inducing gene mutations [51].

Various postbiotics can selectively induce apoptosis in CRC, inhibit cellular prolifera-
tion, growth, and migration, and modulate the immune system. They can also go beyond
suppressing carcinogenic signaling pathways, maintaining intestinal epithelial integrity
and having a synergistic effect with chemotherapy drugs [52].

Consequently, postbiotics and their bioactive derivatives have a plethora of bene-
fits, such as therapeutic effects on gastrointestinal physiology, immunoregulating effects,
and anticarcinogenic effects, as well as enhancing cancer therapies [7]. Overall, these
metabolites have shown improvement in colon, gastric, hematologic, breast, and cervical
cancers [53]. Clinically, postbiotics and their derivatives, paired with cancer therapies,
result in the creation and maintenance of beneficial bacteria in the patients, aid in the
recovery after cancer surgery, and help to prevent surgical infection after cancer surgery,
thereby decreasing hospital stay [54]. Postbiotics have also been shown to prevent the
side-effects of traditional cancer drugs such as vomiting and diarrhea.

5.1. Colorectal Cancer

The gut microbiota has implications in the development of tumors in the host [55].
Gastrointestinal cancers, such as colorectal cancer, are caused by dysregulation of the
intestinal bacteria and the proliferation of bacteria such as Helicobacter (H.) pylori, Streptococ-
cus (S.) bovis, and Enterococcus [56]. Dysbiosis of these pathogens induces tumor growth
and influences the immune system through releasing toxins and the promotion of several
pathways. With regard to gastric cancer, it was seen that a Lactobacillus paracasei GMNL-133
(SGMNL-133) isolate enhanced therapeutic efficacy [57]. This was seen through anticarcino-
genic mechanisms such as intestinal microbiota proliferation, immunoregulation, decreased
levels of inflammation, and the activation of antitumorigenic substances [58].

5.2. Breast Cancer

Lactobacillus and Lactococcus species are found in abundance in healthy breast tissue in
comparison to tissues with breast cancer [59]. In a study conducted by Wasiak et al., the
influence of lactic acid bacteria (LAB)-derived postbiotics on the growth, expansion and
influence of the cell cycle of breast cancer cells was studied. In their findings, postbiotics
were shown to trigger apoptosis, with little influence on normal cell survival. In addition,
the cytotoxic effect of tamoxifen was heightened, leading to a reduction in proliferation,
suggesting that these agents can be used in combination with synthetic drugs. [60].

5.3. Gastric Cancer

Gastric cancer has routinely been treated with chemotherapy. However, this avenue
of treatment can lead to gastrointestinal dysfunction, which can consequently limit the
medication dose, lead to treatment discontinuation, and create life-threatening risks [57].
Recently, interest has been directed at the anticancer characteristics of postbiotics in relation
to gastric cancer. Treatment with lysate extracts of L. paracasei significantly reduced the
potency of gastric cancer cells [61]. This sheds light on the role that microbes have in
cancer physiology. It was found that the active segments of postbiotic compounds in the
range between 50 and 100 kDa and >100 kDa had the most effective tumor-inhibitory
properties [57].

5.4. Cervical Cancer

SCFAs and other postbiotic metabolites from Lactobacillus keep the vaginal pH low and
thus help to keep pathogens involved in cervical cancer and carcinoma in situ [62]. Linoleic
acid released from bacterial metabolism influences gene expression and the expression of
growth factors which modulate cell proliferation, differentiation, and maintenance [63]. In
addition, butyric acid has also been found to decrease cervical cancer growth by interfer-
ing with cancer cell metabolism and through the promotion of cell cycle arrest. Butyric
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acid functions as an inhibitor of histone deacetylase, thus limiting the severity of cancer
progression [64].

5.5. Leukemia

Postbiotics have shown anticancer potential with regard to leukemia [65]. The inhi-
bition of the human leukemia cell line HL-60 was seen after a kimchi extract containing
postbiotics was applied. It was found that the increased level of ornithine in kimchi was
effective in suppressing the growth of cancer cells [66].

LAB displayed anti-tumor growth through the activation of apoptosis, cell cycle arrest,
and antimutagenic effects. LAB-regulated immune reactions occur through tryptophan
metabolism and the antioxidant properties of folic acid [67]. In an experiment, six strains
of Lactobacillus plantarum were applied to different human leukemia cell lines [68]. It was
found that bacteria metabolites expressed exclusive time- and dose dependent cytotoxic
effects on these cells without impacting normal cells.

6. Mechanism of Action of Postbiotics in Cancer

Postbiotics influence a variety of physiological processes in the host, leading to
health-promoting outcomes [69]. In 2024, the very first report showcasing the benefi-
cial effects of heat killed Lacticaseibacillus paracasei MCC1849 on human immune cells was
published [70]. This randomized, double-blind, placebo-controlled, parallel-group study
involved 100 healthy adults randomly assigned to either the MCC1849 or placebo group.
Participants consumed a test powder containing 5 × 1010 MCC1849 cells or a placebo
powder for 4 weeks. The results revealed that the ingestion of MCC1849 activated periph-
eral dendritic cells (DCs) and maintained the expression levels of IFN-α, β, and γ under
infection-like conditions.

Microbial-derived metabolites exert anti-inflammatory effects by generating anti-
inflammatory molecules. Bioactive compounds secreted by L. acidophilus and L. rhamnosus
GG (LGG) reduced the levels of MMP-9, decreased CD147 expression, and increased
TIMP-1 expression in an inflammatory macrophage model in vitro [71]. Additionally,
peptides from the 3–10 kDa IP fraction of S. thermophilus demonstrated anti-inflammatory
properties by modulating proinflammatory mediators like IL-1β in LPS-stimulated THP1
macrophages [72].

Postbiotics are able to enhance the integrity of the intestinal barrier, decreasing the
passage of harmful substances and potential carcinogens into the systemic circulation.
Indeed, postbiotics have the potential to influence the production of mucus by stimulating
goblet cells, specialized cells responsible for mucus secretion in the gut [73]. Moreover, after
ethanol exposure, oral tributyrin preserved the expression of E. Cadherin and ZO-1, essen-
tial for the integrity of the small intestinal barrier. Tributyrin also reduced endotoxemia,
accompanied by the promotion of immune tolerance in DCs within the small intestinal
lamina propria and the nonactivation of intestinal microvascular endothelial cells [74].

Finally, postbiotics influence host metabolism by modulating gut microbiota composi-
tion and activity. They can selectively stimulate the growth of beneficial bacteria in the gut,
leading to the production of short-chain fatty acids (SCFAs), such as acetate, propionate,
and butyrate [75], which serve as energy sources for intestinal epithelial cells and can also
be absorbed into systemic circulation, where they exert systemic effects on metabolism [76].
Butyrate, in particular, has been shown to enhance mitochondrial function and promote
fatty acid oxidation in peripheral tissues, improving lipid metabolism. Additionally, SC-
FAs influence the secretion of gut hormones involved in regulating appetite and glucose
metabolism, such as peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), contribut-
ing to glucose homeostasis [77,78]. Aside from these general mechanisms, postbiotics
demonstrate specific actions directly affecting cancer cells as demonstrated in Figure 2.
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Figure 2. Mechanisms by which postbiotics enhance the effectiveness of chemotherapy and im-
munotherapy in cancer care. This figure illustrates several actions of postbiotics: (1) increasing
tumor cell cytotoxicity by enhancing caspase activity, thereby promoting apoptosis in cancer cells;
(2) immune modulation by reducing proinflammatory cytokines, contributing to a more balanced
immune response; (3) controlling tumor proliferation by inducing apoptosis through the production
of reactive oxygen species (ROS); (4) strengthening barrier function by increasing mucin production
and tight junction protein expression, reducing the passage of potential carcinogens into the systemic
circulation; and (5) increasing the effectiveness of standard chemotherapy and immunotherapy
by sensitizing cancer cells to these treatments or by regulating immune responses to enhance an-
titumor activity. These complex mechanisms highlight the potential of postbiotics as adjuncts in
cancer therapies.

Nowak and colleagues investigated the antiproliferative effects of post-fermentation
media (PFM) and cell extracts (CEs) from various strains of lactic acid bacteria on Caco-2
and HeLa cells. They found that both PFM and CEs induced oxidative stress in Caco-2
cells by increasing hydrogen peroxide production and ROS levels. Additionally, PFM from
L. plantarum 0991 and L. brevis 0983 triggered apoptosis, as evidenced by the activity of
caspases 3/7 and 9, indicating the potential involvement of the mitochondrial signaling
pathway, possibly leading to late apoptosis or necrosis [79]. Similar results were also
observed in several cancer cell lines, including the human breast cancer cells MCF-7, the
colorectal cancer cells HT-29, the liver cancer cells Hep-G2, and the leukemia cells HL60
and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and Lactobacillus
plantarum [68,80].

Postbiotics reshape the tumor microenvironment by modulating immune responses.
A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G
postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a signifi-
cant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. Notably,
there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio in the
peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a superior
quality of life and nutritional status, along with reduced depression symptoms, a lower
incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, and asthenia
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compared to the control group. Furthermore, JK5G supplementation mitigated the gut
microbiota imbalance by increasing the levels of beneficial bacteria such as Faecalibacterium
and Ruminococcaceae and reducing the levels of Escherichia-Shigella.

Finally, microbial-derived products improve the effectiveness of standard chemother-
apy and immunotherapy by sensitizing cancer cells to these treatments or by regulating
immune responses to enhance antitumor activity. Extracellular vesicles derived from LGG
improved anti-PD-1 immunotherapy efficacy against colorectal cancer by increasing the
CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC
II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, significant
changes occurred in the levels of serum metabolites linked to the microbiota, contributing
to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle formulation
encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This innovative approach
safeguarded SGMNL-133 from gastric acid degradation, facilitated its passage through
the mucus layer, and promoted interaction with gastric cancer cells. Moreover, in vivo
experiments demonstrated that encapsulating SGMNL-133 in nanoparticles significantly
enhanced its efficacy in treating orthotopic gastric tumors while concurrently reducing
tissue inflammation levels [57].

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical and
Clinical Studies

Recently, the research interest has been focused on the action of the gut microbiota
and its metabolites and, therefore, its potential benefits in preventing cancer, improving
oncological treatments and preventing their side effects.

A wide range of studies have investigated the effects of postbiotics on cell lines and
mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated
microbes, their fragments, and their molecules have been studied in order to identify
possible benefits [83]. In particular, evidence has led investigators to focus on molecules
such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids
(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors
are summarized in Table 2.

Table 2. Postbiotics used in preclinical studies.

Postbiotic
Used

Type of
Study

Bacterial
Source Type of Cancer Up/Down Antitumor Activity

Li et al., 2019
[85]

LPS In vitro
Helicobacter

pylori

Gastric cancer cell
lines (SGC7901,
BGC823, others)
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Lactobacillus plantarum [68,80]. 
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and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 
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Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 
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possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 
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Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

Proliferation
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 
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Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  

Source 
Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

Migration

Arabzadeh
et al., 2016

[86]

LTA
LPS

In vitro - Ovarian cancer cell
(SKOV-3 cell line)
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[87] 

Lactobacillus aci-

dophilus 

 
HO-1 

 
HIF-2α 

 
PAI-1 

 
VEGF 

 
HIF-1α 

Hattar et al., 2017 

[88] 
LTA In vitro 

Staphylococcus  

Aureus 

Colorectal cancer  

(HCT-116 cell line) 

 
Apoptosis 

 
Adhesion 

 
Migration 

Xie et al., 2012 

[89] 

LTA  

+ 

5-fluorouracil 

In vivo Bifidobacterium 
Hepatoma-22 cells inoculated 

in mice  

 

Tumor  

growth 

 

T lymphocyte  

proliferation 

 

IFN-gamma 

regulatory 

 
T-cells 

 
TIM-3 

 FOXP3 

Sadeghi et al., 2020 

[90] 
Beta-Glucan In vitro Candida Albicans Lung cancer cells  

SOX2 

 
OCT4 

Luo et al., 2019 

[91] 
Sodium Butyrate In vitro - 

Colorectal cancer cells 

(HCT-116 cell line) 

 
Autophagy 

 
Autolysosomes 

 
AMP kinase 

 
LKB1 

Watkins et al., 1999 

[92] 
Sodium Butyrate In vitro - Hep G2 cells 

 

Histone H4  

Acetylation 

 

DNA 

Fragmentation 

EPS: exopolysaccharides; FOXP3: forkhead box P3; HIF-1α: hypoxia-inducible factor-1α; HIF-2α: 

hypoxia-inducible factor-2α; HO-1: hemeoxygenase-1; IFN: interferon; LKB1: liver kinase B1; LPS: 

lipopolysaccharides; LTA: lipoteichoic acid; OCT4: octamer-binding transcription factor 4; PAI-1: 

plasminogen activator inhibitor-1; SOX2: sex determining region Y-box 2; TIM-3: T-cell 

immunoglobulin and mucin domain 3; TIMP-3: tissue inhibitor of metalloproteinases-3; VEGF: 

vascular endothelial growth factor; Wnt5A: wingless-related MMTV integration site; ROR2: 

Receptor tyrosine kinase-like orphan receptor 2. Green arrow—increase, red arrow—decrease. 

Concerning clinical trials in human beings, postbiotics as strictly defined in the 

literature have been tested in only a few studies. However, if we consider microbially 

purified molecules derived from inactivated bacteria, these have been more extensively 

used in interventional studies in oncological patients. In this regard, vitamin K molecules 

are the only postbiotics largely found in the gut rather than in the nutritional intake and 

used in oncological clinical trials, although this has led to mixed results. Indeed, results in 

prostatic cancer trials are largely disappointing [93], but promising results have been 

shown in hepatocellular cancer studies [94]. The latter study was a randomized phase II 

trial, performed on 38 patients assuming sorafenib, and showed better progression-free 

survival (PFS) and objective response rate (ORR) in patients assuming phylloquinone and 

menoquinone, concomitantly. However, the overall survival (OS) and disease control rate 

remained not significative and post hoc analyses suggested that the patients who really 

benefited from the supplementation were only those belonging to the subgroup with a 

radiological response. 

Cell viability
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  
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Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

Inflammation
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 
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Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 
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Gastric cancer cell lines 

(SGC7901, BGC823, others) 
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Arabzadeh et al., 
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[86] 

LTA 
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In vitro - 
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cell line) 
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Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

Cell invasion
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 
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and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 
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Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
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Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

Wnt5A–ROR2
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Deepak et al.,
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EPS In vitro
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acidophilus Colon cancer cells
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 
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and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 
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Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
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Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

TIMP-3
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 
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Study 

Bacterial  
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Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
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Migration 

Arabzadeh et al., 

2016 
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LTA 
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In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 
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Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

HO-1
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  

Source 
Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

HIF-2α
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Concerning clinical trials in human beings, postbiotics as strictly defined in the 

literature have been tested in only a few studies. However, if we consider microbially 

purified molecules derived from inactivated bacteria, these have been more extensively 

used in interventional studies in oncological patients. In this regard, vitamin K molecules 

are the only postbiotics largely found in the gut rather than in the nutritional intake and 

used in oncological clinical trials, although this has led to mixed results. Indeed, results in 

prostatic cancer trials are largely disappointing [93], but promising results have been 

shown in hepatocellular cancer studies [94]. The latter study was a randomized phase II 

trial, performed on 38 patients assuming sorafenib, and showed better progression-free 

survival (PFS) and objective response rate (ORR) in patients assuming phylloquinone and 

menoquinone, concomitantly. However, the overall survival (OS) and disease control rate 

remained not significative and post hoc analyses suggested that the patients who really 

benefited from the supplementation were only those belonging to the subgroup with a 

radiological response. 
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Table 2. Cont.

Postbiotic
Used

Type of
Study

Bacterial
Source Type of Cancer Up/Down Antitumor Activity

Hattar et al.,
2017
[88]

LTA In vitro Staphylococcus
aureus

Colorectal cancer
(HCT-116 cell line)
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A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  

Source 
Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

IFN-gamma
regulatory
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[87] 

Lactobacillus aci-

dophilus 

 
HO-1 

 
HIF-2α 

 
PAI-1 

 
VEGF 

 
HIF-1α 

Hattar et al., 2017 

[88] 
LTA In vitro 

Staphylococcus  

Aureus 

Colorectal cancer  

(HCT-116 cell line) 

 
Apoptosis 

 
Adhesion 

 
Migration 

Xie et al., 2012 

[89] 

LTA  

+ 

5-fluorouracil 

In vivo Bifidobacterium 
Hepatoma-22 cells inoculated 

in mice  

 

Tumor  

growth 

 

T lymphocyte  

proliferation 

 

IFN-gamma 

regulatory 

 
T-cells 

 
TIM-3 

 FOXP3 

Sadeghi et al., 2020 

[90] 
Beta-Glucan In vitro Candida Albicans Lung cancer cells  

SOX2 

 
OCT4 

Luo et al., 2019 

[91] 
Sodium Butyrate In vitro - 

Colorectal cancer cells 

(HCT-116 cell line) 

 
Autophagy 

 
Autolysosomes 

 
AMP kinase 

 
LKB1 

Watkins et al., 1999 

[92] 
Sodium Butyrate In vitro - Hep G2 cells 

 

Histone H4  

Acetylation 

 

DNA 

Fragmentation 

EPS: exopolysaccharides; FOXP3: forkhead box P3; HIF-1α: hypoxia-inducible factor-1α; HIF-2α: 

hypoxia-inducible factor-2α; HO-1: hemeoxygenase-1; IFN: interferon; LKB1: liver kinase B1; LPS: 

lipopolysaccharides; LTA: lipoteichoic acid; OCT4: octamer-binding transcription factor 4; PAI-1: 

plasminogen activator inhibitor-1; SOX2: sex determining region Y-box 2; TIM-3: T-cell 

immunoglobulin and mucin domain 3; TIMP-3: tissue inhibitor of metalloproteinases-3; VEGF: 

vascular endothelial growth factor; Wnt5A: wingless-related MMTV integration site; ROR2: 

Receptor tyrosine kinase-like orphan receptor 2. Green arrow—increase, red arrow—decrease. 

Concerning clinical trials in human beings, postbiotics as strictly defined in the 

literature have been tested in only a few studies. However, if we consider microbially 

purified molecules derived from inactivated bacteria, these have been more extensively 

used in interventional studies in oncological patients. In this regard, vitamin K molecules 

are the only postbiotics largely found in the gut rather than in the nutritional intake and 

used in oncological clinical trials, although this has led to mixed results. Indeed, results in 

prostatic cancer trials are largely disappointing [93], but promising results have been 

shown in hepatocellular cancer studies [94]. The latter study was a randomized phase II 

trial, performed on 38 patients assuming sorafenib, and showed better progression-free 

survival (PFS) and objective response rate (ORR) in patients assuming phylloquinone and 

menoquinone, concomitantly. However, the overall survival (OS) and disease control rate 

remained not significative and post hoc analyses suggested that the patients who really 

benefited from the supplementation were only those belonging to the subgroup with a 

radiological response. 

T-cells
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  

Source 
Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

TIM-3
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  

Source 
Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

FOXP3

Sadeghi et al.,
2020
[90]

Beta-Glucan In vitro Candida
albicans

Lung cancer cells
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  

Source 
Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

SOX2
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  

Source 
Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

OCT4

Luo et al., 2019
[91]

Sodium
Butyrate In vitro -

Colorectal cancer
cells

(HCT-116 cell line)
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  

Source 
Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

Autophagy
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 

ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Moreover, 

significant changes occurred in the levels of serum metabolites linked to the microbiota, 

contributing to antitumor effects [82]. Huang HL et al. tested a potential nanoparticle 

formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 isolate. This 

innovative approach safeguarded SGMNL-133 from gastric acid degradation, facilitated 

its passage through the mucus layer, and promoted interaction with gastric cancer cells. 

Moreover, in vivo experiments demonstrated that encapsulating SGMNL-133 in 

nanoparticles significantly enhanced its efficacy in treating orthotopic gastric tumors 

while concurrently reducing tissue inflammation levels [57]. 

7. Prebiotics, Postbiotics, and Purified Macromolecules for Cancer Care—Preclinical 

and Clinical Studies 

Recently, the research interest has been focused on the action of the gut microbiota 

and its metabolites and, therefore, its potential benefits in preventing cancer, improving 

oncological treatments and preventing their side effects. 

A wide range of studies have investigated the effects of postbiotics on cell lines and 

mice in preclinical studies; indeed, according to the definition of postbiotics, inactivated 

microbes, their fragments, and their molecules have been studied in order to identify 

possible benefits [83]. In particular, evidence has led investigators to focus on molecules 

such as lipotheicoic acid (LTA), lypopopysaccharides (LPS), and short-chain fatty acids 

(SCFAs) inducing antitumoral effects [84]. Pieces of evidence provided by several authors 

are summarized in Table 2. 

Table 2. Postbiotics used in preclinical studies. 

 Postbiotic Used 
Type of 

Study 

Bacterial  

Source 
Type of Cancer  Antitumor Activity 

Li et al., 2019  

[85] 
LPS In vitro Helicobacter Pylori 

Gastric cancer cell lines 

(SGC7901, BGC823, others) 
 

Proliferation  

 
Migration 

Arabzadeh et al., 

2016 

[86] 

LTA 

LPS 
In vitro - 

Ovarian cancer cell (SKOV-3 

cell line) 

 
Cell viability 

 
Inflammation 

 
Cell invasion 

 

Wnt5A–ROR2 complex 

Deepak et al., 2016 EPS In vitro Colon cancer cells 
 

TIMP-3 

Autolysosomes
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HL60 and K562, treated with postbiotics produced by Lactobacillus sp. La1, La2, and 

Lactobacillus plantarum [68,80]. 

Postbiotics reshape the tumor microenvironment by modulating immune responses. 

A randomized, double-blind, placebo-controlled trial in China tested the effect of JK5G 

postbiotics in non-small-cell lung cancer patients [81]. JK5G administration led to a 

significant decrease in the proinflammatory markers TNF-a, IL-2, and C-reactive protein. 

Notably, there were significant increases in CD3+ and CD4+ T cells and the CD4/CD8 ratio 

in the peripheral blood of JK5G group patients. Moreover, the JK5G group exhibited a 

superior quality of life and nutritional status, along with reduced depression symptoms, 

a lower incidence of anemia, a decreased lymphocyte count, reduced appetite, nausea, 

and asthenia compared to the control group. Furthermore, JK5G supplementation 

mitigated the gut microbiota imbalance by increasing the levels of beneficial bacteria such 

as Faecalibacterium and Ruminococcaceae and reducing the levels of Escherichia-Shigella. 

Finally, microbial-derived products improve the effectiveness of standard 

chemotherapy and immunotherapy by sensitizing cancer cells to these treatments or by 

regulating immune responses to enhance antitumor activity. Extracellular vesicles 

derived from LGG improved anti-PD-1 immunotherapy efficacy against colorectal cancer 

by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the 
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Concerning clinical trials in human beings, postbiotics as strictly defined in the litera-
ture have been tested in only a few studies. However, if we consider microbially purified
molecules derived from inactivated bacteria, these have been more extensively used in
interventional studies in oncological patients. In this regard, vitamin K molecules are
the only postbiotics largely found in the gut rather than in the nutritional intake and
used in oncological clinical trials, although this has led to mixed results. Indeed, results
in prostatic cancer trials are largely disappointing [93], but promising results have been
shown in hepatocellular cancer studies [94]. The latter study was a randomized phase II
trial, performed on 38 patients assuming sorafenib, and showed better progression-free
survival (PFS) and objective response rate (ORR) in patients assuming phylloquinone and
menoquinone, concomitantly. However, the overall survival (OS) and disease control rate
remained not significative and post hoc analyses suggested that the patients who really
benefited from the supplementation were only those belonging to the subgroup with a
radiological response.

Generally, clinical studies have focused on the administration of prebiotics and moni-
toring fecal microbiome metabolite levels rather than the direct administration of postbiotics.
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Nevertheless, several studies have reported heterogeneous results on the role of short-chain
fatty acids (SCFAs). Noteworthily, the LIBRE trial investigated the presence of SCFAs in
women bearing BRCA 1/2 mutations, with or without a previous diagnosis of breast cancer,
describing an improvement in the enteric mucosal barrier integrity [95] in patients with
higher fecal quantities. Also, the link between colorectal cancer (CRC) and SCFAs was
investigated in several observational studies, showing significant higher proportions for
acetic acid (AA) [96,97], propionic acid, and butyric acid (BA) [97] in healthy patients rather
than in affected patients, although this did not confirm a causal relationship. Analogously,
some authors have also deepened the relationship between SCFAs and the CRC risk by
comparing higher-risk subjects (with history of colorectal adenomas) with lower-risk sub-
jects (apparently healthy patients), detecting higher fecal proportions of BA [98–101], PA,
and AA [99] in the latter. However, several trials with negative results have created inho-
mogeneities in results and doubts for SCFAs’ role in CRC [68] and disease risk [94,100,101].
A metanalysis aimed to address the uncertainties on the matter and confirmed statistically
significant results for SCFAs as a group effect, but not for the single molecules (AA, BA,
and PA), both for predicting CRC risk and incidence [102]. Noteworthily, this metanalysis
confirmed higher levels of BA and AA, but not PA, in healthy patients than in patients
affected by CRC. However, it has to be mentioned that this metanalysis suffered from high
heterogeneity (I2 50–90%).

Concerning interventional studies, the RIBOGUT trial showed how the oral riboflavin
supplementation could lead to increasing levels of BA, but not other SCFAs, suggest-
ing an interaction with the gut microbiome and the incrementation of postbiotics [103].
Similarly, evidence for the production of AA and PA derives from the assumption of
legume kernel fibers like blue lupins, suggesting a role in the production of intestinal
postbiotics [104]. Importantly, some interventional studies have also investigated the use
of prebiotics for increasing the quantities of intestinal postbiotics after surgery or during
chemotherapy treatment.

In this regard, an earlier study analyzed CRC patient’s feces after oncological surgery,
finding lower quantities of SFCAs [105], defining an area of intervention for the administra-
tion of oral fibers aimed at increasing the level of SCFAs. Moreover, evidence of an SCFA
increment, faster recovery, and improvements in the immunologic indices was described
for patients undergoing oncological surgery [106]. Concerning chemotherapeutic toxicities,
a Japanese study showed a link between the administration of synbiotics (a combination
of prebiotics and probiotics), increasing proportions of fecal SFCAs, and mitigation of
the toxicities in Asiatic patients [107]. Notably, they observed a significant reduction in
lymphopenia, diarrhea, and febrile neutropenia induced by chemotherapies [103].

The main characteristics of the most relevant studies explored in this section are
summarized in Table 3.

Other prebiotics did not add new information to this argument. One of the most
relevant examples is inulin supplementation, a complex carbohydrate that is not fully
digestible, which is renowned to be a modulator of SCFA production. It has been used in
some interventional studies, demonstrating important benefits in animal models [108], but
its role in clinical trials remains controversial [109].

Over time, the landscape of gut microbiota metabolites has expanded from the classical
postbiotics to several metabolic fingerprints based on volatile organic compounds and their
relationship with CRC, with promising potential in the near future [110].
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Table 3. Clinical trials involving purified metabolites, postbiotic derivates, and prebiotics for postbiotic measurable production.

Intervention Type of Study Type of Cancer Median Age
(IQR)

Sample Size
(n. Events)

Median
Follow Up Antitumoral Benefit

Boutron-Ruault
MC et al., 2005

[100]
Supplementation with s-FOS Interventional

prospective study

- Small adenomas
- Large adenomas
- Healthy controls

61 (8) 74 - Higher fecal butyrate concentration in the adenoma
group after the 3-month administration of sc-FOS

Chen HM et al.,
2013 [99] None Cross-sectional

observational study

Patients with a
resected AP

vs.
healthy controls

58 (11) 391 -

Lower SCFA levels were found in the AP group
Clostridium, Roseburia and Eubacterium spp were

retrieved at higher levels in the healthy controls
Enterococcus and Streptococcus spp. were more

highly represented in the AP group

Motoori M et al.,
2017
[107]

Synbiotic supplementation 10 days
after chemotherapy

Phase II, randomized
open-label study Esophageal cancer - 61 - Decrease in toxicity incidence (nausea, diarrea and

febrile neutropenia)

Hoyt M et al., 2019
[93] Menokinones, phylloquinone post hoc

Observational study Prostate cancer 63 (6) 28,356
(2978) 11.3 months No benefits as risk-reducing factor

Niccolai E et al.,
2019 [96] None

Cross-sectional,
controlled,

nonrandomized,
observational study

Colorectal cancer
vs.

AP and healthy controls
CRC: 80 (13)

AP: 46 (8) 60 -
CRC patients showed increased levels of butyric

isobutyric, valeric and isovaleric acid, whereas the
levels of acetic acid were reduced

Xie X et al., 2019
[106]

Supplementation with 30 mg/d of
prebiotics (fiber) aiming to raise

intestinal SCFAs

Interventional
prospective study

Colon cancer
development 60 (9) 135 -

Preoperative period:
higher levels of IgM, IgG and transferrin

Postoperative period:
higher levels of IgA, IgG, CD8+ Cells, B-cell

lymphocytes

Ocvirk. S et al.,
2020 [98] None Cross-sectional

observation study
Apparently healthy

patients 51 (8)
53

(AN: 32
RA: 21)

-

AN ate more fatty and caloric food than RA
In AN, 16 out of 32 patients had colic adenomatous

polypolsis, whereas none of RA developed polyposis.
Stools from RA were more enriched by SCFAs than

AN stools.

Haruna Y et al.,
2021 [94]

Vitamin K + sorafenib
vs.

sorafenib alone
Phase 2, randomized,

open-label study Hepatocarcinoma 72 (8) 44
(44) 70 months

Benefit for
ORR (27.3% vs. 4.5%, p = 0.039)

PFS (HR = 0.59, p = 0.12)
No benefit for

OS (HR = 0.59, p = 0.12)

Seethaler B et al.,
2022
[95]

Increase in SCFA production
through diet and physical activity

Phase 2, randomized,
controlled, open

label study
BRCA-mutated patients 44 (2) 260 women -

Increase in level of
fecal SCFAs produced

Decrease in
intestinal permeability mediated by SCFAs

Motoori M et al.,
2017
[111]

Synbiotic supplementation in
addition to enteral nutrition and
prophylactic antibiotics during

neoadjuvant chemotherapy

Phase II, randomized
open-label

multicenter study
Esophageal cancer - 81 -

Signficiant decrease in grade 3 and grade 4 toxicity
incidence (nausea, diarrea and neutropenia) but not

febriel neutropenia (p = 0.088)

Liu L et al., 2023
[103]

Supplementation with either 50 or
100 mg/d of Riboflavin for 2 weeks

Interventional
prospective study

Colon cancer
development 31 (11) 105 28 days Higher fecal butyrate level with riboflavin

supplemantetion regardless of the given dose

AN: Alaska-native patients, AP: adenomatous polyp, RA: rural African patients, s-FOS: short-chain fructo-oligosaccharides.
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8. Conclusions and Future Perspectives

The role of postbiotics in cancer care is mainly associated with the function of the host
immune system and the modulation of inflammatory responses. In this sense, postbiotics
integration may have a role both in carcinogenesis prevention and in cancer care [7]. Up
to now, postbiotics have not been directly evaluated in phase II and III trials in cancer
care, with the only exception being vitamin K molecules [93,94]. Meanwhile, the levels of
postbiotics such as SFCAs have been evaluated indirectly in clinical interventional studies
testing the administration of prebiotics and probiotics, such as in the RIBOGUT trial [103].
Microbiota-derived SFCAs have shown promising and synergistic activity in anticancer
treatment and a role in favoring immune responses [112].

Postbiotics have some advantages over probiotics. First of all, probiotics are made
from live microorganims which require the concomitant presence of prebiotic fibers in the
gut microbiome to be more effective. Meanwhile, postbiotics do not require the presence of
prebiotics. Moreover, probiotics require ideal conditions in terms of temperature, moisture,
and oxygen tension in order to be kept alive, while there are no viability issues associated
with postbiotics [28]. Furthermore, as long as they contain live microorganisms, probiotics
may present some degree of risk when used in more vulnerable populations. Meanwhile,
postbiotics are unique strains or nonliving microbes and their use is not associated with
a risk of bacterial infection [113]. The lack of consistent clinical evidence supporting
postbiotics’ efficacy is due to their poor bioavailability, short half-life, and fluctuating
levels [114]. Indeed, postbiotics’ levels are strictly dependent on the gut microbiota’s
composition, which may vary between individuals and can be altered under different
physiological and pathological conditions. Therefore, interindividual variability, the need
for industrial purification, and regulatory affairs may be among the reasons why postbiotics
have not been widely tested and developed so far by pharma companies. In this direction,
together with more efforts in order to facilitate the production and use of postbiotics, the
development of synbiotics is of increasing interest. Synbiotics are a mixture of prebiotics
and probiotics, conjugating the activity of live microorganisms and nondigestible fibers,
and are expected to have a more homogeneous bioavailability than postbiotics.
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