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Abstract: Anthropomorphized robots are increasingly integrated into human social life, playing vi‑
tal roles across various fields. This study aimed to elucidate the neural dynamics underlying users’
perceptual and emotional responses to robots with varying levels of anthropomorphism. We in‑
vestigated event‑related potentials (ERPs) and event‑related spectral perturbations (ERSPs) elicited
while participants viewed, perceived, and rated the affection of robots with low (L‑AR), medium
(M‑AR), and high (H‑AR) levels of anthropomorphism. EEG data were recorded from 42 partici‑
pants. Results revealed that H‑AR induced a more negative N1 and increased frontal theta power,
but decreased P2 in early time windows. Conversely, M‑AR and L‑AR elicited larger P2 compared
to H‑AR. In later time windows, M‑AR generated greater late positive potential (LPP) and enhanced
parietal‑occipital theta oscillations than H‑AR and L‑AR. These findings suggest distinct neural pro‑
cessing phases: early feature detection and selective attention allocation, followed by later affective
appraisal. Early detection of facial form and animacy, with P2 reflecting higher‑order visual process‑
ing, appeared to correlatewith anthropomorphism levels. This research advances the understanding
of emotional processing in anthropomorphic robot design and provides valuable insights for robot
designers and manufacturers regarding emotional and feature design, evaluation, and promotion of
anthropomorphic robots.

Keywords: anthropomorphism; anthropomorphic robots; emotional responses; perception; ERPs;
ERSP

1. Introduction
Robots are increasingly being used in a variety of human social life situations and play

a vital role in numerous fields, including industrial production, healthcare, homecare, ed‑
ucation, and entertainment [1–3]. Given the diverse range of backgrounds, training, phys‑
ical capabilities, and cognitive skills among users in the field of Human‑Robot Interaction
(HRI), it is expected that robots should possess qualities such as intuitiveness, ease of use,
trustworthiness, high user acceptance, and responsiveness tomeet the demands and states
of their users. To facilitate robot service and overcome challenges (e.g., trust and accep‑
tance of robots) to HRI, robot researchers and engineers have designed anthropomorphic
(resemble humans or human‑like design) robots [4–6]. The attribution of humanlike char‑
acteristics to nonhuman or inanimate entities is referred to as anthropomorphism and has
been widely adopted as a supporting design feature in the robotics field [7]. Positive re‑
actions to anthropomorphic robots often include increased trust, empathy, and coopera‑
tion. For instance, healthcare robots designed with human‑like features have been shown
to improve patient comfort and compliance with medical instructions [8]. Similarly, in
educational settings, anthropomorphic robots can foster a more engaging and interactive
learning environment, leading to improved educational outcomes [9]. However, not all
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reactions to anthropomorphic robots are positive. Negative responses can arise due to the
uncanny valley effect, where robots that appear almost human, but not quite, elicit feel‑
ings of eeriness and discomfort. An example of this is seen in customer service scenarios,
where overly human‑like robots may cause unease and decrease customer satisfaction [10].
Additionally, there are concerns about privacy and security, as anthropomorphic robots
equipped with advanced sensors and data processing capabilities may be perceived as in‑
trusive [11]. Thus, it is not always the case that the more anthropomorphic a robot is, the
better it is perceived to be [12]. It is believed that anthropomorphism, when used prop‑
erly, can significantly alter users’ attitudes and improve robot marketing [13]. Hence, it is
of great importance to investigate how the anthropomorphism of robots affects humans’
perceptions, emotional responses, attitudes, and evaluations.

A number of studies have been conducted exploring factors influencing how users
perceive, judge and evaluate anthropomorphic robots, mainly from aspects of the uncanny
valley effect [14,15], robot appearance [13,16–19], facial expressions of emotion [20,21],
robot actions [22–24], human‑robot interaction [25–27], even gender [28], personality [29],
and robot anxiety [30]. However, most studies aforementioned have tended to use the
traditional approaches based on questionnaire surveys and interviews, which may lead to
subjective bias and make it difficult to obtain individuals’ true perceptual and cognitive
information [13,14,31,32]. Recently, several studies have attempted to investigate users’
preferences, robot actions and emotional behaviors of humanoid robots using quantita‑
tive psychological monitoring techniques, such as functional magnetic resonance imaging
(fMRI) [33], eye tracking (ET) [31,34], electroencephalography (EEG) [23,35], and event‑
related potentials (ERPs) [23,31,33,36–39]. While these efforts are innovative and meaning‑
ful for anthropomorphic robot research, they tend to focus on responses to particular fea‑
tures (e.g., appearance or actions) of the same categorical robots (e.g., humanoid robots).
Few have explored how the degree of anthropomorphism of human‑like robots affects
users’ perceptual processing and emotional responses from the time dimension of neu‑
roprocessing, and there was a lack of studies regarding robotic anthropomorphism that
looked at the brain areas associated with emotional processing [40].

Evaluating users’ perceptual processing, emotional processing and attitudes toward
anthropomorphic robots could provide guidelines for potential improvements in the de‑
sign of emotionally anthropomorphic robots. It is, therefore, important for anthropomor‑
phic robot designers to ensure that the robot can accurately elicit users’ positive emotional
responses. While Mori’s theory [10] depicted the relationship between human‑likeness
and affective reactions (see Figure 1), the emotional valence and arousal related to the de‑
gree of anthropomorphism of human‑like robots and the corresponding underlying neu‑
ral dynamics have not been fully considered. Some studies have sought to investigate
the impact of the uncanny valley effect on affective responses and psychophysiological re‑
actions. For instance, Cheetham et al. [36] examined affective experience in response to
categorically ambiguous compared with unambiguous avatars and human faces by using
EEG, electromyography (EMG) and self‑report indices. The LPP and SAM‑basedmeasures
of arousal and valence indicated a general rise in negative affective state (i.e., enhanced
arousal and negative valence) with greater morph distance from the human end of the
dimension of human likeness. However, the stimuli used in the study were drawn from
controlledmorph continua of human faces. Thisway of controlling anthropomorphismvia
the face dimension (changing outward surface features of a face) may not be applicable to
real‑life robots, which are more diverse and have varying degrees of anthropomorphism
(e.g., middle anthropomorphic robots, toy robots, service robots, etc.).

Accordingly, the present study aimed to investigate the time course of neural dynam‑
ics involved in the users’ perceptual and emotional processing in response to robots with
different levels of anthropomorphism, to evaluate the relationship between users’ subjec‑
tive emotional valence, arousal, and electrophysiological data, as well as assess user’s atti‑
tudes toward anthropomorphic robots, such as perceived likeability and warmth. In this
study, we combined the subjective evaluation and the objective electrophysiological mea‑
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surements. Forty‑two participants were equipped with an EEG device to record the elec‑
troencephalogram (EEG) data while performing an affective rating task, and ERPs and
ERSP were analyzed to reveal their information processing streamwhile viewing, perceiv‑
ing and evaluating the appearance of anthropomorphic robots. The subjective ratingswere
utilized to complement the objective data. Attitudes toward anthropomorphic robots were
gleaned by assessing individuals’ perceived likeability and warmth. The results might
advance our understanding of how the anthropomorphism of an anthropomorphic robot
affects users’ perceptual or cognitive processes and emotional responses from the under‑
lying neural level. Moreover, the findings might contribute to a better understanding of
the cognitive underpinnings of the uncanny effect. In practice, the findings could provide
reference and guidelines for emotional design, feature design, assessment, marketing, im‑
plementation, and promotion of anthropomorphic robots for robotics designers and man‑
ufacturers.
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Figure 1. The uncanny valley function, as proposed by Mori (1970) [10]. 
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2. Related Work
2.1. Anthropomorphism of Robots

Anthropomorphism is the attribution of external humanlike characteristics such as
the face, nose and mouth, and internal characteristics such as motivations, intentions and
emotions to nonhuman or inanimate entities [7,41]. When humans see a schema consis‑
tent with their owns in a nonhuman object, it will be regarded that the nonhuman ob‑
ject is anthropomorphized [41]. As a new marketing method, anthropomorphism is often
applied in robot design [42,43], product design [44–46], icon design [47] and brand pro‑
motion [48–50]. Anthropomorphic robots realize anthropomorphism by mimicking the
physiological and psychological states of humans [21,51], as well as human‑like person‑
ality traits [30,52]. Robots’ actions, emotional facial expressions, voice, and efficiency of
human‑robot interaction all have an influence on users’ perceptions and evaluations re‑
garding anthropomorphism [21,41,53].

Regarding themeasurement of robots’ anthropomorphism, most academics have con‑
centrated primarily on traditional methods such as subjective ratings. MacDorman [54]
proposed a questionnaire with a single question to assess human‑likeness. Powers and
Kiesler [18], in comparison, suggested a different anthropomorphic questionnaire that con‑
tained six items and appeared to have a higher level of reliability. Bartneck et al. [42]
developed a consistent questionnaire for detecting anthropomorphism using semantic dif‑
ferential scales based on prior research. Roesler et al. [55] used the frequency of choosing
robots and the response latency of every selection to measure the preferred degree of an‑
thropomorphism. Subjective measurement of anthropomorphism has its own advantages,
but it has been limited by the subjective bias of individuals and may introduce psychome‑
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tric noise into the self‑reported ratings [56]. Thus, devising an objective means to measure
the anthropomorphism of human‑like replicas is crucial. Some studies have explored the
unconscious behavior of users by employing covert anthropomorphic measurements. For
instance, Minato et al. [57] examined participants’ gaze patterns while gazing at either a
human or an android. In a follow‑up study, Shimada et al. [34] examined the similarity be‑
tween the gaze behavior (i.e., duration and gaze orientation) toward an android robot and a
human, and found that an android with a higher physical resemblance to a human evoked
a more human‑oriented gaze, suggesting that gaze behavior can be utilized to implicitly
quantify robot anthropomorphism. Moreover, in other studies, anthropomorphism has
been manipulated and measured objectively by altering the outward surface features of a
face, converting a real human face into a synthetic one, or manipulating robot personality
traits [30,58–60].

Although many studies have been conducted to evaluate and measure the anthropo‑
morphism of robots and demonstrated that robots can be anthropomorphized through an‑
thropomorphic appearances and behaviors, few have investigated the neural mechanisms
behind how the degree of anthropomorphism of human‑like robots affects individuals’
perceptual and emotional processing. Uncovering the neural dynamics underlying users’
perceptions and affective processing of robots varied in their degree of anthropomorphism
may help design emotionally anthropomorphic robots.

2.2. Emotional Responses, Likeability, and Warmth on Robots
A growing body of studies has shown that the anthropomorphism of robots was re‑

sponsible for people’s emotional responses, likeability and warmth [13,14,19,58]. Concern‑
ing emotional responses, Mori’s uncanny valley theory [10] holds significant importance
and should not be disregarded. It elucidates the relationship between robots’ human like‑
ness and humans’ emotional responses. While Mori’s theory showed how affective re‑
sponses vary with the perceived human likeness, emotional valence and arousal have not
been fully considered, particularly the valence dimension [10]. Additionally, most research
has generally relied on the conventional methods of emotional evaluation based on ques‑
tionnaire surveys, which may introduce subjectivity bias or memory bias, and provide
difficulties or constraints in eliciting true information about individuals’ perceptual and
affective processing. Thus, it is crucial to develop an objective way to quantify emotional
processing while evaluating robots with different degrees of anthropomorphism. Further‑
more, previous research has demonstrated that emotional valence is positively related to
emotional experience, while higher emotional arousal corresponds with good or poor af‑
fective experience and lower arousal with a moderate emotional experience [61,62]. Based
on the uncanny valley effect, robots with a high level of anthropomorphism often have
highly anthropomorphized faces, which may give people a potentially weird, uncomfort‑
able feeling of uncanniness and evoke a poor emotional experience. Robotswith a low level
of anthropomorphism exhibit more adorable non‑human characteristics that may induce
a good affective experience.

In terms of likeability, it has been argued that early favorable impressions (e.g., like‑
ability or affinity) often result in more positive assessments of an individual [14,42,63]. It
has been shown that people are prone to make judgments and form attitudes in the in‑
stants immediately after encountering another person. Since robots are regarded as social
actors to some extent, it can be assumed that people are capable of judging robots in a
similar manner [64,65]. In the present study, the degree to which users have favorable per‑
ceptions and evaluations of robot looks was referred to as the users’ likeability for robots.
According to Mori’s hypothetical curve, to a point, likeability increased with increasing
human‑resemblance, but as robots became more human‑like (such as robots with high
level of anthropomorphism), they began to be perceived as very unlikeable.

With regard to human warmth, it has been associated with social attributes such as
caring, nice, and sociable traits, as well as friendliness, and trustworthiness [13,66]. It has
been revealed that warmth judgments are more relevant than competence in affective and
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behavioral responses, despite the fact that their emergence as dimensions of warmth and
competence was consistent [13,41,67]. People’s positive attitudes have been found to be
closely linked to an individual’s level of warmth; thus, the warmer an individual is, the
more positive people’s attitudes are as well [68]. Similar findings have been reported in
late anthropomorphic brand research [48], as well as virtual agents [65]. The Uncanny Val‑
ley theory [10], suggests that the affinity fades when robots become too human‑like, and
people will experience an uncomfortable feeling of uncanniness. Thus, it can be assumed
that when people anthropomorphize robots and perceive them as growingly warm in ex‑
ternal appearance, the increase in warmth will be perceived positively at first. However,
once robots resemble humans too closely, an uncomfortable feeling of uncanniness should
creep in and result in a negative shift in attitude.

2.3. Electrophysiological Components Related to Perceptual Processing, Affective Processing,
and Evaluation

The ERP technique is a useful tool in the investigation of unveiling physiological as‑
pects that affect users’ behavior and preferences, and it can also help investigate the “com‑
mon scale” that makes it possible to compare users’ heterogeneous and individualized
behaviors [69]. Numerous studies have explored the neural dynamics involved in the pro‑
cessing of affective information. However, most prior ERP studies on affection have typi‑
cally utilized emotional pictures as stimuli from IPAS [70], and some have also used other
stimuli, such as arts [71], faces [72], humidifiers [73], webpages [62], and even logos [74].
Results from these studies have identified P1, N1, P2, N2, P3, and LPP components as
sensitive to affective contents and affective processing of the stimuli. Two affective ERP
components have often been the focus of emotional studies: one is the early posterior nega‑
tivity (EPN), a negative potential that is primarily distributed across the visual cortex in the
time window of 230–280 ms; the other is the late positive potential (LPP), a positive poten‑
tial that typically held long‑lasting increased positivity, and exhibited a comparable onset
time and activated cortical distribution as P3. In the current study, the ERP components
of interest were exogenous N1, P2, and endogenous LPP.

2.3.1. The N1 Component
The visualN1, which has awide scalp distribution andpeaks earlier in the frontal than

in the posterior regions [75], is closely related to the early visual processing of emotional
stimuli and affective pictures. For instance, Keil et al. [76] revealed that strengthened N1
can be elicited by both positive and negative stimuli relative to neutral stimuli. It has been
identified that the N1 component could index the distribution of attentional resources in
response to stimuli and might have an effect on perceptual processing, such as the selec‑
tion and discrimination of perceptual features (i.e., color, appearance and shape) [73,77,78].
Guo et al. [37] suggested that the preferred humanoid robot appearances elicited a larger
N1 amplitude. Convincing evidence also has indicated that the N1 component was firmly
associated with the physical properties of stimuli [75,79]. Anthropomorphic robots with
a high degree of anthropomorphism frequently possess facial features that are highly an‑
thropomorphized, leading individuals to experience a sense of uncanniness, which is char‑
acterized by perceived negativity. On the other hand, robots with a low degree of anthro‑
pomorphism often exhibit non‑human characteristics that are more adorable, resulting in
individuals perceiving a feeling of cuteness, which is associated with perceived positivity.
In contrast, robots with a moderate level of anthropomorphism tend to be perceived as
neutral, displaying a moderate level of anthropomorphic traits. Therefore, it is postulated
that there would be a higher amplitude of N1 for both high and low anthropomorphic
robots, whereas a lower amplitude of N1 is expected for middle anthropomorphic robots.

2.3.2. The P2 Component
The P2, a frontal or occipital‑parietal positivity, is involved in higher‑level perceptual

and attentional processing of visual stimuli [79,80] and has revealed that larger amplitudes
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can be elicited by emotional stimuli than by neutral stimuli [70,81,82]. Studies have pre‑
viously shown that P2 is indicative of the early rapid detection of perceptual features and
has been reported to be associated with the attentional allocation in the early time win‑
dow post‑stimulus onset [83,84], and it might be modulated by negative or threatening
information [85,86]. In addition, the P2 component has been indexed to the allocation of
attentional resources for the inherent affective preference in response to stimuli with dif‑
ferent perceptual features. For instance, Guo et al. [37] have suggested that an increased
magnitude of P2 can be elicited by the preferred appearance of humanoid robots compared
to the non‑preferred one. Ma et al. [87] have indicated that enhanced P200 can be evoked
by the most‑preferred product designs of experience goods than for the least‑preferred de‑
signs. Due to the physical properties and emotional salience, robots with high levels of
anthropomorphism frequently possess facial features that are highly anthropomorphized,
whichmay elicit a non‑preferred feeling compared to robots with low andmiddle levels of
anthropomorphism. Thus, we expected to see larger P2 for middle and low anthropomor‑
phic robots than for high anthropomorphic robots, reflecting increased selective attention
and feature detection.

2.3.3. The LPP Component
The LPP, a positive potential with wide scalp distribution, has been linked to the stim‑

uli’s arousal and valence level, indicating it can reflect individuals’ subjective affective ex‑
perience [76,88–91]. Specifically, increased LPP could be evoked by stimuli with high or
low valence, and larger LPP could be elicited by higher‑arousal stimuli compared to low‑
arousal stimuli [70,89,91–93]. Both positive and negative stimuli could evoke a stronger
LPP response than neutral ones [70,76]. Vaitonytė et al. [40] suggested that LPP was sus‑
ceptible to facial appearance at the temporal level. Convincing evidence also has revealed
that the LPP component is associated with the distribution of sustained attention [89], top‑
down processing [94], affective evaluation [95], categorization [92], and even affective eval‑
uative categorization in preference [73,87].

2.3.4. ERSP of Theta Band
In addition to ERPs, time‑frequency measurements of neuro‑oscillatory power,

broadly used in substantial studies concerning the attentional aspects [96–98], have been
effective in characterizing neural component processes when ERPs may not be interpreted
clearly. The oscillations in theta band of emotional stimuli and affective pictures have
been related to the distribution of attentional resources in the early perceptual process‑
ing [96,97], encoding [99], emotional discrimination [100], evaluation [37], and categoriza‑
tion in the late time window [101,102]. Generally, increased theta power as event‑related
synchronization (ERS) can be elicited by both positive and negative stimuli rather than
neutral stimuli. Convincing evidence has also suggested that theta‑band activations are
linked with affective preference formation and can reflect the attentional distributions for
the affective information processing and evaluative categorization in affective preference
formation [37,98]. Due to the physical features and emotional salience, we expected to
see greater theta oscillations for high and low anthropomorphic robots than for middle
anthropomorphic robots.

Wehave formulated the followinghypotheses based on existing literature (see Table 1):
1. Biomarkers:
Hypothesis 1.1. Higher anthropomorphism levels will elicit more negative N1 and increased
frontal theta power in the early time window.
Hypothesis 1.2. Medium and low anthropomorphism levels will induce larger P2 responses com‑
pared to high anthropomorphism.

2. Emotional affect:

Hypothesis 2.1. High anthropomorphism will result in greater affective arousal as indicated by
enhanced LPP.
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Hypothesis 2.2. Medium anthropomorphism will cause more pronounced parietal‑occipital theta‑
band oscillations than low and high anthropomorphism.

3. Level of robot anthropomorphism:

Hypothesis 3. Different levels of anthropomorphism will show distinct neural patterns in both
early feature detection and later affective appraisal phases.

Table 1. The summary of hypotheses.

Variables Low Anthropomorphic
Robots (L‑AR)

Middle Anthropomorphic
Robots (M‑AR)

High Anthropomorphic
Robots (H‑AR)

Biomarkers

N1 More Negative frontal and
central N1

Frontal theta power Increased

P2 Larger P2 Larger P2 Decreased P2

Emotional affect

Affective arousal (LPP) Greater LPP Greater affective arousal

Parietal‑occipital theta Enhanced

Overall neural patterns
Distinct patterns in early
detection and later appraisal
phases

Distinct patterns in early
detection and later appraisal
phases

Distinct patterns in early
detection and later appraisal
phases

3. Method
3.1. Participants

A total of 42 college students (22 males and 20 females; aging from 21 to 25 years;
mean age, 22.12 years, SD = 1.24) participated in the study. All were right‑handed and re‑
ported normal or corrected to normal vision and no history of neurological or psychiatric
diseases. The participants were recruited from the undergraduate and graduate popula‑
tions. Participants were not addicted to drugs or alcohol and were asked to avoid the use
of stimulants (e.g., alcohol and caffeine) 48 h before the experiment, which may affect EEG
results. All participants provided their written informed consent prior to the experiment
and received compensation of 80 RMB or course credits for their participation. Approval
for the experiment was obtained from the Ethics Committee of Southeast University. The
experiment gathered EEG data from all 42 subjects, two of whom were excluded from the
analysis due to excessive artifacts resulting from frequent leg or hand jitters. Thus, the
total of subjects included in every grand average for further analysis was 40 (21 males and
19 females; aging from 21 to 25 years; mean age, 22.32 years, SD = 1.38).

3.2. Stimuli
Most experimental stimuli (Figure 2) were selected from the ABOT (Anthropomor‑

phic roBOT) Database, a collection of 251 images of real‑world robots with one or more
human‑like appearance features [4]. It has been identified that the human‑like robot ap‑
pearance can be divided into four distinct dimensions: surface look, body manipulators,
facial features, and mechanical locomotion [4]. An overall human‑likeness score for each
robot could be computed based on the above four dimensions using the Human‑Likeness
Estimator proposed by Phillips et al. [4]. According to the human‑likeness scores, the ini‑
tial stimuli were split into three groups, high anthropomorphic robot group (“H‑AR”; with
human‑likeness scores ranging from 80 to 100), middle anthropomorphic robot group (“M‑
AR”; with human‑likeness scores ranging from 40 to 65), and low anthropomorphic robot
group (“L‑AR”; with human‑likeness scores ranging from 0 to 20). Thus, we had sixty‑one
L‑ARs, forty‑four M‑ARs and seven H‑ARs. Due to the lack of H‑ARs, we collected an
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additional 13 H‑ARs from the Internet, whose human‑likeness scores varied from 88 to
96. Hence, we obtained 20 high‑human‑likeness robots in total. Then, we asked five Ph.D.
candidate volunteers who are proficient in human factors and robot research but did not
participate in the late EEG research to classify and rate anthropomorphic robots for each
group based on the appearance similarities or shared characteristics among each other on
a 5‑point Likert scale (1 = not similar at all, 5 = highly similar). We selected 12 stimuli with
approximate similarity scores (ML‑AR = 4.03; MM‑AR = 4.12; MH‑AR = 3.38) for each group
(see Figure 2), respectively. Finally, we used the one‑way ANOVA analysis to compare the
human‑likeness scores between the three groups. The results showed a significant differ‑
ence between the groups (ML‑AR = 14.340, SDL‑AR = 3.968; MM‑AR = 47.584, SDM‑AR = 5.841;
MH‑AR = 92.055, SDH‑AR = 2.310; p < 0.001).
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3.3. Procedures
This study was conducted in the Human Factor Engineering Lab at Southeast Univer‑

sity with soft lighting, suitable temperature, and noise strictly controlled. The participants
were asked to sit in the chair comfortably at 650 mm away from a computer screen. All
stimuli (Figure 2) were presented on a 27‑inch LCDmonitor with a brightness of 92 cd/m2,
and a resolution of 1920 × 1080 pixels. The experimental task (as shown in Figure 2) was
programmed through E‑Prime 2.0 (Psychology Software Tools).

Before the formal experiment, the participants were asked to read the instructions
provided. It is worth noting that participants have been briefed on the meanings of emo‑
tional valence and arousal during the instruction period. They were also asked to main‑
tain their attentional focus when the fixation cross appeared until the pictures of differ‑
ent anthropomorphic robots disappeared. Once the participants finished reading the in‑
structions provided, the formal experimental procedure began. Each trial began with a
fixation cross that remained in the center of the screen for 1200–1600 ms to prime indi‑
viduals for the EEG experiment. This was followed by the presentation of different an‑
thropomorphic robot stimuli for 1500 ms. After viewing and perceiving the experimen‑
tal stimuli, the participants were presented with the following behavioral questionnaire:
“What do you think is the level of emotional valence produced by the anthropomorphic
robot?” and “What do you think is the level of emotional arousal produced by the an‑
thropomorphic robot?”. The options for responses were designed by fusing the Likert
5‑point scale with the Self‑Assessment Manikin (SAM) [103], where ‘1’ represents the low‑
est level and ‘5’ represents the highest level. Participants were required to finish the two
questionnaires by using a keyboard. Subsequently, the next trial started. A total of 180 tri‑
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als were presented in five blocks, with the order of trials within each block randomized.
The experimental stimuli appeared randomly to eliminate the sequential effect. A rest pe‑
riod was given after each block, and the length of the rest interval was self‑determined
by the participants before continuing the experiment. Each participant spent approxi‑
mately 40 min completing the experiment. After the experiment, participants were asked
to finish a likeability questionnaire [63] (Cronbach’s alpha is well above 0.84). To facil‑
itate comprehension, the likeability scale was modified into a more accessible Likert 5‑
point scale. Each word (讨人喜欢的/likable, 令人感到亲切的/friendly, 待人礼貌的/kind,
令人愉快的/pleasant, 让人放心接近的/approachable) was divided into five levels [42,63].
Subsequently, the human warmth questionnaire [13] (Cronbach’s α = 0.95) was presented
with fivewarmth‑related traits (合群的/sociable,令人感到亲切的/friendly,充满善意的/kind,
可爱的/likable,充满温情的/warm) in the manner of the Likert 5‑point scale, and the partic‑
ipants were asked to response how close the descriptions were to their own feelings.

3.4. Electroencephalogram Data Recordings and Preprocessing
The EEG data were continuously recorded (bandpass 0.05–100 Hz, at a 1000 Hz sam‑

pling rate) by the Brain Vision actiCHamp EEG system (Brain Product, Munich, Germany)
(Figure 3a) with 64 Ag/AgCl electrodes (Figure 3b). The electrodes were mounted on an
elastic electrode cap based on the international 10–20 system [104], and the sixty‑four chan‑
nels were all utilized for recording the EEG signals. The FCZ electrode was utilized as the
reference electrode, and FPZ served as the ground electrode. Interelectrode impedances
of all electrodes were kept below 5 kΩ throughout the experiment.
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The EEG data were preprocessed offline in MATLAB 2013b (MathWorks Inc., Natick,
MA, USA) using the EEGLAB 13 toolbox (Swartz Center for Computational Neuroscience,
UCSD; http://sccn.ucsd.edu/eeglab (accessed on 5 June 2023). The raw EEG recordings
were re‑referenced to the average of the TP9 and TP10 channels, down‑sampled to 500 Hz
and were filtered through a 30‑Hz low‑pass and 0.1‑Hz high‑pass filter, respectively. Seg‑
mentswith a low signal noise ratio (SNR)were then excluded and independent component
analysis (ICA) was performed. Artifacts (e.g., electro‑oculogram (EOG), electromyogram
(EMG), and sweat) were corrected by employing the ADJUST1.1.1 plugin in the EEGLAB
toolbox. The EEG data were epoched from 200 ms prior to the onset of the anthropomor‑
phic robots to 1000 ms after the presentation, with the first 200 ms interval serving as the
referent baseline. Epochs of each trial typewere then categorized. Epochswith amplitudes
exceeding±80 µV thresholdwere rejected [105,106]. z‑score normalizationwas performed
on the ERP amplitudes across subjects, converting the amplitudes into standard scores.
These steps ensure that the ERP data are comparable across subjects, mitigating potential
biases due to scale differences [79]. After rejection, at least 56 trials per participant were
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available for each type of anthropomorphic robot. The rejection rates for H‑AR\M‑AR\L‑
ARwere 6.67%, 5% and 3.33%, respectively. There were no significant group differences in
the rejection rates (F (2, 57) = 0.355, p = 0.703). The grand average waveforms for different
anthropomorphic robots are depicted in Figure 4.
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3.5. Data Analysis
3.5.1. ERP Analysis

As shown in Figures 4 and 5, the N1 (110–140 ms), P2 (240–310 ms) and LPP (400–800)
have been elicited in different anthropomorphic levels of robots. Based on the visual in‑
spection, the N1 was more obvious in the anterior sites, while P2 and LPP components
were more pronounced in the anterior and posterior sites. Thus, three electrode clusters,
including the frontal (F3, FZ, F4), frontal‑central (FC3, FCZ, FC4), and central (C3, CZ, C4)
regionswere selected forN1 component analysis. The P2 and LPP component analysiswas
performed at six electrode clusters including the frontal (F3, FZ, F4), frontal‑central (FC3,
FCZ, FC4), central (C3, CZ, C4), central‑parietal (CP3, CPZ, CP4), parietal (P3, PZ, P4) and
parietal‑occipital (PO3, POZ, PO4) locations. The averaged amplitude of N1 in the time
window of 110–140 ms was analyzed in a 3 (Type of robot: high, middle, and low anthro‑
pomorphic robots; H‑AR\M‑AR\L‑AR) × 3 (Location: frontal, frontal‑central, central; F,
FC, C) two‑way ANOVA. The averaged amplitude of each ERP component (P2 and LPP)
was analyzed in a 3 (Type of robot: high, middle, and low anthropomorphic robots; H‑
AR\M‑AR\L‑AR) × 6 (Location: frontal, frontal‑central, central, central‑parietal, parietal
and parietal‑occipital; F, FC, C, CP, P, PO) two‑wayANOVA. If necessary, theGreenhouse–
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Geisser corrections of freedom were applied when the data failed the sphericity tests, and
the Bonferroni correction was employed for post hoc testing as needed.
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3.5.2. Event‑Related Spectral Perturbations (ERSPs) Analysis
We reprocessed the EEG raw data with a 0.15 Hz high‑pass filter. Other preprocess‑

ing processes were similar to ERP data analysis, except a longer epoch for each trial type
from 500 ms pre‑stimulus onset to 1500 ms post‑stimulus onset was segmented for fur‑
ther time‑frequency analysis. To gain a comprehensive view of neural oscillations across
the scalp of anterior and posterior sites, time‑frequency decomposition was carried out on
the two electrode channel clusters, frontal cluster (AF3, AFZ, AF4, F3, FZ, F4, FC3, FCZ,
FC4) and parietal‑occipital cluster (CP3, CPZ, CP4, P3, PZ, P4, PO3, POZ, PO4), each of
which was an average of selected channels. These channels were chosen mainly based on
visual inspection of topographic maps and prior work. Each epoch was split into 200 time
points ranging from −372 ms to 1372 ms. The signals of EEG data were decomposed by
short‑time Fourier transformation with Hanning window tapering as implemented in the
EEGLAB function newtimef.m. Using a sliding window of 256 ms with a step size of 10 ms
and a filling ratio of 4 (default value), the spectral power at each time point in each EEG
epoch was calculated, yielding 48 linear‑spaced frequencies ranging from 3 to 50 Hz [107].
Subsequently, baseline correction was implemented according to the gaining model [108],
and the spectral power of each time‑frequency pointwas divided by themean pre‑stimulus
baseline power of the corresponding frequency. Finally, the spectral power at each time
point and frequencywere then averaged for all segmentswithin each trial type of each clus‑
ter. ERSPs were analyzed in the early time window (50–380 ms) and the late time window
(400–1000ms) for the two‑channel clusters within the theta band (3–8 Hz). Theta bandwas
selected based on previous work which suggests that theta band is associated with atten‑
tional distribution and affective preference [37,96,98]. The theta powerwas analyzed using
a 3 (Type of robot: high, middle, and low anthropomorphic robots; H‑AR\M‑AR\L‑AR)
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× 2 (Cluster: frontal, parietal‑occipital) analysis of variance (ANOVA). The Greenhouse–
Geisser and Bonferroni corrections were employed whenever necessary.

3.5.3. Statistical Analysis
All the statistical analyses of subjective ratings, ERP, and ERSPs data were performed

in IBMSPSS Statistics 26.0. The normality of the datawas verifiedbyusing theKolmogorov–
Smirnov test, and the results indicated that the data were normally distributed, and the
variance was homogenous (p > 0.05). If necessary, the Greenhouse–Geisser corrections of
freedom were applied, and the Bonferroni correction was employed for post hoc testing.
The alpha level was set as 0.05 for statistical tests.

4. Results
4.1. Results for Subjective Rating Data

Emotional valence and arousal ratings: The analysis revealed that the type of anthro‑
pomorphic robots had significant effects on the rating of the emotional valence
(F (2, 40) = 87.294, p < 0.001, η2

p = 0.599), and the emotional arousal (F (2, 40) = 5.849, p = 0.005,
η2
p = 0.170). Further multiple comparisons (Figure 6a) revealed that L‑AR had higher mean

valence scores (M = 3.499, SD = 0.393) than H‑AR (M = 2.194, SD = 0.599) (p < 0.001) and M‑
AR (M = 3.089, SD = 0.314) (p < 0.001), and the averaged valence of M‑AR was greater than
H‑AR (p < 0.001). The averaged arousal scores of both L‑AR (M = 3.230, SD = 0.707) and
H‑AR (M = 3.223, SD = 0.707) were significantly larger than M‑AR (M = 2.510, SD = 0.409)
(Figure 6b).
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Figure 6. Figure (a) and figure (b) showed emotional valence and emotional arousal results of the
40 participants toward the three types for anthropomorphic robots, respectively.

Likeability and warmth ratings: Results on the likeability of different anthropomor‑
phic robots showed a significant effect (F (2, 40) = 31.829, p < 0.001, η2

p = 0.352). The averaged
likeability of L‑AR (M = 3.421, SD = 0.385) was larger than H‑AR (M = 2.429, SD = 0.866)
(p < 0.001) and M‑AR (M = 3.263, SD = 0.406) (p = 0.238), and averaged likeability of M‑AR
was significantly larger than H‑AR (p < 0.001) (see Figure 7a). There was also a significant
effect on warmth scores of the type of robots (F (2, 40) = 16.484, p < 0.001, η2

p = 0.220). The
mean warmth rating of H‑AR (M = 2.404, SD = 0.563) was smaller than M‑AR (M = 3.641,
SD = 0.349) (p < 0.001) and L‑AR (M = 3.534, SD = 0.394) (p < 0.001), whereas no significant
difference (Figure 7b) between M‑AR and L‑AR was observed (p = 0.840).
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Figure 7. Figure (a) and figure (b) showed the subjective likeability and warmth rating results of the
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4.2. ERP Results
4.2.1. N1 Component (110–140 ms)

ANOVAresults ofN1 showed significantmain effects of type of robot (F (2, 78) = 7.514,
p = 0.001, η2

p = 0.162), and location (F (1.159, 45.191) = 16.927, p < 0.001, η2
p = 0.303). Besides,

there was a significant interaction between the type of robot and location (F (2.379, 92.774)
= 4.699, p = 0.008, η2

p = 0.108). Pairwise comparisons showed significant differences be‑
tween types of robots, with larger negative amplitude for H‑AR (M = −2.726, SE = 0.367)
and L‑AR (M = −2.513, SE = 0.362) than for M‑AR (M = −1.410, SE = 0.437) (H‑AR > M‑AR,
p = 0.005; L‑AR > M‑AR, p = 0.025). Bonferroni post hoc multiple comparisons (see Table 2)
demonstrated that H‑AR and L‑AR elicited negative amplitude than M‑AR at frontal and
frontal‑central locations than at central sites (F > C, p = 0.001; FC > C, p < 0.001). Regarding
latency of the N1 component, there was also a significant main effect of the type of robot
(F (2, 78) = 4.858, p = 0.01, η2

p = 0.111). Compared to M‑AR, the N1 peaked earlier for H‑AR.

4.2.2. P2 Component (240–310 ms)
In the time course of 240ms–310ms after the stimuli, themain effects of types of robots

(F (2, 78) = 53.392, p < 0.001, η2
p = 0.600) and location (F (1.211, 47.217) = 55.613, p < 0.001,

η2
p = 0.588) arrived at significance. Also, there was a significant interaction between the

type of robot and location (F (2.571, 100.282) = 20.057, p < 0.001, η2
p = 0.340). Pairwise com‑

parisons revealed significant differences between types of robots, with greater amplitude
forM‑AR (M = 7.946, SE = 0.695) than for L‑AR (M = 6.927, SE = 0.672) andH‑AR (M = 3.182,
SE = 0.537) (M‑AR > L‑AR, p < 0.001; M‑AR > L‑AR, p = 0.021; L‑AR > H‑AR, p < 0.001).
Type simple effects were significant for frontal (F (2, 78) = 41.62, p < 0.001), frontal‑central
(F (2, 78) = 61.78, p < 0.001), central (F (2, 78) = 68.39, p < 0.001), central‑parietal (F (2, 78) =
69.57, p < 0.001), parietal (F (2, 38) = 45.92, p < 0.001) and parietal‑occipital (F (2, 78) = 24.96,
p < 0.001) sites.

4.2.3. LPP Component (400–800 ms)
Statistical analysis of the LPP component revealed the significant main effects of the

type of robot (F (2, 78) = 15.816, p < 0.001, η2
p = 0.289) and location (F (1.254, 48.916) = 12.926,

p < 0.001, η2
p = 0.249), and their interaction effect achieved significance (F (2.858, 111.473)

= 4.828, p = 0.004, η2
p = 0.110). Pairwise comparisons revealed significant differences be‑
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tween types of robots, with greater amplitude for M‑AR (M = 8.402, SE = 0.954) than for
L‑AR (M = 6.371, SE = 0.967) and H‑AR (M = 5.764, SE = 0.749) (M‑AR > L‑AR, p < 0.001;
M‑AR > L‑AR, p < 0.001). Type simple effects were significant for frontal (F (2, 78) = 18.65,
p < 0.001), frontal‑central (F (2, 78) = 17.92, p < 0.001), central (F (2, 78) = 16.91, p < 0.001),
central‑parietal (F (2, 78) = 14.80, p < 0.001), parietal (F (2, 78) = 10.32, p < 0.001) and parietal‑
occipital region (F (2, 78) = 7.93, p = 0.001).

Table 2. The descriptive statistics and results of ERPs of user’s perception of different anthropomor‑
phic robots.

Locations Pairwise p of Comparing N1
Component Amplitude

p of Comparing P2
Component Amplitude

p of Comparing LPP
Component Amplitude

Frontal
H–M 0.003 ** <0.001 *** <0.001 ***
H–L 0.430 <0.001 *** 1.000
M–L 0.064 0.205 <0.001 ***

Frontal‑central
H–M 0.004 ** <0.001 *** <0.001 ***
H–L 1.000 <0.001 *** 0.325
M–L 0.030 * 0.727 <0.001 ***

Central
H–M 0.017 * <0.001 *** <0.001 ***
H–L 1.000 <0.001 *** 0.271
M–L 0.010 * 0.800 <0.001 **

Centro‑parietal
H–M ‑ <0.001 *** <0.001 ***
H–L ‑ <0.001 *** 0.483
M–L ‑ 0.369 0.002 **

Parietal
H–M ‑ <0.001 *** 0.001 **
H–L ‑ <0.001 *** 1.000
M–L ‑ 0.010 * 0.003 **

Parietal‑occipital
H–M ‑ <0.001 *** 0.003 **
H–L ‑ 0.027 * 0.688
M–L ‑ <0.001 *** 0.013 *

Notes: L,M, andH represented low,middle, and high anthropomorphic robots, respectively. * p < 0.05; ** p < 0.01;
*** p < 0.001.

4.3. ERSP Results
ANOVA results of theta power across the early time window (50–380 ms) revealed

that only themain effect of the clusterwas statistically significant (F (1, 39) = 20.931, p < 0.001,
η2

p = 0.349), with power being greater for the parietal‑occipital cluster (M = 2.571 dB,
SE = 0.111) than for the frontal cluster (M = 2.044 dB, SE = 0.091). No significant main
effect of the type of robot was observed (F (2, 78) = 1.213, p = 0.303, η2

p = 0.030). There was
a significant interaction between the type of robot and cluster (F (2, 78) = 4.182, p = 0.019,
η2

p = 0.097). Post hoc analyses revealed that theta power of H‑AR (M = 2.214 dB, SE = 0.136)
andM‑AR (M = 2.229 dB, SE = 0.186) was larger than that of L‑AR (M = 1.689 dB, SE = 0.151)
(p = 0.044) in the frontal cluster.

Analysis of the late timewindow (400–1000ms) showed that themain effect of the type
of robot was significant (F (2, 78) = 5.256, p = 0.007, η2

p = 0.119), with ERSP being greater
for M‑AR (M = 1.236 dB, SE = 0.181) than for H‑AR (M = 0.573 dB, SE = 0.114) and L‑AR
(M = 0.893 dB, SE = 0.170). No main effect of cluster achieved significance (F (1, 39) = 2.438,
p = 0.126, η2

p = 0.059). There was a significant interaction between the type of robot and
cluster (F (2, 78) = 8.633, p < 0.001, η2

p = 0.181). Simple effect analysis revealed that the
perturbations of H‑AR (M = 0.453 dB, SE = 0.154) were smaller than M‑AR (M = 1.353 dB,
SE = 0.139; p < 0.001) and L‑AR (M = 1.087, SE = 0.188; p = 0.022) in the parietal‑occipital
cluster (see Table 3 for groupmeans, Figure 8 for spectrograms and Figure 9 for interaction
effect of theta power).
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Table 3. Group means and SD of theta ERSPs for high, middle, and low anthropomorphic robots.

Regions of Interest
(ROIs)

Time of Interest
(TOIs)

H‑AR M‑AR L‑AR

Mean SD Mean SD Mean SD

Frontal cluster
50–380 ms

2.214 0.136 2.229 0.186 1.689 0.151
Parietal‑occipital cluster 2.357 0.161 2.759 0.192 2.596 0.248

Frontal cluster
400–1000 ms

0.693 0.100 1.119 0.183 0.699 0.171
Parietal‑occipital cluster 0.453 0.154 1.353 0.199 1.087 0.188
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Figure 8. Spectrograms of theta-band (3–8 Hz) ERS at the frontal cluster and parietal-occipital cluster 
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parietal-occipital cluster. 

Figure 8. Spectrograms of theta‑band (3–8Hz) ERS at the frontal cluster and parietal‑occipital cluster
associated with H‑AR\M‑AR\L‑AR conditions: (a) the time–frequency representations of ERD/ERS
related to H‑AR\M‑AR\L‑AR conditions at the frontal and parietal‑occipital clusters and (b) the
channel electrode clusters of interest. The red represents frontal cluster, while the green represents
parietal‑occipital cluster.
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Figure 9. The (left) and (right) plots represented the interaction effect of theta power of frontal cluster
and parietal‑occipital cluster across the early time window (50–380 ms) and the late time window
(400–1000 ms), respectively.

4.4. Correlations between Emotional Responses, ERPs, and ERSP
The results of correlation analyses after Bonferroni correction are shown in Figure 10.

The findings revealed that L‑AR valence had significant positive correlations with L‑AR
arousal. The valence of H‑AR correlated negatively with H‑AR arousal. P2 and LPP of
L‑AR both had positive correlations with L‑AR arousal. The P2 of H‑AR had significant
positive correlations with the LPP of H‑AR, and the P2 of M‑AR correlated significantly
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positively with the LPP of M‑AR. Notably, we discovered that the frontal theta power of
H‑AR, M‑AR, and L‑AR all had significant positive correlations with both early and later
theta rhythm power in parieto‑occipital regions.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 27 
 

 

  

Figure 9. The (left) and (right) plots represented the interaction effect of theta power of frontal clus-
ter and parietal-occipital cluster across the early time window (50–380 ms) and the late time window 
(400–1000 ms), respectively. 

4.4. Correlations between Emotional Responses, ERPs, and ERSP 
The results of correlation analyses after Bonferroni correction are shown in Figure 10. 

The findings revealed that L-AR valence had significant positive correlations with L-AR 
arousal. The valence of H-AR correlated negatively with H-AR arousal. P2 and LPP of L-
AR both had positive correlations with L-AR arousal. The P2 of H-AR had significant pos-
itive correlations with the LPP of H-AR, and the P2 of M-AR correlated significantly pos-
itively with the LPP of M-AR. Notably, we discovered that the frontal theta power of H-
AR, M-AR, and L-AR all had significant positive correlations with both early and later 
theta rhythm power in parieto-occipital regions. 

 
Figure 10. Figure (a) represents Spearman’s r of emotional responses, ERPs and ERSP. Figure (b) 
represents Spearman’s p of emotional responses, ERPs and ERSP. The statistical method used the 
Spearman correlation coefficient; a and p indicate the frontal and posterior regions, respectively, e 
and l represent the early time window and late time window, respectively. 

5. Discussion 
Robots are becoming more prevalent in human social life and play a significant role 

in a range of industries. The emotional experience prompted by the visual appearance of 
an anthropomorphized robot plays a critical role in affecting users’ behaviors. Moreover, 
individual’s attitudes towards robots with varying degrees of anthropomorphism are also 
important. The purpose of this study is to tackle the time course of neural processing of 
human perceptions and emotional responses on three different types of robots (H-AR\M-
AR\L-AR) with varying levels of anthropomorphism, and to evaluate individual’s 

Figure 10. (a) represents Spearman’s r of emotional responses, ERPs and ERSP. (b) represents Spear‑
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5. Discussion
Robots are becoming more prevalent in human social life and play a significant role

in a range of industries. The emotional experience prompted by the visual appearance of
an anthropomorphized robot plays a critical role in affecting users’ behaviors. Moreover,
individual’s attitudes towards robots with varying degrees of anthropomorphism are also
important. The purpose of this study is to tackle the time course of neural processing of
human perceptions and emotional responses on three different types of robots (H‑AR\M‑
AR\L‑AR) with varying levels of anthropomorphism, and to evaluate individual’s subjec‑
tive emotional valence and arousal, as well as attitudes, such as likeability, and perceived
warmth toward the stimuli. This research combined subjective ratings, ERPs and ERSP
measurements to characterize neural cognitive process components. The findings might
contribute to a better understanding of users’ perceptual and emotional processing of an‑
thropomorphized robots and facilitate the design of emotional anthropomorphic robots.

5.1. Behavioral Results Discussion
The subjective rating results manifested that the emotional valence is negatively cor‑

related with the level of the robot’s anthropomorphism, while emotional arousal is accom‑
panied by a U‑shaped function of anthropomorphism, with higher arousal at the low an‑
thropomorphic level, followed by a decrease at middle level and finally by a re‑increase
in arousal at high level. Consistent with Bradley and Lang [109], our results suggested
that low anthropomorphic levels may induce positive emotional experiences and extreme
emotional valence is often related to high emotional arousal for positive or negative stimuli.
Regarding the likeability, the results showed that the likeability of M‑AR was larger than
H‑AR, which is in line with previous studies [14,15,19]. These studies suggested that like‑
ability increased with the increase in human likeness, whereas they would be perceived as
really unlikeable and induce negative attitudes as robots became more human‑like [10,14].
However, in the present study, we also found that L‑AR has higher likeability than M‑AR.
The likely account for this might be that the experimental sample of L‑AR includes more
adorable non‑human characteristics such as eyes, legs, or arms, compared toM‑AR stimuli.
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In addition, the L‑AR can be perceived as less threatening to humandistinctiveness relative
to M‑AR. For human warmth, the averaged warmth rating was smallest during the H‑AR
condition, while the warmth means were relatively close between M‑AR and L‑AR condi‑
tions. The results were partially consistent with the findings of Kim et al. [13], suggesting
that once robots become too human‑like, an uncomfortable feeling of uncanniness could
appear and lead to less positive attitudes. The slight difference between L‑AR and M‑AR
might be because the experimental stimuli for L‑AR were totally different from the exper‑
imental stimuli (Ethon 2) in Kim’s study, the stimuli for L‑AR and M‑AR in the current
study all had likable product shapes and distinctive characteristics of appearance. Thus,
L‑ARmight have a perceived warmth that is comparable to M‑AR. These findings suggest
that the degree of anthropomorphism of robots may play an important role in affecting
users’ perceptual and emotional processing, as well as judgments of robots.

5.2. ERPs Related to Anthropomorphic Robots
5.2.1. N1 (110–140 ms): An Early Perceptual Detection of Anthropomorphic Robot
Features (Hypotheses 1.1 and 3)

Consistent with prior emotional ERPs research that affective stimuli can elicit an en‑
hanced N1 component compared to neutral stimuli [70,76,77], in the present study N1
amplitudes of H‑AR (high arousal and low valence) and L‑AR (high arousal and high va‑
lence) were significantly larger negative than that of M‑AR (middle arousal and middle
valence) in the anterior sites (supported H1.1 and H3). The possible explanation could be
that H‑AR and L‑AR with high arousal scores may be more inclined to draw more atten‑
tion from participants in the early information processing stream. Furthermore, a large
number of studies on robot design have confirmed that human likeness [110], appear‑
ance [37], actions [22,24], and automation [26] can have an influence on a user’s percep‑
tual process, attentional distribution, preference, and even the following behaviors. Prior
ERP studies have found that the N1 component is firmly related to the physical properties
of events [75,79], and it has also been associated with selective attention and discrimina‑
tion [71,73,111]. In the present study, H‑AR and L‑AR all exhibit relatively prominent
appearance compared to M‑AR. Thus, both H‑AR and L‑AR received enhanced attention
allocation. As 125ms is a very early time point and the information processing at this phase
probably occurred subconsciously, thus the nervous system might only detect a few fea‑
tures of stimulus pictures. We also observed shorter N1 latencies for H‑AR than for L‑AR.
H‑AR was perceived as more human‑like compared with L‑AR. H‑AR with highly anthro‑
pomorphic faces might be more cognitively accessible and anthropomorphized during the
face processing stage. Thus, H‑AR might attract individuals’ attention more quickly for
face form detection relative to L‑AR in the early phase of perceptual processing (partially
supported 3).

5.2.2. P2 (240–310 ms): A Selective Attentional Allocation of Anthropomorphic Robot
Features (Hypotheses 1.2 and 3)

Previous studies have shown that P2 enhancement will be elicited by stimuli with
positive or negative valence compared to stimuli with neutral valence [82]. In the present
study; however, larger P2 amplitudes were observed for the M‑AR and L‑AR than for
the H‑AR over a wide region across the scalp, and M‑AR has greater P2 amplitudes com‑
pared with L‑AR in the parietal and occipital regions (partially supported H1.2 and H3).
Prior research has revealed that P2 is sensitive to early stimulus classification and reflects
the early attentional bias to the characteristics of the stimulus itself [85,112]. Several pre‑
viously reported studies have also shown that natural selective attention can occur and
account for the variation in amplitudes during middle latency [62,78,91]. These studies
suggested that some features of the stimulus itself may be more emotionally stimulating
in users, prompting them to allocate more or earlier attention to the stimulus pictures. We
tentatively interpreted the above‑mentioned results could be attributed to the different
physical properties. In the present study, H‑ARs (high arousal) were much more human‑
like and had a high level of anthropomorphismwith more prominent characteristics of hu‑
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mans (with half‑bodies), thus H‑ARmight be more cognitively accessible, more sought by
perceivers, and could be identified or distinguished rapidly and automatically by users rel‑
ative to L‑AR andM‑AR. BothM‑AR and L‑ARwith relatively moderate or less prominent
characteristics of human beings need users to give more effort and attention to acquiring
information for the affective evaluation. Accordingly, P2 amplitude was more strongly
activated by M‑AR and L‑AR than that by H‑AR. Consequently, smaller P2 amplitudes
of H‑AR are probably indicative of a feature detection process that is responsive to high
levels of anthropomorphism. In addition, relative to L‑AR and M‑AR, H‑AR with more
prominent humanlike design characteristics was perceived as much more human‑like and
also can give individuals a potentially weird, uncomfortable feeling of uncanniness (par‑
ticipants’ post hoc behavioral response supported this) [10,13,43,56,113], which might re‑
cruit participants’ more or earlier attentional resources to respond to stimuli rapidly and
automatically [114,115]. Thus, in the current study, the face form detection and animacy
perception ofH‑ARmight be facilitated and finished in this time course [56,116,117]. More‑
over, the P2 peaked earlier for H‑AR than for L‑AR andM‑AR, suggesting that individuals
can have a faster feature detection for high anthropomorphic stimuli relative to low ones.
In congruence with Chammat et al. [20], this study suggests that the appearance of hu‑
manoid robots (L‑AR and M‑AR) can engage more attentional resources in detecting and
encoding. Noticeably, the P2 ofM‑AR is greater in posterior areas than that of L‑AR, while
no difference has been found between M‑AR and L‑AR in the anterior regions. The main
reason for this was that M‑AR may recruit enhanced attentional resources for the working
memory of encoding in posterior areas compared to the L‑AR condition, whereas the L‑AR
and M‑AR devoted approximative attentional resources for the rapid feature detection in
frontal regions.

5.2.3. LPP (400–800 ms): An Affective Evaluation, Categorization and Motivated
Attention of Anthropomorphic Robots (Hypotheses 2.1 and 3)

Prior research has demonstrated that LPP is linked to the stimuli’s arousal and va‑
lence level [76,88,90,93,118]. In contrast to neutral stimuli, stimuli with high or low valence
could elicit enhanced LPP, and stimuli with higher arousal scores could evoke greater LPP
than low‑arousal stimuli [70,89,92]. However, in the present study, larger LPP (during the
400–800 ms interval) was elicited byM‑AR than by L‑AR and H‑AR, while M‑AR held low
arousal and middle valence ratings (participants’ affective evaluation results) relative to L‑
AR and H‑AR (not supported H2.1, but supported H3). The difference might be attributed
to the experimental stimuli used in the study, which held different levels of anthropomor‑
phism and appeared to induce distinguished neural patterns. Moderately human‑like ap‑
pearances appeared to be not fearful or ugly enough to evoke negative emotional experi‑
ences [37,119]. LPP has previously been reported to be associated with sustained attention
allocation, top‑down processing influences, evaluation of emotional stimuli, subjective af‑
fective experience, and categorization processes [40,78,79,89,118,120–123]. In the current
study, when participants make an affective evaluation of the picture stimuli and then give
the corresponding emotional valence and arousal scores, more attentional resources and
more heavily weighted evaluative judgments might be motivationally assigned to M‑AR
caused by distinct physical attributes (i.e., relatively and moderately anthropomorphic
characteristics, such as eyes, legs, and face) through the top‑down modulation, inducing a
higher level of arousal. LPP enhancement forM‑ARmight reflect the top‑down control and
motivated attention needed for the affective evaluation. Furthermore, this result was also
in agreement with the findings of Jacobsen and Höfel [124], suggesting that aesthetic dis‑
crimination of preference induced sustained LPP. EvaluatingM‑AR appears to activate the
arousal of inherent affect in preference formation for human‑like appearances [37], and the
association of knowledge in long‑term memory and involves top‑down processing. This
may have contributed more to positive emotion. Thus, significantly greater LPP was ob‑
served for M‑AR than for L‑AR and H‑AR. Noticeably, we also found that the LPP for
M‑AR and L‑AR in this study had a wider scalp distribution than for H‑AR. The scalp
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distribution was partially in line with the findings of Wang and Quadflieg [125], who sug‑
gested that more cortical regions would be active for the cognitive processing of humanoid
robots than for human beings (H‑ARwas perceived asmore human‑like). In the same vein,
it was also partially consistent with the findings of Cheetham et al. [36], who suggested a
lower scalp topographical distribution of the LPP for human and humanlike faces than
ambiguous ones.

5.3. ERSP Related to Anthropomorphic Robots (Hypotheses 1.1, 2.2 and 3)
Prior studies have shown that early theta‑band oscillations are involved in the pro‑

cessing of affective stimuli, formation of affective preference during the early perceptual
phase, and encoding of stimuli characteristics in working memory [37,73,96,98,126]. In the
present study, greater theta band activation was elicited in the parietal‑occipital cluster
than for the frontal cluster within the early time window (50–380 ms). A possible explana‑
tion for thismight be that enhanced allocation of attentional resources has been used for en‑
coding anthropomorphic stimuli in working memory. It appeared that dissociations have
occurred between the anterior theta‑band oscillations and posterior theta‑band oscillations
in the mechanisms of visual feature detection and attentional processing they reflect. As
defined by the two‑stage concept of affect and attention, the information processing stream
consists of two stages, in which further affective evaluation and categorization take place
in the late stage based on the information processed in the early stage [91,127]. More‑
over, studies have reported that the information processing in the late stage was typically
modulated by a particular goal and the theta‑band oscillations might vary as motivated
attention [102,128]. In the present study, participants were required to make an affective
evaluation of the picture stimuli and subsequently give the corresponding emotional va‑
lence and arousal ratings. With the task target, individuals might further motivationally
process the pre‑processed information of the early perceptual processing phase according
to their own preferences. In the current study, individuals tended to prefer M‑AR and
L‑AR compared with H‑AR (not supported H1.1). M‑AR and L‑AR had larger theta‑band
ERS than H‑AR across the late time window (400–1000 ms) (partially supported H2.2, and
supportedH3). The result was in accordancewith prior studies that preferred appearances
could drawmore attentional resources with the inherent positive affect and elicit increased
theta‑band activity [37,129].

5.4. Correlations of EEG and Behavioral Measures, and the Two Stages
The results revealed that the valence of L‑AR has a positive correlation with arousal,

but is negative for H‑AR. The possible explanation for this might be attributed to the differ‑
ences in physical properties. Compared with the L‑AR, H‑AR appeared to be perceived as
muchmore human‑like and tended to give individuals a potentially uncomfortable feeling
of uncanniness. The P2 of H‑AR and M‑AR have significant associations with LPP, sug‑
gesting associations between the induced information and perceptual processing reflected
in ERP. With regard to the theta power of the two stages, the frontal‑cluster theta power
of H‑AR, M‑AR, and L‑AR all had significant positive correlations with both early and
later theta power in parieto‑occipital‑cluster regions. The correlations between the frontal‑
cluster regions andparieto‑occipital‑cluster regionsmight indicate the internal correlations
of the brain. The correlations between the early time window and the late time window
might signify the perceptual information transfers between the early perceptual process‑
ing of physical properties and the later further processing and evaluation of preference.
This was supported by the two‑stage concept of affect and attention [91,127].

5.5. Limitations and Future Research
This study has several limitations that should be acknowledged. Firstly, this research

used static images, but real‑world situations involved dynamic entities with artificially
anthropomorphic speech and robot interaction. In the future, we can try to design ex‑
periments using dynamic robots or robots with verbal interaction. Secondly, in the cur‑
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rent study, only three types of anthropomorphic robots were included, ignoring industrial
robots and uncanny valley robots like Zombie andAnimated characters. In future research,
those robots as factors in the experimental design will be considered. Thirdly, some L‑AR
had appearances without control of face direction or picture views. The face direction
might influence users’ attention direction. And the whole appearances in the L‑AR and
M‑AR look significantly different from the half‑bodies of H‑AR. This difference may bias
the results of this study. Thus, future studies will strictly control these factors. Another
limitation of our study is the homogeneous sample consisting primarily of university stu‑
dents familiar with technology. This familiarity may have influenced their perception of
the robots, potentially leading to more favorable usability and acceptance outcomes. Fu‑
ture research should consider including a more diverse sample with varying levels of tech‑
nological exposure to examine how familiarity impacts interaction with robotic devices.
Additionally, it would be beneficial to investigate the effects of training and exposure on
populations less familiarwith technology, as suggested by prior research [130,131]. Fifthly,
although the current study provided a potential link between the P2 component and the an‑
thropomorphism, further work at an electrophysiological level was needed to better com‑
prehend the cognitive basis of anthropomorphism, and eventually define and manipulate
anthropomorphisms to further explore human cognition and the uncanny valley hypoth‑
esis. Finally, ERPs and ERSP were utilized to analyze H‑AR\M‑AR\L‑AR perceptual and
emotional processing in time and the time‑frequency dimensions. In future research, spa‑
tial location analysis for brain functional regions would be measured to complement the
experimental results by combining the EEG and fNIRS or fMRI technology.

6. Conclusions
Robots are increasingly being used in human social life and play a vital role in numer‑

ous fields. The current study used electrophysiological techniques combining ERPs and
ERSP to investigate the time course of how the degree of anthropomorphism of anthro‑
pomorphic robots affects users’ perceptual and emotional processing, as well as to assess
individuals’ attitudes to them. Anthropomorphic robots with three levels of anthropo‑
morphism were used as stimuli in an affective rating task. Forty‑two participants viewed,
perceived, and rated their emotional scores while EEG data were recorded.

The behavioral results suggest that emotional valence is negatively correlatedwith the
level of the robot’s anthropomorphism. Emotional arousal is accompanied by a U‑shaped
function of anthropomorphism. The likeability of L‑AR was highest, while the H‑AR was
lowest. The perceived warmth rating of high anthropomorphic robots is lowest compared
to low and middle ones. These findings suggest that the degree of anthropomorphism of
robots may play an important role in affecting users’ perceptual and emotional processing,
as well as judgments of robots.

The EEG results of the present study suggest that in the early timewindow, H‑AR and
L‑AR elicited increased exogenous frontal and central N1 than M‑AR, reflecting increased
attention in the early perceptual processing stage. However, M‑AR and L‑AR induced
enhanced P2 than H‑AR, indicating that more selective attention was attracted by M‑AR
and L‑AR. The cognitive underpinnings of the uncanny valley may be indicated by the
smaller P2 with peaked earlier latencies for H‑AR. At a later stage, M‑AR evoked larger
LPP than H‑AR and L‑AR across a wide scape, indicating increased arousal, enhanced
directed attention and affective preference. Theta‑band ERS results indicate different neu‑
ral patterns for H‑AR, M‑AR and L‑AR in the early and late time windows. Specifically,
theta‑band oscillations are greater for the parietal‑occipital cluster than the frontal cluster
in the early time window, indicating that enhanced attention was used for stimuli informa‑
tion encoding in working memory and a dissociation between the anterior and posterior
theta‑band oscillations. In the late time window, M‑AR and L‑AR had larger theta‑band
ERS than H‑AR, indicating enhanced attentional and affective preferred responses. These
findings suggest that the degree of anthropomorphism of robots elicited differential neural
perceptual and emotional processing of H‑AR, M‑AR and L‑AR, which not only occurred
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in the early feature detection and selective attentional allocation phase but also took place
in later affective appraisal processes. Early face form detection and animacy perception
may have been completed in the early time phase, and the P2 related to high‑order visual
processing may be an indicator associated with the levels of anthropomorphism. These
findings imply that robot designers can monitor and understand a user’s perceptual and
emotional processing of an anthropomorphic robot based on the neurophysiology compo‑
nents. This may help them better able to design and evaluate anthropomorphic robots that
meet consumers’ affective expectations. This study extends anthropomorphic robot de‑
sign research in emotional processing by using electrophysiological methods. Both robot
designers and manufacturers may benefit from this approach, which provides reference
and guidelines for the emotional design, feature design, assessment, and promotion of
anthropomorphic robots.
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